Nonlinear Continuous Deformation of an Image Based on a Set of Coplanar Straight Lines

P. Armand

D. Brunet

P. Chaput

A. Kiselev

O. Marcotte

A. Morin-Duchesne

D. Orban

N. van Omme

and

V. Zalzal from MATROX

August 24, 2007

Problem Description

Requirements

- ► A high precision
- ▶ An image reconstruction taking less than 1 second

An Example

N: number of lines (at most 30) n_i : number of points in the i^{th} line (8 $\leq n_i \leq$ 25)

Assumptions

▶ Thin (or 2-dimensional) objects

Automatic calibration

▶ Pinhole model

▶ Radial distortion $(r_d \approx r_u (1 + Kr_u^2)$, where $K \sim 10^{-3})$

Problem Decomposition

- ► Stage I: Eliminate distortion (Algorithms Dist1 and Dist2)
- ► Stage II: Rectify perspective (Algorithms Persp1 and Persp2)

Points in the Focal Plane

Points in the World Plane

Reconstructed Image

Algorithm Dist1

g represents a radial distortion and (r, θ) a point in the plane

$$g(r,\theta) = (r(1 + Kr^2), \theta)$$

d(.,.) denotes the Euclidean distance between two points.

$$d((u,v),(u',v')) = \sqrt{(u-u')^2 + (v-v')^2}$$

- ▶ (x_j^i, y_j^i) denotes the j^{th} point on the i^{th} straight line (obtained from a line in the world plane by projection on the camera plane).
- $(\bar{x}_j^i, \bar{y}_j^i)$ denotes the j^{th} point on the i^{th} distorted line in the camera plane.

Algorithm Dist1 (the Model)

minimize
$$\sum_{i=1}^{N} \sum_{j=1}^{n_i} \left(d\left(g\left(x_j^i, y_j^i \right), \left(\bar{x}_j^i, \bar{y}_j^i \right) \right) \right)^2$$

such that

$$\frac{\left(\begin{array}{c} x_{j+1}^{i} - x_{j}^{i} \\ y_{j+1}^{i} - y_{j}^{i} \end{array}\right)}{d\left(\left(x_{j+1}^{i}, y_{j+1}^{i}\right), \left(x_{j}^{i}, y_{j}^{i}\right)\right)} = \frac{\left(\begin{array}{c} x_{j}^{i} - x_{j-1}^{i} \\ y_{j}^{i} - y_{j-1}^{i} \end{array}\right)}{d\left(\left(x_{j}^{i}, y_{j}^{i}\right), \left(x_{j-1}^{i}, y_{j-1}^{i}\right)\right)}$$

for all (i, j)

Results for Algorithm Dist1 (I)

Results for Algorithm Dist1 (II)

Results for Algorithm Dist1 (III)

	Without Noise	With Noise
Time	0.52 s	0.36 s
Iterations	54	38
Rel. error	$(8.4 \cdot 10^{-5}; 1.2 \cdot 10^{-4})$	$(3.7 \cdot 10^{-2}; 3.3 \cdot 10^{-2})$
(x_0, y_0)	$(1.7 \cdot 10^{-2}; 1.4 \cdot 10^{-2})$	$(1.9 \cdot 10^{-2}; -7.0 \cdot 10^{-3})$
K	2.3006444	2.0012845

Real data: $(x_0, y_0) = (0.0168; 0.0136)$ and K = 2.31

Algorithm Dist2

Results for Algorithm Dist2 (I)

Results for Algorithm Dist2 (II)

Results for Algorithm Dist2 (III)

	Without Noise	With Noise
Time	2.9s	2.9s
Rel. error	$(8 \cdot 10^{-3}; 4 \cdot 10^{-3})$	$(2.898 \cdot 10^{-3}; 5.117 \cdot 10^{-2})$
(x_0, y_0)	(-0.0312387; -0.027)	(0.031676; 0.00994148)
K	0.6679	0.66796

Real data

	Without Noise	With Noise
(x_0, y_0)	(-0.026966; -0.02456)	(-0.060403; 0.046148)
K	0.7624	1.02918

Perspective: Illustration

Algorithm Persp1

minimize
$$\sum_{i=1}^{N} \sum_{i=1}^{n_i} \left(r_{ij}^2 + e_{ij}^2 \right)$$

such that

$$\begin{pmatrix} x_{j}^{i} \\ y_{j}^{i} \\ z_{j}^{i} \end{pmatrix} - \begin{pmatrix} x_{j+1}^{i} \\ y_{j+1}^{i} \\ z_{j+1}^{i} \end{pmatrix} = \begin{pmatrix} x_{j+1}^{i} \\ y_{j+1}^{i} \\ z_{j+1}^{i} \end{pmatrix} - \begin{pmatrix} x_{j+2}^{i} \\ y_{j+2}^{i} \\ z_{j+2}^{i} \end{pmatrix} + r_{ij}$$

$$ax_{j}^{i} + by_{j}^{i} + cz_{j}^{i} = 1 + e_{ij}$$

$$x_{i}^{i} = \bar{x}_{i}^{i}z_{i}^{i}, \ y_{i}^{i} = \bar{y}_{i}^{i}z_{i}^{i}, \ z_{1}^{1} = 1$$

Algorithm Persp2

$$egin{aligned} ar{x}_j^i &= rac{x_j^i}{z_j^i}, \ \ ar{y}_j^i &= rac{y_j^i}{z_j^i} \ \end{pmatrix} \ & \left(egin{aligned} egin{aligned\\ egin{aligned} egin{aligne$$

$$\begin{split} \bar{\Delta}_{x}^{i} &= \frac{\Delta_{x}^{i}}{z_{1}^{i}}, \ \, \bar{\Delta}_{y}^{i} &= \frac{\Delta_{y}^{i}}{z_{1}^{i}}, \ \, \bar{\Delta}_{z}^{i} &= \frac{\Delta_{z}^{i}}{z_{1}^{i}}, \ \, a\bar{\Delta}_{x}^{i} + b\bar{\Delta}_{y}^{i} + c\bar{\Delta}_{z}^{i} = 0, \ \, a = 1 \\ \\ &- (j-1)\bar{\Delta}_{x}^{i} + (j-1)\bar{x}_{j}^{i}\bar{\Delta}_{z}^{i} &= \bar{x}_{j}^{i} - \bar{x}_{1}^{i} \\ \\ &- (j-1)\bar{\Delta}_{y}^{i} + (j-1)\bar{y}_{j}^{i}\bar{\Delta}_{z}^{i} &= \bar{y}_{j}^{i} - \bar{y}_{1}^{i} \end{split}$$

Illustration: noise = 0.5Po

Illustration: noise = 1.0

Illustration of Dist2 and Persp2 (I)

Illustration of Dist2 and Persp2 (II)

Future Research

Modify the distortion elimination algorithm to take into account the fact that the straight line is a projection

▶ De-noise before removing distortion

▶ Investigate the influence of noise distribution

Weaken the assumptions