Extracting Autofluorescence from Diffuse Optical Images

Olesya Peshko, McMaster University Shidong Shan, University of British Columbia Frederic Leblond, ART Frederic Lesage, Ecole Polytechnique de Montreal

Problem Definition

- Company: ART Advanced Research Technologies Inc.
 - Develop a tomography algorithm for small animal fluorescence imaging
 - Laser illumination (NIR-visible)
 - Localization of molecules
 - Estimation of molecule concentration

Challenges

Non-trivial small animal boundaries (non-contact illumination / collection) Highly heterogeneous samples (Optical properties) Non-specific fluorescence background (e.g., tissue auto-fluorescence) Ill-posed nature of diffuse optical problems

Objectives

Analyze optical images
Identify local structures
Extract autofluorescence from images
Data: synthetic data in vivo data

Synthetic Data

 Fluorescent inclusions
 Fluorescent background

Homogeneous Baseline Images

Simulated data: Case 1

Detector 1

Detector 2

Detector 3

Approaches

- Localization of inclusions
 - Wavelet Transform
 - PCA (Principle Component Analysis)
 - Cross-correlation
- Shape fitting and removal of the identified objects
 - Median profile
 - Model fitting

2D Stationary Wavelet Transform

- Perform multi-level wavelets decomposition on image X:
 - [swa,swh,swv,swd] = swt2(X, n,'db1')
 - n: level number
 - 'db1': a specific orthogonal wavelet
 - swa: coefficients of the image approximation
 - swh: coefficients of horizontal details
 - swv: coefficients of vertical details
 - swd: coefficients of diagonal details

Wavelet Decomposition

Case 1 Detector 1 Vertical Detail swv

Case 1 Detector 1 Horiz. Detail swh

Case 1 Detector 1 Diag. Detail swd

Localize the Main Structure

SVVT level3

Extracting the Main Inclusion

After Extracting

Principal Component Analysis

Enhances visibility of the features: can handle irregular shapes

• Singular Value Decomposition (SVD) [U, S, V] = svd(A)

PCA II

• Choose first and second eigenvalues $\begin{bmatrix} U, S, V \end{bmatrix} = svd(A)$ $S_1 = U \cdot S_1 \cdot V'$ $A_2 = U \cdot S_2 \cdot V'$

 $A = \alpha \cdot A_1 + A_2$

PCA Demo: Synthetic Image

Initial Image

Components

PCA Demo: Mouse

Initial Image

Components

Algorithm

- Locate the part of the image conforming the most to the template
 - Cross-correlation
- Analyze the shape and size and
- Remove the bump from the image
 - Model fitting

Localization: Cross-Correlation

Original Image

Templates

Cross-Correlation

- For each size of the template compute crosscorrelation matrix
- For every size, choose the location of maximum correlation
- Find the location which conformed to the most sizes of the templates or the one containing the brightest pixels

Model Fitting

- Fit image data $\phi_{x,y}$ to the model $\min_p \|f_p(x,y) - \phi_{x,y}\|^2$
 - Model:
 - Gaussian

$$f_p(x,y) = v_0 + v_1 e^{-s(x,y)}$$

where

$$s(x,y) = a_1 x^2 + a_2 x y + a_3 y^2$$

Bump Fitting and Removal

Data

Model

Bump Fitting and Removal II

Algorithm Dynamics: Synthetic Data

Algorithm Dynamics: Mouse

Algorithm Dynamics: Mouse II

Future Work

- Test the algorithm, make more robust
- Analyze the model parameters resulting from the fitting procedure to separate targets from autofluorescent object
- Test on more data