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This paper presents a mathematical approach to properly account for uncertainty in 
wind resource assessment and wind energy production estimation.  The evaluation of a wind 
resource and the subsequent estimation of the annual energy production (AEP) is a highly 
uncertain process.  Uncertainty arises at all points in the process, from measuring the wind 
speed to the uncertainty in a power curve.  A proper assessment of uncertainty is critical for 
judging the feasibility and risk of a potential wind energy development.  Many current 
methods for assessing uncertainty either oversimplify the process or make faulty 
assumptions, leading to erroneous estimates of uncertainty.  The approach in this paper 
yields a more accurate and objective accounting of uncertainty, and therefore better decision 
making when assessing a potential wind energy site.  Three major aspects of site assessment 
uncertainty are presented here.  First, a method is presented for combining uncertainty that 
arises in assessing the wind resource.  Second, uncertainty in wind turbine power output and 
energy production is characterized.  Third, a method for estimating the overall AEP 
uncertainty when using a Weibull distribution is presented.  While it is commonly assumed 
that the uncertainty in the wind resource should be scaled by a factor between two and three 
to yield the uncertainty in the AEP, this work demonstrates that this assumption is an 
oversimplification, and also presents a closed form solution for the sensitivity factors of the 
Weibull parameters.   

Nomenclature 
AEP = Annual Energy Production 
ARRAY = Denotes Array Losses 
AV = Denotes Availability Losses 
c = Weibull Scale Factor 
CF = Capacity Factor 
ELF = Energy Loss Factor 
FOUL = Denotes Fouling Losses 
k = Weibull Shape Factor 
h = Height 
HUB = Denotes Hub Height Quantities 
LT = Denotes Long-Term Quantities or Long-Term Estimation Uncertainty 
LT_HUB = Denotes Long-Term, Hub Height Quantities 
M = Denotes Measured Quantities or Measurement Uncertainty 
N = Number of Measurements  
P = Power 
PR = Rated Wind Turbine Power 
PW(U) = Wind Turbine Power Curve 
PW̄  = Average Power Output 
p(U) = Wind Speed Probability Density Function 
R = Range of a Rectangular Distribution 
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RERL = Renewable Energy Research Laboratory 
SA = Denotes Site Assessment Uncertainty  
SF = Sensitivity Factor 
U = Wind Speed 
Ū  = Mean Wind Speed 
V = Denotes Inter-annual Variability Uncertainty 
z0 = Log Law Wind Shear Parameter 
α =  Power Law Wind Shear Parameter 
Γ = Gamma Function 
δ = Denotes Uncertainty 
σ = Standard Deviation 
* = Denotes Absolute Uncertainties (vs. non-dimensional uncertainties) 

I. Introduction 
Wind energy site assessment gauges the potential for a site to produce energy from wind turbines.  When wind 

energy development is under consideration, a site assessment is undertaken.  Specifically, wind energy site 
assessment is the process of evaluating the wind resource at a potential wind turbine or wind farm location, then 
estimating the energy production of the proposed project.  The wind resource at a site directly affects the amount of 
energy that a wind turbine can extract, and therefore the success of the venture.  The quality of the wind resource is 
primarily quantified by the mean wind speed at the site, although the turbulence intensity, probability distribution of 
the wind speed, and prevailing wind direction are also important factors.  Once the wind resource has been assessed 
at a site, the expected annual energy production, AEP, of a selected wind turbine is calculated.  This calculation 
combines the expected wind resource with the wind turbine(s) power curve and the expected energy losses in order 
to estimate how much energy the wind turbine(s) will actually produce at the site.  The AEP will ultimately help 
determine the profitability of the undertaking. 

The accuracy and precision of the wind resource assessment and AEP calculation must also be determined when 
evaluating a potential site.  Wind resource assessment is an uncertain process, and a large number of factors ranging 
from wind speed measurement errors to the inherent physical variations in the wind contribute to this uncertainty.  
Overall, these various individual sources of error must all be accounted for to provide an estimate of the total 
uncertainty of the wind resource.  Furthermore, power curves and energy loss terms are uncertain as well.  When the 
wind resource, the power curve, and the energy losses are combined to estimate the AEP, the uncertainties from all 
the factors contribute to an overall AEP uncertainty.  This uncertainty is critical in estimating the risk associated 
with the potential venture. 

The goal of this paper is to present a comprehensive, mathematical approach for handling uncertainty in the site 
assessment process.  This paper does not present recommended values for various uncertainty sources.  Rather, it 
offers an analytical method for categorizing uncertainty sources in all steps of the site assessment process, and then 
combining the uncertainty sources to yield an overall estimate of the AEP uncertainty.  Often, the calculation of the 
uncertainty in the site assessment process is oversimplified or based on faulty assumptions.  This works aims to 
provide a method for site assessment uncertainty analysis founded on a sound mathematical basis.  The methods for 
combining uncertainty sources in a given calculation rely heavily on the calculation itself.  Thus, when describing 
the determination of the wind resource uncertainty or the AEP uncertainty, the actual method for determining the 
wind resource or the AEP must be explained as well.   

A. The Weibull Distribution 
This paper utilizes the Weibull distribution as an approximation of the wind speed distribution.  The Weibull 

distribution is commonly used to model wind speed distributions, and often provides a good approximation.  It relies 
on two parameters: the scale factor c and the shape factor k.  The Weibull probability density function, where U is 
the wind speed, is shown in Eq. (1). 

 ( ) ( )( ) ( )( )kk cUcUckUp /exp// 1 −= −  (1) 

A statistical model approximation to the wind speed distribution, as opposed to simply using the measured time 
series or the frequency distribution of the measured data, is useful for several reasons.  First, a statistical model 
allows for the quality of the wind resource to be quantified by the parameters of the model.  In the case of the 
Weibull distribution, the quality of the wind resource is easily summarized by the values of c and k.  Second, a 
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statistical model is extremely useful for handling uncertainty both in wind resource assessment and in AEP 
estimation.  Many of the statistical techniques presented in this paper rely on the ability to express the wind speed 
distribution in a functional form.  On the other hand, a statistical model approximation can introduce error into the 
process, especially when the model does not provide a good fit to the data.  The uncertainty associated with the 
quality of the Weibull fit is not considered in this paper.     

By using a Weibull distribution to represent the wind speed distribution, the uncertainty in the wind resource can 
be expressed as uncertainty in the values of c and k.  The scale factor c is nearly proportional to the mean wind 
speed, and it is reasonable to assume that the percentage uncertainty in the mean wind speed is equal to the 
percentage uncertainty in c.  This is an especially useful assumption since it is often easier to conceptualize and 
estimate uncertainty in the mean wind speed rather than c.   

II. Review of Error Sources and Uncertainty Analysis 
All measurements, no matter how carefully done, are subject to errors, which results in a measured value 

differing from the ‘true’ value.  The amount by which they differ (the size of the error) is unknown, and so all 
measurements are subject to some uncertainty.  In this paper, the term ‘uncertainty’ will be used as a general 
measure of the size of the error.  The error in a measurement is comprised of two components: the random error and 
the systematic error.1   

A. Random Error and Uncertainty 
Random error is produced by variability in the quantity being measured or in the measurement procedure.  For 

example, when measuring the duration of an event using a stopwatch, random error may arise when multiple 
measurements are made.  The reaction time of the stopwatch operator can vary, causing each measurement to differ.  
The standard deviation of the measurements is a measure of the uncertainty of a single measurement due to random 
error.  These errors are often assumed to have normal distributions about the true value.   

Often, the mean of the measurements is the quantity of interest.  The uncertainty of the mean of the 
measurements is not equal to the standard deviation of the measurements.  Rather, the uncertainty of the mean of the 
measurements, δx̄ , is equal to the standard deviation of the measurements, σx, divided by the square root of the 
number of measurements, N, assuming the measurements are independent.  This relation is shown in Eq. (2).1   

 Nx x /σδ =  (2) 

The uncertainty in the estimate of the mean decreases as the number of measurements increases.  Furthermore, 
this uncertainty will be normally distributed for a large N, even if the distribution of the measurements is not normal.  
Sources of random error will be categorized as Type A uncertainty.   

B. Systematic Error and Unknown Bias Uncertainty 
Systematic errors, or biases, are constant over a set of identical measurements.  These errors are often due to an 

error in a calibration constant.  An example of a systematic error is a stopwatch that runs slowly.  Any measure of 
the duration of an event with that stopwatch will result in a value that is smaller than the true value.  Systematic 
errors cannot be revealed by repeated measurements because they are constant over the set of measurements, 
assuming the same instruments are used.   

Whenever a measurement is performed, effort should be made to identify the systematic errors, and to either 
remove the source of the errors or to adjust the measurements by the value of the bias.  For example, if one knew 
that the stopwatch ran slowly by a certain amount, all measurements could be scaled to correct for this known bias.  
This scaled value is then the estimate of the true value of the measurement.  Once the bias has been accounted for by 
scaling the measurements, the uncertainty is expressed as a value around the scaled value.  An estimate of the bias of 
an instrument often requires comparison to an unbiased instrument or comparison to measurements from multiple 
instruments.   

The issue is complicated when the bias in a measurement is unknown.  Again using the stopwatch example, if 
one does not know how slowly or quickly a stopwatch is running, this produces additional uncertainty in the 
measurement.  However, the bias, while unknown, is constant across every measurement, and so it does not behave 
like random error, which varies with each measurement and so can be calculated from the measured data.  The 
uncertainty due to unknown systematic errors has typically been estimated based on experience.2 Furthermore, this 
uncertainty does not necessarily have to be characterized by a normal distribution, and therefore measured by the 
standard deviation.   
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This paper proposes to resolve the issue as follows.  While any particular instrument can be subject to an 
unknown bias, the bias of a collection of all of those instruments is assumed to be normally distributed with a mean 
value of zero.  For example, the mean bias of all the stopwatches from a certain model is assumed to be zero, and 
variability in the bias of the instruments is assumed to be normally distributed about zero.  When one randomly 
selects a stopwatch from the set of all stopwatches, the uncertainty due to an unknown bias is equal to the standard 
deviation of the biases of the set of stopwatches.  Thus, there is a random component to the unknown bias, even if it 
is constant for a single instrument.  Therefore, the unknown bias uncertainty will be characterized by a normal 
distribution, and so the standard deviation is the measurement of the uncertainty.  The standard deviation of the 
unknown bias can be measured if multiple instruments are used simultaneously.  However, when only a single 
instrument is used, then the uncertainty has to be approximated.  The uncertainty due to unknown bias will be 
categorized as Type B uncertainty. 

C. Combination of Uncertainties 
This paper assumes that all Type A and Type B uncertainties are independent and normally distributed.2,3  

Uncertainties will be characterized by the fractional standard uncertainty.  The fractional standard uncertainty is a 
percentage uncertainty, and is calculated as the uncertainty of the measurements of a parameter divided by the 
absolute value of the expected value of the parameter.  It is generally more convenient and intuitive to use the 
fractional standard uncertainty, since it is non-dimensional.  In contrast, the absolute standard uncertainty of a 
quantity is simply the uncertainty of the measurements of the parameter and so it has units.  Throughout this paper, a 
superscript * is used to denote absolute uncertainties.  Fractional uncertainties do not have a * superscript.   

Sometimes, specific sources of Type B uncertainty are more easily characterized by an uncertainty limit.  That 
is, the estimated distribution may be rectangular, with equal probability of any error over some range, +/- R.  In 
these cases, the standard uncertainty, δx, is equal to R divided by the square root of three, shown in Eq. (3).3 

 3/Rx =δ  (3) 

When multiple uncertain quantities are used to calculate some parameter, the uncertainties in the component 
quantities combine to yield a total uncertainty in the parameter.  For a parameter f, that is a function of several 
variables, f=f(x1,…, xn), the uncertainties of the variables, δx1

*,…, δxn
*, are combined to yield an overall uncertainty, 

δf*.  δf* is calculated using Eq. (4), as long as the uncertainties are independent.  All uncertainties in Eq. (4) are 
absolute uncertainties, and so they can have units.   
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Equation (4) is referred to as the “root-sum-square” (RSS) technique, and it the standard method for combining 
independent uncertainties.1 Equation (4) can be non-dimensionalized so that the uncertainties are expressed as 
fractional uncertainties. The non-dimensional form of Eq. (4) is shown in Eq. (5).  In Eq. (5), δf and δx1,…, δxn are 
now fractional uncertainties.  The partial derivatives and the fractions, which multiply the fractional uncertainties, 
are referred to as “sensitivity factors,” since they measure how sensitive changes in f are to changes in the variables.  
The sensitivity factors may be positive or negative in order to indicate if a change in the individual variable causes 
an increase or a decrease in f.  The sign is not particularly important though, since the terms are then squared.  The 
sensitivity factors are also non-dimensional. 
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Type A and Type B uncertainties can be combined together using Eq. (5) as long as they are each expressed 
using the standard deviation as a measure of uncertainty.  It must be emphasized that there is no definitive method 
for combining Type A errors and Type B errors. The RSS method is likely the best available option, assuming that 
the individual uncertainty sources are independent.1,2 Also, by the central limit theorem the distribution of the total 
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uncertainty will tend toward a normal distribution, regardless of the distribution of the individual sources of 
uncertainty.  In this paper, all sources of uncertainty are assumed to be normally distributed, so the distribution of 
the total uncertainty will also be normal.   

III. Wind Resource Uncertainty 
Wind resource assessment is the first major step in the wind energy site assessment process.  It consists of using 

measured wind speed data to estimate the long-term hub height wind resource at the turbine location.  Because the 
wind resource varies from year to year, an estimate of the long-term value is critical to accurately estimate energy 
production.  Also, wind turbine power output depends on the wind speed at the turbine hub height, and so an 
estimate of the hub height wind resource is necessary for accurate estimations of AEP.  When the Weibull 
distribution is used to characterize the wind resource, the goal of wind resource assessment is to estimate the long-
term hub height values of the Weibull parameters, cLT_HUB and kLT_HUB.  The values of these parameters can then be 
used in the estimate of AEP.   

In general, wind resource assessment is a time consuming process, subject to a great deal uncertainty.  This 
section describes the four categories of uncertainty sources that arise in wind resource assessment.  Within each 
category of uncertainty, there are several individual uncertainty sources.  A brief description of each category, 
including the individual component uncertainty sources is provided.  There are a total of fourteen individual 
component uncertainty sources identified in this paper that contribute to the wind resource uncertainty.  Next, a 
method is presented for estimating cLT_HUB and kLT_HUB from measured wind speed data.  This process for estimating 
the wind resource informs the process for estimating the wind resource uncertainty.  Finally, a method for estimating 
the wind resource uncertainty is presented.  The method uses the error analysis techniques outlined above.  
Specifically, sensitivity factors are calculated for the various categories of uncertainty.  Because the Weibull 
distribution is used to characterize the wind resource, the wind resource uncertainty can be expressed as uncertainty 
in the values of c, and therefore the mean wind speed, and k.   

A. Categories of Wind Resource Uncertainty 
The causes of uncertainty in wind resource assessment can be subdivided into four categories: Wind Speed 

Measurement Uncertainty, Long-term Resource Estimation Uncertainty, Wind Resource Variability Uncertainty, 
and Site Assessment Uncertainty.  These four categories will be labeled with subscripts ‘M’, ‘LT’, ‘V’, and ‘SA.’  
Each category is now discussed briefly, and the component uncertainty sources within each category are listed. 
1. Wind Speed Measurement Uncertainty 

These uncertainty sources arise when measuring the actual wind speed at a site.  The wind speed at a site is 
usually measured by taking 10-minute averages of the wind speed, sampled at approximately 1 Hz.  Wind data at a 
site are then presented as a time series of these 10-minute averages.  The mean measured wind speed at a site is the 
mean of all the values of the measured wind speed.  Likewise, the measured wind speed can be used to estimate the 
Weibull parameters.  The measured mean wind speed and Weibull parameters can be labeled Ū M, cM, and kM, 
respectively.  

Several factors can contribute to errors in the measurement of the wind speed, and therefore in the determination 
of the Ū M, cM, and kM.  These factors fall into the category of wind speed measurement uncertainty.  They are: 

1.  Anemometer Uncertainty I - Calibration Uncertainty 
2.  Anemometer Uncertainty II - Dynamic Overspeeding 
3.  Anemometer Uncertainty III - Vertical Flow Effects 
4.  Anemometer Uncertainty IV - Vertical Turbulence Effects 
5.  Tower Effects 
6.  Boom and Mounting Effects 
7.  Data Reduction Accuracy 
 

2. Long-term Resource Estimation Uncertainty 
These uncertainty sources arise when the measured wind resource data are used to estimate the long-term wind 

resource at a site.  While wind resource measurement typically lasts for 1 year, the measured resource during this 
particular year may not be representative of the actual long-term resource at the site.  The long-term resource is 
characterized by the mean wind speed and wind speed distribution that exists at a site over a very long period of 
time.  Typically, twenty years is assumed to be a long enough time period to characterize the long-term wind 
resource.  Since a twenty-year measurement campaign is far too long for practical purposes, the long-term resource 
must be estimated from the measured data.  The measured data, along with long-term data from a nearby site (the 
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“reference site”), is generally used in a process called Measure-Correlate-Predict (MCP) to estimate the long-term 
wind resource at a site.  The long-term mean wind speed and Weibull parameters can be labeled Ū LT, cLT, and kLT, 
respectively.   

MCP introduces uncertainty into the estimate of the long-term resource at the site.  Furthermore, the estimation 
of kLT in the MCP step contributes an additional uncertainty because different parameter estimation models yield 
different values for kLT.  Finally, global climate change may also cause uncertainty in the estimate.  Thus, additional 
uncertainty arises when the measured data are used to estimate the long-term wind resource at a site.  The three 
uncertainty sources that arise in long-term resource estimation are: 

8.  MCP Correlation Uncertainty 
9.  Weibull Parameter Estimation Uncertainty 
10. Changes in the Long-term Average 
 

3. Wind Resource Variability Uncertainty 
When the wind resource at a site is evaluated, a finite number of years of data are used to estimate the long-term 

mean wind speed and Weibull parameters.  Essentially, a sample of yearly mean wind speeds is used to estimate the 
long-term wind resource.  Thus, the potential for random error exists, and it causes uncertainty in two ways.  First, 
the reference site data used in the MCP step to estimate the long-term parameters might not in fact be representative 
of the true long-term values.  Since random error decreases as the number of samples increases, the longer the 
reference site data set used in the MCP step to estimate the long-term parameters, the less uncertainty there will be 
in these estimates.  Second, the actual wind resource over the lifetime of a turbine may not be the same as the true 
long-term wind resource, which produces additional uncertainty.  These two uncertainties are therefore Type A 
uncertainties, and they are: 

11.  Inter-Annual Variability Uncertainty 
12.  Uncertainty over Turbine Lifetime 
 

4. Site Assessment Uncertainty 
Wind speed measurements usually take place at heights significantly lower than the hub height of a typical 

modern wind turbine.  Because wind speeds typically increase with height, a wind shear model is used to extrapolate 
the estimated long-term wind resource to the hub height.  The wind shear model is created using the measured wind 
speed data.  The use of a wind shear extrapolation introduces uncertainty.  Furthermore, the tower used to measure 
the wind speed is often not at the exact location of the wind turbine(s).  Topographic effects can cause the wind 
speeds at separate locations at a site to differ.  Thus, site assessment uncertainties arise when estimating the long-
term, hub height mean wind speed and Weibull parameters at the probable turbine location, Ū LT_HUB, cLT_HUB, and 
kLT_HUB, from the long-term mean wind speed at the measurement height and the measurement location, Ū LT, cLT, 
and kLT.  The two factors contributing to this uncertainty are: 

13.  Topographic Effects 
14.  Wind Shear Model Uncertainty 

B. Estimation of the Wind Resource 
Once the wind speed measurements at the site are completed and the fourteen sources of wind resource 

uncertainty have been estimated, an estimate can be made of the long-term wind resource and the associated 
uncertainty in this estimate.  This section describes the process that should be used for estimating the long-term hub 
height mean wind speed and Weibull parameters, Ū LT_HUB, cLT_HUB, and kLT_HUB.  The next section discusses the 
associated uncertainty.  Again, it is important to review the process for estimating the wind resource because it helps 
frame the process for estimating the uncertainty.  The steps that should be used to determine the long-term, hub 
height wind resource are listed below. 

1.  Correct for any known bias in the measured wind speed.  The anemometer vertical sensitivity, the 
anemometer overspeeding, the anemometer vertical turbulence effects, and the tower effects may introduce a bias 
into the measurement of the wind speed.  The measured wind speed data should be scaled to remove these biases.   

2.  Use the measured wind speed data to determine the appropriate shear parameter.  If the power law is used, 
then solve for α.  If the log law is used, then solve for z0, assuming a displacement height of zero. 

3.  Use the measured wind speed data and data from a long-term reference site in an MCP algorithm.  The 
outputs of the MCP algorithm are estimates of the long-term mean wind speed and long-term Weibull parameters at 
the measurement height and location, Ū LT, cLT, and kLT.  The Weibull parameters can be estimated in a variety of 
ways, including empirical methods and maximum likelihood estimation.  
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4.  Assume that k does not change with height, and therefore kLT = kLT_HUB.  This assumption is based on a 
review of shear models for k.4,5 While various models exist for extrapolating k with height, the predictions are highly 
variable, with little predictive value.  Furthermore, for reasonably high measurement heights (~50 m) and modern 
turbine hub heights, the models predict small increases in k.  Overall, it appears reasonable to assume that k is 
unchanged with height.  

5.  Apply the chosen shear model to Ū LT and cLT, the outputs of the MCP step.  This can be done as follows.  
The Weibull parameters relate to the mean wind speed, Ū , according to Eq. (6), where Γ is the gamma function.6   

 ( )kUc /11/ +Γ=  (6) 

The mean wind speed and c are proportional to each other, and the constant of proportionality is only a function 
of k.  Therefore, if k remains constant with height, then the constant of proportionality is also constant.  The result is 
that one can apply the same shear law to cLT that one applies to Ū LT.  For example, if one were utilizing the power 
law, then after determining α in Step 2, Eq. (7) could be used to calculate Ū LT_HUB and cLT_HUB.  h3 is the probable 
hub height, and h2 is the highest measurement height. 

 ( ) ( )αα
23_23_ /,/ hhcchhUU LTHUBLTLTHUBLT ==  (7) 

6.  Correct for any known bias in the shear extrapolation and topographic correction.  These processes can 
introduce bias, and so the estimated values of Ū LT_HUB and cLT_HUB should be scaled by these biases.   

C. Wind Resource Uncertainty 
Once the long-term wind resource has been determined, the uncertainty of the long-term wind resource can then 

be estimated.  This section describes the estimation of the uncertainty of Ū LT_HUB, cLT_HUB, and kLT_HUB.  The 
estimates of the individual uncertainty values for the mean wind speed are labeled δUi, and for the shape factor they 
are labeled δki.  It is assumed that the uncertainty in the mean wind speed equals the uncertainty in c, so δUi = δci in 
all cases.   The steps to determine these uncertainties are: 

1. Use the “root-sum-square” (RSS) method to combine the uncertainty values within each category of 
uncertainty.  This is shown in Eq. (8).  The subscripts ‘M’, ‘LT’, ‘V’, and ‘SA’ correspond to uncertainty in the four 
categories of uncertainty.  Within each category of uncertainty, the sensitivity factors are equal to one.  That is, for a 
given category of uncertainty (e.g. Category I: Measurement Uncertainty), the sensitivity factor of each uncertainty 
is one.   
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2. The general equation to determine δU, which is the long-term hub height mean wind speed uncertainty, is 
derived from Eq. (5).  The result is shown in Eq. (9).  The sensitivity factors for each category of uncertainty are 
SFM, SFLT, SFV, and SFSA. 

 ( ) ( ) ( ) ( )2222
SASAVVLTLTMM USFUSFUSFUSFU δδδδδ ⋅+⋅+⋅+⋅=  (9)  

3. Determine the sensitivity factors for each category of uncertainty.  The sensitivity factor for the wind resource 
variability uncertainty and the site assessment uncertainty are both equal to one.  Thus, SFV = SFSA = 1.   

If a linear model is used in the MCP step, then the sensitivity factor for the long-term resource estimation, SFLT, 
is also equal to one.  RERL uses a linear MCP model, dubbed the “Variance Ratio” method, which has been shown 
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to perform very well relative to other models.7 From an uncertainty perspective, using a linear model helps simplify 
the calculation of the overall wind resource uncertainty.   

The sensitivity factor for the measurement uncertainty, SFM, is not equal to one.  SFM is not equal to one because 
the measured wind speed is used to calculate the shear parameter, and the shear parameter is then used to estimate 
Ū LT_HUB and cLT_HUB.  The result is that error in the measurement of the wind speed causes error in the shear 
parameter calculation, which then causes additional error in the estimate of Ū LT_HUB and cLT_HUB.8 Thus, the 
contribution of measurement uncertainty to the total uncertainty is magnified due to shear extrapolation, and so the 
sensitivity factor for the measurement uncertainty is greater than one.  It is important to emphasize that this effect is 
not due to any error in the wind shear model.  Rather, it is a mathematical byproduct of using uncertain data to 
determine an extrapolation parameter.   

SFM can be calculated as follows.  h1, h2, and h3 are the heights of the lower measurement anemometer, the 
higher measurement anemometer, and the hub height, respectively.  Ū M1 and Ū M2 are the measured mean wind 
speeds at the lower and upper anemometer, respectively.  When the power law is used, the measured data can be 
used to calculate the shear parameter, α, using Eq. (10). 

 ( ) ( )1212 /ln//ln hhUU MM=α  (10) 

The predicted mean wind speed, Ū HUB, at height h3 can then be calculated using Eq. (11). 

 ( ) ( ) ( )1212 /ln//ln
232 / hhUU

MHUB
MMhhUU =  (11) 

If it is assumed that the uncertainties in the mean wind speeds are normally distributed, and there is no 
uncertainty in the three heights, then the uncertainties can be related using Eq. (12).  The uncertainties in Eq. (12) 
are absolute uncertainties. 
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Next, it is assumed that the fractional standard uncertainty of Ū M1 and Ū M2 (δŪ M1 and δŪ M2), are both equal to 
the fractional standard measurement uncertainty, δUM, as shown in Eq. (13).  That is, it is assumed that the 
measurement uncertainties at both heights are identical.  

 2
*

21
*

121 // MMMMMMM UUUUUUU δδδδδ ====  (13) 

Finally, after substituting Eq. (13) into Eq. (12), and after some algebraic manipulation, the ratio of the fractional 
uncertainty in the predicted mean wind at height h3, δŪ HUB, to the fractional standard measurement uncertainty, 
δUM, can be written using Eq. (14).  This ratio is also equal to the sensitivity factor for the measurement uncertainty, 
SFM.  
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The partial derivatives can be calculated using Eq. (11).  Likewise, the ratios Ū M1/Ū M2 and Ū M2/Ū HUB can be 
calculated using Eq. (11).  When these calculations are substituted into Eq. (14), SFM can be written as an analytic 
function of only the three measurement heights.  The final result for SFM is shown in Eq. (15). 
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3.  Calculate the overall uncertainty in the long-term hub height mean wind speed, δU.  This is accomplished 
using Eq. (9).  Because SFV = SFSA= SFLT=1, the equation for δU can be written as shown in Eq. (16). 

 ( ) ( ) ( ) ( )2222
SAVLTMM UUUUSFU δδδδδ +++⋅=  (16) 

4.  Determine δc.  As stated above, the uncertainty in Ū LT_HUB and cLT_HUB are equal to each other, so δU = δc. 

IV. Wind Turbine Power Production and Uncertainty 
The previous section focused on the process of evaluating the wind resource at a site and the associated 

uncertainty.  Like the wind resource, the determination of the power curve and power production of a wind turbine is 
also potentially subject to error, which then causes uncertainty in the estimate of AEP.   

A. Wind Turbine Power Production Uncertainty Sources 
Three sources of power production uncertainty were identified.  A detailed discussion of the causes and sizes of 

these uncertainty sources will not be presented.  Rather, the three uncertainty sources are listed and a brief 
discussion is provided.  The three sources of power production uncertainty are labeled δP1, δP2, and δP3.  They are: 

1. Wind Turbine Specimen Variation 
2. Wind Turbine Power Curve Uncertainty 
3. Air Density Uncertainty 
The power curve uncertainty is typically significantly larger than the other two uncertainties.  When power 

curves for wind turbines are measured by the manufacturer, several factors contribute to the uncertainty in this 
‘measured power curve.’  The primary factor is uncertainty in the wind speed to which the turbine is responding 
because the uncertainty in the actual power being produced is quite small.  While the wind speed at the hub height is 
known to a fairly high accuracy, the effects of turbulence and shear across the rotor face are not taken into account, 
and consequently the mean wind speed averaged over the rotor face is uncertain.   

This issue is exacerbated when a turbine is placed at a particular site because the power curve of a wind turbine 
is site dependent, and not solely a function of the hub height wind speed.  The turbulence, air density, and shear 
characteristics of a site will affect the power curve of a turbine, with the result that a turbine at a specific site could 
produce either more or less power than the power curve indicates at a given wind speed.  The measured power curve 
specifically corresponds to a site that meets the IEC standards, which require a flat site with very low turbulence.3 
Thus, a site-specific power curve is needed to estimate energy production at a site, especially when the terrain is 
complex.  The manufacturer generally determines this site-specific power curve. 

B. Wind Turbine Power Production Uncertainty 
The overall power production uncertainty can be calculated using the general equation given in Eq. (5).  The 

three uncertainty sources are independent, and the sensitivity factor for each is one.  Thus, the overall power 
production uncertainty, δP, is shown in Eq. (17). 

 ( ) ( ) ( )2
3

2
2

2
1 PPPP δδδδ ++=  (17) 

V. Wind Turbine Energy Production Losses and Uncertainty 
This section describes the factors that contribute to uncertainty in the estimate of energy production.  These 

factors are distinct from those that related to uncertainty in the instantaneous power output.  The factors discussed in 
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this section are defined relative to the estimate of the energy production, and not the power output.  They are 
referred to as the “energy loss factors.”   

A. Energy Loss Factors  
Three energy loss factors have been identified.  Each of these factors reduces the energy production of a wind 

turbine or wind farm.  They are: 
1. Availability Losses 
2. Fouling and Icing Losses 
3. Array Losses 
These three energy loss factors are labeled ELFAV, ELFFOUL, and ELFARRAY.  Each energy loss factor is defined 

as the ratio of the actual energy produced divided by the ideal energy production if there were no losses.  Thus, 
ELFAV is simply equal to the actual expected energy production of the wind turbine or wind farm, divided by the 
hypothetical energy production if there was no maintenance of the turbine(s) or down time, whether scheduled or 
unscheduled.  The other two energy loss factors have equivalent definitions.  The total reduction to the wind turbine 
or wind farm energy loss is simply the product of the three energy loss factors.  Thus, the overall energy loss factor, 
ELF, is shown in Eq. (18). 

 ARRAYFOULAV ELFELFELFELF ⋅⋅=  (18) 

The energy loss factors are independent and a normal distribution is assumed for each.  The justification of this 
assumption is discussed next. 

B. Justification of Normally Distributed Energy Loss Factors  
The assumption of a normal distribution must now be justified.  The energy loss factors, by definition, have a 

range between 0% and 100%.  A normal distribution is defined between [-∞,∞].  This is a clear contradiction 
because a normally distributed energy loss factor implies the possibility for a value less than zero or greater than 
one.  Despite this contradiction, normally distributed energy loss factors will be used, and there is a sound 
mathematical basis for their use.   

The yearly availability of a wind farm is not a normally distributed quantity about its expected value.  This can 
be seen clearly in the histogram in Fig. 1.  The data in Fig. 1 show the number of occurrences of yearly availability 
values for 25 different wind farms, with a total of 104 wind farm-years of operation.  The mean availability is 
approximately 94%, and the distribution is clearly asymmetrical, with an upper limit of 100%.  These data were 
compiled from a variety of North American wind farms.9 

The data in Fig. 1 can be fit with a Weibull 
distribution, for example.  The choice of a Weibull 
distribution is fairly arbitrary, though it does provide a 
good fit to the empirical data.  The Weibull 
approximation to the data is also shown in Fig. 1.  The 
shape factor has a value of k=1.5.   

The yearly availability is not the quantity used in 
energy production estimates, however.  When 
estimating energy production, the average availability 
over the approximately twenty-year lifetime of the 
project is used in the estimate.  Thus, the quantity of 
interest is the lifetime availability of the wind farm, or 
the average of the twenty yearly availability values.  
The distribution of the lifetime availability can be 
determined using a ‘Monte Carlo’ simulation, 
assuming the yearly availability in any given year is 
independent of other years.  The simulation proceeded 
as follows: 
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Figure 1. Empirical Availability Data and Weibull Fit 
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1.  Using a Matlab function, twenty values were 
randomly sampled from a Weibull distribution with an 
expected value of 0.94 and a k=1.5, which is the 
Weibull fit to the empirical availability data.  These 
twenty values represent a random set of wind farm 
yearly availability values. 

2.  These twenty yearly availability values were 
averaged to get the lifetime availability. 

3.  This process was repeated 100,000 times. 
The distribution of the lifetime availability values 

can then be plotted in a histogram.  This is shown in 
Fig. 2.  A normal distribution can be fit to the data, 
and is shown in Fig. 2 as well.  The mean is 0.94 and 
the standard deviation is 0.009.   

Thus, while the distribution of yearly availability 
values can be approximated by a Weibull distribution, 
the distribution of lifetime availability values is very 
closely approximated by a normal distribution.  This result should not be surprising, and it follows directly from the 
central limit theorem.  This result makes intuitive sense as well.  The yearly availability distribution from Fig. 1 
indicates that there is approximately a 10% chance of getting an availability value less than 0.90 in a single year.  
However, the chance of getting availability values less than 0.90 over the lifetime of the project is extremely small, 
and this is reflected in Fig. 2.  Over a twenty-year period, it is unlikely that the average availability will be much 
different than the expected value.   

This result can be applied to all three energy loss factors.  Like the availability, the yearly distributions of 
ELFFOUL and ELFARRAY cannot be normally distributed.  Instead, they most likely follow a similar asymmetrical 
distribution, with an upper limit of one.  However, the distribution of the twenty-year average will once again follow 
a normal distribution, due to the central limit theorem.  Thus, all three energy loss factors will be characterized by 
normal distributions.   

There is still the possibility for values greater than one when normally distributed energy loss factors are 
assumed, and so a contradiction remains.  In general, however, the probability of a value greater than one will be so 
small that it is completely negligible.  In the availability example, the probability of lifetime availability greater than 
one is 0.000000002%.  Clearly the contradiction can be ignored in this case.   

C. Energy Loss Factors and Uncertainty 
The energy loss factors are independent and normally distributed, and the overall energy loss factor uncertainty, 

δELF, can be calculated using Eq. (5), as long as the individual energy loss factor uncertainties, δELFAV, δELFFOUL, 
and δELFARRAY, are expressed as fractional standard uncertainties.  The sensitivity factor for each energy loss factor 
is one, since the overall energy loss factor is simply the product of the three individual energy loss factors.  The 
resulting equation for δELF is given in Eq. (19). 

 ( ) ( ) ( )222
ARRAYFOULAV ELFELFELFELF δδδδ ++=  (19) 

VI. Energy Production and Uncertainty 
Once the wind resource at a site has been determined, it is combined with a selected power curve and the energy 

loss factors to yield an estimate of the energy production of the wind turbine or wind farm.  The uncertainty in the 
wind resource, the power production, and the energy loss factors contribute to an overall uncertainty in the energy 
production.   

Often, it is more convenient to use the “Capacity Factor,” as a measure of energy production.  The capacity 
factor, CF, of a wind turbine is simply equal to the average turbine power output, PW̄ , divided by the rated turbine 
power output, PR, and so it is a non-dimensional quantity.  The relationships between CF, AEP, and average power 
are shown in Eq. (20).  CF will be used exclusively as a measure of energy production for the rest of this section. 

 ( )hoursPAEPPPCF WRW 8766,/ ⋅==  (20) 
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This section will review both how the wind resource, power curve, and energy loss factors are combined to 
estimate CF, and how the uncertainties of each of these terms are combined to yield the uncertainty of CF.  The 
methods described in this section can be applied to either a single wind turbine or a wind farm.  The total wind farm 
energy production is simply the sum of the energy productions of each turbine, and the wind farm capacity factor is 
simply the average of all the wind turbine capacity factors.  The effect of wake losses on individual turbines is 
encompassed in the array loss energy loss factor ELFARRAY, which is a measure of the total energy loss of the wind 
farm due to wake losses.  ELFARRAY is typically calculated using a wake model.  

A. Capacity Factor Estimation 
The capacity factor, CF, is a function of the estimate of the long-term hub height Weibull parameters, which will 

simply be labeled c and k in this section, along with a wind turbine power curve, PW, and the overall energy loss 
factor, ELF, as shown in Eq. (21). 

 ( )ELFPkcCFCF W ,,,=  (21) 

The actual functional dependence can be found by integrating the product of the wind speed probability 
distribution and the power curve over all values of wind speed, U, and then multiplying by the overall energy loss 
factor, and dividing by the rated power.  The wind speed probability distribution is the Weibull distribution, given in 
Eq. (1), with the long-term hub height values of c and k used as the Weibull parameters.   This is shown in Eq. (22).6 

 ( ) ( )( ) ( )[ ]∫
∞

− −⋅==
0

1 /exp//)(// dUcUcUckUPPELFPPCF kk
WRRW  (22) 

The integral in Eq. (22) cannot be performed analytically.  Instead, it must be approximated numerically.  A 
trapezoid method or Simpson’s method can be easily implemented to perform this integral.   

B. Capacity Factor Uncertainty Estimation 
While the uncertainties δc, δk, δP, and δELF are known, the non-linear dependence of CF on c and k makes the 

calculation of the total uncertainty of CF, δCF, fairly complicated.  The general equation for the uncertainty in CF is 
given in Eq. (23). 
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This is derived from the general uncertainty formula for fractional uncertainties, shown in Eq. (5).  Thus, δc, δk, 
δP, and δELF are the fractional standard uncertainties.  The terms multiplying δc and δk (the partial derivatives and 
the fractions inside the parentheses) in Eq. (23) are the sensitivity factors for c and k.  Like the uncertainties, the 
sensitivity factors are non-dimensional.  The sensitivity factors for c and k will be labeled SFc and SFk, respectively.  
The sensitivity factors for δP and δELF are 1.   

The calculation of SFc and SFk begins with Eq. (22).  The partial derivatives can be taken using the Leibniz 
integration rule, shown in Eq. (24) and Eq. (25).  p(U) is the Weibull probability density function. 
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After the derivatives are taken and some algebraic manipulation is carried out, the sensitivity factors can be 
written as shown in Eq. (26) and Eq. (27).  The integrals cannot be calculated analytically, but once again numerical 
integration can be used to estimate the sensitivity factors. 
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Finally, the total uncertainty of CF can be calculated using the general equation given from Eq. (23).  Again, δc, 
δk, δP, and δELF are all fractional uncertainties. 

 ( ) ( ) 2222 ELFPkSFcSFCF kc δδδδδ ++⋅+⋅=  (28) 

In sum, CF is the estimated value for the capacity factor.  It is calculated using the long-term hub height 
estimates of c and k, the chosen power curve, and the energy loss factors.  The uncertainty of this estimate is δCF, 
which is the fractional standard uncertainty of CF.  

C. Summary of Methods to Estimate the Capacity Factor and the Capacity Factor Uncertainty 
The estimation of CF and δCF is a complicated multi-step process.  The steps below summarize the process of 

estimating these quantities. 
1.  Estimate the long-term hub height wind resource.  This process combines the measured wind resource with an 

MCP algorithm, a shear extrapolation, and a topographic correction to produce estimates of cLT_HUB and kLT_HUB. 
2.  Estimate δc and δk.  Fourteen different uncertainty sources contribute to the overall uncertainty of the 

estimate of the long-term Weibull parameters at the hub location of the turbine.  The individual uncertainty sources 
can then be combined using the Eq. (16), once the sensitivity factor for the wind resource measurement uncertainty 
is calculated in Eq. (15). 

3.  Choose a wind turbine.   
4.  Estimate δP.  Three uncertainty sources were identified that contribute to the overall uncertainty in the power 

curve and power production.  These uncertainty sources are easily combined using the RSS method to yield an 
estimate of δP. 

5.  Estimate the value of the three energy loss factors.  The three energy loss factors can then be combined into 
an overall energy loss factor, ELF, using Eq. (18). 

6.  Estimate the energy loss factor uncertainty, δELF.  This can be calculated using Eq. (19). 
7.  Estimate the capacity factor, CF.  This is calculated using Eq. (22), and it depends on the long-term hub 

height Weibull parameters, the chosen power curve, and ELF.   
8.  Estimate SFC and SFk.  The sensitivity factors for c and k can be calculated using Eq. (26) and Eq. (27). 
9.  Estimate δCF.  Using the results of Steps 1-8, δCF can be estimated using Eq. (28). 

D. Example Calculation of Capacity Factor and Capacity Factor Uncertainty 
An example calculation helps to clarify the process because it can be quite complicated.  The important 

assumptions and values in the example are: 
1. The long-term hub height Weibull parameters are c = 9 m/s and k = 2.5. 
2. A GE 1.5 MW wind turbine power curve will be used for this example.  This power curve is shown in Fig. 3.  
This is a variable speed, pitch regulated wind turbine. 
3. The total energy losses reduce the energy 
production by 22%, so ELF = 0.78. 
4. The example uncertainty values of the long-
term hub height Weibull parameters, the power 

δc δk δP δELF 
11.9% 11.8% 10.5% 4.0% 

Table 1.  Example Uncertainty Values 
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production, and the energy loss factor are given in 
Table 1.  The basis for these values is outside the 
scope of this paper. 

 
The result of the example calculation is a value for 

the capacity factor of CF = 33.1%.  This was 
calculated using Eq. (22) and a numerical integration 
program.  The values for the sensitivity factors for c 
and k are SFc = 1.85 and SFk = 0.07.  Using the 
sensitivity factors and the example uncertainties, the 
overall capacity factor uncertainty is 24.9%.  This is 
the fractional standard uncertainty.  To obtain the 
absolute standard uncertainty, δCF is multiplied by 
CF.  The result is an absolute standard uncertainty of 
0.08.  Thus, one could write that the estimate of CF is: 
CF = 0.331 +/- 0.08. 

E. Example Calculation Discussion 
Many important points can be made about the example calculation.   
• The value of CF is clearly dependent on the 

values of both c and k.  This dependency is illustrated 
in Fig. 4, which shows the value of the capacity factor 
for ranges of values of c and k, using the same power 
curve and ELF value as the example.  Figure 4 clearly 
shows that the capacity factor increases as c increases.  
This comes as no surprise, as the value of c is directly 
proportional to the mean wind speed, which is by far 
the most important parameter in assessing a site and 
estimating energy production.  Also, CF tends to 
increase as k increases, except when c is very small.  
As k increases, the Weibull distribution becomes less 
spread out and therefore more concentrated about its 
expected value.  At very low values of c, this means 
that the distribution is concentrated about very low 
values of the wind speed, and so the turbine is 
producing very little power, even when it is above the 
cut-in wind speed.  But, for moderate to high values of 
c, a high k value results in the wind speed being above 
the cut-in value for a very high percentage of the time, and therefore a high capacity factor.  

• The magnitude of δCF depends predominantly on the value of δc.  In fact, if δk, δP, and δELF were all 0%, 
the uncertainty in CF would still be 22.1%.  This is due to the large magnitude of SFc.  Thus, reducing the 
uncertainty in c, and so the mean wind speed, provides the best opportunity for reducing the overall capacity factor 
uncertainty.   

• The sensitivity factor for c is 1.85.  This is lower than is generally assumed.  It is common practice to assume 
that a percentage increase in c (or the mean wind speed) causes between 2 and 3 times the percentage increase in 
CF, i.e. a sensitivity factor between 2 and 3.2 This is an oversimplification, however, and the results indicate that this 
assumption could lead to large errors.  For example, if one had assumed that SFc = 2.3, then δCF would be 29.7% 
instead of 24.9%.  This could mean the difference between an acceptable and unacceptable risk level for a potential 
wind energy venture.   

• In reality SFc is highly dependent on the value of c.  SFc decreases as c increases, and increases as k 
increases.  The dependence of SFc on c and k for this example is shown in Fig 5.  The plot indicates that SFc 
approximately decreases proportionally to the square of c.  As c increases, the wind speed is above the rated wind 
speed more and more frequently.  Therefore any error in the estimation of c affects the value of CF less, since the 
turbine produces constant power above rated wind speed, regardless of the actual wind speed.  As k increases, the 
Weibull distribution becomes less spread out, resulting in the wind speed being close to the mean value more 

1.5

2

2.5

3

3.5

6
7

8
9

10
11

12
0.1

0.2

0.3

0.4

0.5

0.6

k
c (m/s)

C
ap

ac
ity

 F
ac

to
r

Figure 4.  Dependence of CF on c and k 
 

0 5 10 15 20 25

0

200

400

600

800

1000

1200

1400

1600

Wind Speed (m/s)

P
ow

er
 (k

W
)

GE 1.5 MW Power Curve

 
Figure 3.  Example Power Curve 



 
American Institute of Aeronautics and Astronautics 

 

15

frequently.  For a given value of c, a higher value of k results in the wind speed being less than the rated wind speed 
more often, and therefore the capacity factor is more dependent on the value of c, and so SFc is larger. 

• In this example the sensitivity factor for k is fairly small relative to the other sensitivity factors, indicating 
that CF has a weak dependence on k.  For example, a 10% increase in k would only change CF by 0.7%, for this 
example.  This is not a surprising result because generally the shape of the wind speed distribution is considered 
much less important for CF estimates than the mean wind speed value (or c).  However, the sensitivity factor of k is 
also highly dependent on the value of both c and k.  Figure 6 shows this dependence for this example.       

• The value of k is often assumed to be approximately 2, although it can vary widely, with values that may be 
as low as 1.5 or as high as 3.5 at some sites.  The value of k is not insignificant.  For this example, if one assumed 
that k was equal to 2, but in fact it was equal to 1.5, the capacity factor would be calculated as 0.325 or 0.311, 
respectively.  This may seem like a small difference, but it corresponds to a 4% change in AEP, which can make the 
difference between a successful venture and a failure.  Thus, assuming a value of k may have adverse consequences 
because it could lead to a significantly incorrect estimation of CF (or AEP).  This point further reinforces the utility 
of using the two parameter Weibull distribution to approximate the wind speed distribution rather than the one 
parameter Rayleigh distribution (the Rayleigh distribution is equivalent to the Weibull with a value of k=2).  By 
estimating a value of k, and therefore taking the shape of the wind speed probability distribution into account in AEP 
estimation, one can avoid the significant errors that may arise when k is assumed to be a certain value. 

VII. Conclusion 
Wind energy site assessment is a complex multi-step process, with a high degree of uncertainty.  This paper 

seeks to present a comprehensive means for executing the site assessment process, and for understanding and 
estimating uncertainties in this process.  The major conclusions are: 

• Mathematically rigorous methods for estimating uncertainty are presented.  These methods utilize sensitivity 
factors to combine independent sources of uncertainty.  Specifically, the wind speed measurement uncertainty 
sensitivity factor and the Weibull parameter sensitivity factors can be calculated explicitly using the methods 
outlined in this paper.  This eliminates the need to assume the values for sensitivity factors, or ignore them 
altogether.  The result is that the uncertainty in the site assessment process can be calculated more accurately. 

• From a strategic perspective, wind measurement devices capable of measuring at hub height offer an 
opportunity to significantly reduce wind resource assessment uncertainty.  These devices, such as a LIDAR or 
SODAR, eliminate errors due to shear model uncertainty, and tower/boom effects.  Also, the measurement 
uncertainty sensitivity factor is 1 when measuring at hub height, which further reduces the wind resource 
uncertainty.  In fact, a LIDAR or SODAR with 5% measurement uncertainty would reduce the uncertainty in CF to 
17.8% from 24.9%, which is a decrease in the uncertainty of approximately 25%.  When feasible, reliable LIDAR or 
SODAR could be used for site assessment to significantly reduce δCF. 
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