Geofeasibility scores

Team leader:

Mark Coates, McGill University

Team members:

Nando de Freitas, University of British Columbia

Francis Moreau, Université de Montréal

Boris Oreshkin, McGill University

Mary Pugh, University of Toronto

Problem Statement

 For each report, the source associates an area of uncertainty (AOU) of elliptic shape delimiting a 2σ probability area

Problem Statement

- We need to define an optimal geo-feasibility score *g*, to quantify the overlap of two AOU.
- Here are three basic rules to define the function *g*:
- *g* ∈ [0,1]
- If ellipses do not touch, g = 0
- If ellipses totally overlap, g = 1

Problem Statement

- The geo-feasibility score has to be suitable for very elongated ellipses as well as for circles
- Reasonable approximations are possible (e.g. approximating an ellipse to a circle is NOT a reasonable approximation)

Candidate Metrics

• The normalized area of overlap

- The area of overlap is normalized by the area of the smaller ellipse
- Corresponds to human operator intuition.

Candidate Metrics

- Statistical Approaches
- Integrated product of two Gaussian distributions
 Corresponds to Bayes factor.
- Symmetric KL (Kullback-Leibler) divergence
 - Distance between two distributions.
- Generalized Likelihood Ratio (GLR)
 - Find most likely position of a single boat, evaluate the likelihood that it generated the reported distributions.

Challenges

• Closed form analytical calculation of overlap area is not possible

• Numerical methods based on optimization are not fast enough

Proposed solutions

- Newton's method to find intersection points and analytical approximation to the normalized area of the overlap
- Monte-Carlo integration to find the normalized area of overlap
- Generalized Likelihood Ratio gives a fast and meaningful approximation to the operator's intuition

Analytical Method

- 2 steps:
- Find the intersection points
 - -Too hard to find analytically
- Calculate the area
 - -Using integration in polar coordinates

Finding points of Intersection

Using Newton's Method
-In-and-out method for starting points

Calculating area

- 3 cases:
- 0 or 1 points of intersection

-Area is zero or is equal to the area of the smaller ellipse

- 2 or 3 points of intersection
- 4 points of intersection

2 or 3 points of intersection

• Same case considering in-and-out technique

For 2 points

• Using polar coordinates

Area of ellipse's portion – Area of the triangle

Calculation

• Ellipse in polar coordinates (R = radius)

$$R(\theta) = \frac{ab}{\sqrt{a^2 + (b^2 - a^2)\cos^2(\theta)}}$$

Integral

$$\int_{\theta_1}^{\theta_2} \frac{R^2(\theta)}{2} d\theta = \left[\frac{ab}{2} \tan^{-1}\left(\frac{a\tan(\theta)}{b}\right)\right]_{\theta_1}^{\theta_2}$$

Be careful...

• The integral uses inverse tangent function

$$- \theta \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

• Too near ellipses center

4 points of intersection

• Extension of the 2 points case

 E_i = Area of ellipse i

$a_i =$	\sum
---------	--------

Area of intersection = $\frac{E_1 + E_2 - \sum_{i=1}^4 a_i}{2}$

Hard to code

• Approximation by a four sided object

Performance

• The slow part of the program is if the ellipses actually intersect

 for 100,000 pairs of ellipses that intersect about 45% of the time, it takes between 640 and 710 seconds.

• The algorithm computes an estimate of a multidimensional integral

$$I = \iiint_{x,y,z,\dots} f(x,y,z,\dots) dx dy dz \dots$$

• Naïve algorithm draws samples $(x_{i,}y_{i,}z_{i,...})$ uniformly from the integration area and estimates its value as follows

$$\hat{I} = \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i, z_i,...)$$

 However, in many cases it is beneficial to draw samples from some pdf p(x,y,z,...)

$$I = \iiint_{x,y,z,\dots} \frac{f(x,y,z,\dots)}{p(x,y,z,\dots)} p(x,y,z,\dots) dxdydz\dots$$

And use the so called importance sampling

$$\hat{I} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i, y_i, z_i, ...)}{p(x_i, y_i, z_i, ...)}$$

• Normalized intersection area of two ellipses defined by the regions S_1 and S_2

$$g_a = \frac{\int \mathbf{1}_{\mathbf{x} \in S_1 \cap S_2} d\mathbf{x}}{\int \mathbf{1}_{\mathbf{x} \in \min(S_1, S_2)} d\mathbf{x}}$$

 Can be estimated using Monte Carlo with importance sampling

 Integrated product of two Gaussian distributions

$$g_p = \int_{\mathbf{x}} p_1(\mathbf{x} | \Theta_1) p_2(\mathbf{x} | \Theta_2) d\mathbf{x}$$

• Can be estimated using Monte Carlo even without importance sampling

$$\hat{g}_{p} = \frac{1}{N} \sum_{i=1}^{N/2} p_{1}(\mathbf{x}_{i}^{2} | \Theta_{1}) + \frac{1}{N} \sum_{i=1}^{N/2} p_{2}(\mathbf{x}_{i}^{1} | \Theta_{2})$$

 We assume that a source provides us with measurements of target positions and Maximum Likelihood (ML) estimators of covariance matrices

$$y_1, \hat{R}_1, y_2, \hat{R}_2$$

• And we choose to construct a test statistic to discriminate between the two hypotheses

$$H_1: \quad \mathbf{\mu}_1 = \mathbf{\mu}_2$$
$$H_0: \quad \mathbf{\mu}_1 \neq \mathbf{\mu}_2$$

- In this case Uniformly Most Powerful test does not exist.
- However, we can resort to a suboptimum statistic that is called GLR

$$\Lambda(\mathbf{y}_1, \mathbf{y}_2) = \frac{\max_{\Theta} p(\mathbf{y}_1, \mathbf{y}_2 | \Theta, H_1)}{\max_{\Theta} p(\mathbf{y}_1, \mathbf{y}_2 | \Theta, H_0)}$$

 Here Θ stands for all the unknown parameters

• Given the Gaussian and independence assumptions we have

$$p(\mathbf{y}_1, \mathbf{y}_2 | \Theta, H) = \frac{1}{2\pi\sqrt{\det(\mathbf{R}_1)\det(\mathbf{R}_2)}} \exp\left[-\frac{1}{2}(\mathbf{y}_1 - \mathbf{\mu}_1)^T \mathbf{R}_1^{-1}(\mathbf{y}_1 - \mathbf{\mu}_1) - \frac{1}{2}(\mathbf{y}_2 - \mathbf{\mu}_2)^T \mathbf{R}_2^{-1}(\mathbf{y}_2 - \mathbf{\mu}_2)\right]$$

• We deduce immediately that

$$\max_{\Theta} p(\mathbf{y}_1, \mathbf{y}_2 | \Theta, H_0) = \frac{1}{2\pi \sqrt{\det(\hat{\mathbf{R}}_1) \det(\hat{\mathbf{R}}_2)}}$$

• To find the ML estimator of the mean under H_1 we use $\mu_1 = \mu_2 = \mu$ and equate partial derivative to 0:

$$\frac{\partial}{\partial \boldsymbol{\mu}} \ln p(\mathbf{y}_1, \mathbf{y}_2 | \boldsymbol{\Theta}, \boldsymbol{H}_1) = \mathbf{R}_1^{-1}(\mathbf{y}_1 - \boldsymbol{\mu}) + \mathbf{R}_2^{-1}(\mathbf{y}_2 - \boldsymbol{\mu}) = \overline{\mathbf{0}}$$

• Which results in the following expression for the ML estimator of the mean

$$\hat{\boldsymbol{\mu}} = \left[\mathbf{R}_1^{-1} + \mathbf{R}_2^{-1} \right]^{-1} \left[\mathbf{R}_1^{-1} \mathbf{y}_1 + \mathbf{R}_2^{-1} \mathbf{y}_2 \right]$$

 Substituting this estimator into likelihood ratio we get statistic of the form

$$\Lambda(\mathbf{y}_1, \mathbf{y}_2) = \exp\left[-\frac{1}{2}\Delta^T \hat{\mathbf{R}}_{\Delta}^{-1}\Delta\right]$$

• Where Δ is the difference between measurements:

$$\Delta = \mathbf{y}_1 - \mathbf{y}_2$$

• And the estimate of the covariance inverse has the following "nice" expression

$$\hat{\mathbf{R}}_{\Delta}^{-1} = \hat{\mathbf{R}}_{2}^{-1} \left[\hat{\mathbf{R}}_{1}^{-1} + \hat{\mathbf{R}}_{2}^{-1} \right]^{-1} \hat{\mathbf{R}}_{1}^{-1} \left[\hat{\mathbf{R}}_{1}^{-1} + \hat{\mathbf{R}}_{2}^{-1} \right]^{-1} \hat{\mathbf{R}}_{2}^{-1} + \\ + \hat{\mathbf{R}}_{1}^{-1} \left[\hat{\mathbf{R}}_{1}^{-1} + \hat{\mathbf{R}}_{2}^{-1} \right]^{-1} \hat{\mathbf{R}}_{2}^{-1} \left[\hat{\mathbf{R}}_{1}^{-1} + \hat{\mathbf{R}}_{2}^{-1} \right]^{-1} \hat{\mathbf{R}}_{1}^{-1}$$

 However, using the rule "the inverse of the product is equal to the product of inverses in reversed order" we can show that

$$\hat{\mathbf{R}}_{\Delta}^{-1} = \left[\hat{\mathbf{R}}_{1} + \hat{\mathbf{R}}_{2}\right]^{-1}$$

• Thus the geofeasibility score based on GLR admits the following simple and intuitive form

$$g_{G} \equiv \Lambda(\mathbf{y}_{1}, \mathbf{y}_{2})$$
$$g_{G} = \exp\left[-\frac{1}{2}\Delta^{T}\left[\hat{\mathbf{R}}_{1} + \hat{\mathbf{R}}_{2}\right]^{-1}\Delta\right]$$

Error bars, Monte-Carlo integration of the overlap area N=500

Monte Carlo Mean Squared Error, N=500

Monte-Carlo error for a fixed value of relative overlap area equal to 0.391

Comparison of statistics

Calculation time for 100,000 evaluations, Monte-Carlo. Calculation time for GLR is 4 seconds (0.04 ms/evaluation)

Questions