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Problem Statement

* For each report, the source associates an
area of uncertainty (AOU) of elliptic
shape delimiting a 2o probability area
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Problem Statement

We need to define an optimal geo-feasibility
score g, to guantify the overlap of two AOU.

Here are three basic rules to define the
function g:

g U[01]
If ellipses do not touch, g =0
If ellipses totally overlap,g=1




Problem Statement
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Candidate Metrics
* The normalized area of overlap

— The area of overlap is normalized by the area
of the smaller ellipse

— Corresponds to human operator intuition.



Candidate Metrics

* Statistical Approaches

* |Integrated product of two Gaussian distributions
— Corresponds to Bayes factor.

* Symmetric KL (Kullback-Leibler) divergence
— Distance between two distributions.

* Generalized Likelihood Ratio (GLR)

— Find most likely position of a single boat, evaluate the
likelihood that it generated the reported distributions.



Challenges

* Closed form analytical calculation
of overlap area Is not possible

* Numerical methods based on
optimization are not fast enough



Proposed solutions

* Newton’s method to find intersection points
and analytical approximation to the
normalized area of the overlap

* Monte-Carlo integration to find the
normalized area of overlap

* Generalized Likelihood Ratio gives a fast and
meaningful approximation to the operator’s
Intuition



Analytical Method

2 steps:
* Find the intersection points
-Too hard to find analytically
* Calculate the area
-Using integration in polar coordinates



Finding points of Intersection

* Using Newton’s Method
-In-and-out method for starting points
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Calculating area

3 cases:
* 0 or 1 points of intersection

-Area Is zero or Is equal to the area of
the smaller ellipse

* 2 or 3 points of intersection
* 4 points of intersection



2 or 3 points of intersection

* Same case considering in-and-out
technique



For 2 points

* Using polar coordinates
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Calculation

* Ellipse in polar coordinates (R = radius)
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Be careful...

* The integral uses inverse tangent function

- oo T

02 2[C

* Too near ellipses center




4 points of intersection

* Extension of the 2 points case

% E. = Area of ellipsei

Area of intersection =




Hard to code

* Approximation by a four sided object




Performance

* The slow part of the program is if the
ellipses actually intersect

* for 100,000 pairs of ellipses that intersect
about 45% of the time, It takes between
640 and 710 seconds.



Monte Carlo integration

* The algorithm computes an estimate of a
multidimensional integral

I = Iﬂ' f(x,v,2z,.)dxdydz...

X,V sZyenn
« Naive algorithm draws samples (x. y. z. )

uniformly from the integration area and
estimates its value as follows



Monte Carlo integration

* However, In many cases it is beneficial to
draw samples from some pdf p(x,y, z,...)

f(%,),2
I —XJy]J (X y.2 p(x Y, Z,...)dxdydz...

* And use the so called importance sampling
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Monte Carlo integration

Normalized intersection area of two ellipses defined by
the regions S, and S,

_ J.lxDS1 ns, dX
J.]‘xDmin(Sl,Sz) dX

Can be estimated using Monte Carlo with importance
sampling N 1
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Monte Carlo integration

Integrated product of two Gaussian
distributions

g, = [P.(x|©)p,(x|©,)dx

* Can be estimated using Monte Carlo even
without importance sampling

1 N/2 1 N/2

gp :N;I%(X? ‘@1)+N;p2(xﬂez)



Generalized Likelihood Ratio

We assume that a source provides us with
measurements of target positions and

Maximum Likelihood (ML) estimators of
covariance matrices
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* And we choose to construct a test statistic to
discriminate between the two hypotheses

H, : H —H
H,: H, # M,



Generalized Likelihood Ratio

* |n this case Uniformly Most Powerful test
does not exist.

* However, we can resort to a suboptimum
statistic that is called GLR

mdx p(Yla YZ @9 Hl)

C

max p(y,,y, | O, Ho)

N(Y.,Y,) =

e Here O stands for all the unknown
parameters



Generalized Likelihood Ratio

* Given the Gaussian and independence
assumptions we have
1

p(y,,y,|O,H) = exp
277,/det(R, ) det(R,,)
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* We deduce immediately that
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max p(y,,y, | O, H,) =




Generalized Likelihood Ratio

 To find the ML estimator of the mean under
H, we use J, = J, = g and equate partial

derivative to O:

a ~ ~ _
ﬁlnp(yl,yzl@H) R ' (y,~m)+R, (y,—p) =0

* Which results in the following expression for
the ML estimator of the mean

i=[R]+R;|"[R'y, +R}ly,



Generalized Likelihood Ratio

* Substituting this estimator into likelihood ratio
we get statistic of the form

%ATIA{:A

N(y,,y,) =exp

IR

e Where A Is the difference between
measurements:

A=y, —y,



Generalized Likelihood Ratio

 And the estimate of the covariance inverse
has the following “nice” expression
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* However, using the rule “the inverse of the

product is equal to the product of inverses in
reversed order” we can show twat
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Generalized Likelihood Ratio

* Thus the geofeasibility score based on GLR
admits the following simple and intuitive form

dc =Ny, Y,)
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Simulation results

Error bars, Monte-Carlo integration of the overlap area
N=500
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Simulation results

Monte Carlo Mean Squared Error, N=500
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Simulation results

Monte-Carlo error for a fixed value of relative
overlap area equal to 0.391

Normalized MSE, dB
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Simulation results

Comparison of statistics
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Simulation results

Calculation time for 100,000 evaluations, Monte-Carlo.
Calculation time for GLR is 4 seconds
(0.04 ms/evaluation)
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Questions



