Geofeasibility scores

Team leader:
Mark Coates, McGill University

Team members:
Nando de Freitas, University of British Columbia
Francis Moreau, Université de Montréal
Boris Oreshkin, McGill University
Mary Pugh, University of Toronto

Problem Statement

- For each report, the source associates an area of uncertainty (AOU) of elliptic shape delimiting a 2σ probability area

Problem Statement

- We need to define an optimal geo-feasibility score g, to quantify the overlap of two AOU.
- Here are three basic rules to define the function g :
- $g \in[0,1]$
- If ellipses do not touch, $g=0$
- If ellipses totally overlap, $g=1$

Problem Statement

- The geo-feasibility score has to be suitable for very elongated ellipses as well as for circles
- Reasonable approximations are possible (e.g. approximating an ellipse to a circle is NOT a reasonable approximation)

Candidate Metrics

- The normalized area of overlap
- The area of overlap is normalized by the area of the smaller ellipse
- Corresponds to human operator intuition.

Candidate Metrics

- Statistical Approaches
- Integrated product of two Gaussian distributions
- Corresponds to Bayes factor.
- Symmetric KL (Kullback-Leibler) divergence
- Distance between two distributions.
- Generalized Likelihood Ratio (GLR)
- Find most likely position of a single boat, evaluate the likelihood that it generated the reported distributions.

Challenges

- Closed form analytical calculation of overlap area is not possible
- Numerical methods based on optimization are not fast enough

Proposed solutions

- Newton's method to find intersection points and analytical approximation to the normalized area of the overlap
- Monte-Carlo integration to find the normalized area of overlap
- Generalized Likelihood Ratio gives a fast and meaningful approximation to the operator's intuition

Analytical Method

2 steps:

- Find the intersection points
-Too hard to find analytically
- Calculate the area
-Using integration in polar coordinates

Finding points of Intersection

- Using Newton's Method
-In-and-out method for starting points

Calculating area

3 cases:

- 0 or 1 points of intersection
-Area is zero or is equal to the area of the smaller ellipse
- 2 or 3 points of intersection
- 4 points of intersection

2 or 3 points of intersection

- Same case considering in-and-out technique

For 2 points

- Using polar coordinates

Area of ellipse's portion - Area of the triangle

$$
D+O=\text { sear finesesesion }
$$

Calculation

- Ellipse in polar coordinates ($\mathrm{R}=$ radius)

$$
R(\theta)=\frac{a b}{\sqrt{a^{2}+\left(b^{2}-a^{2}\right) \cos ^{2}(\theta)}}
$$

- Integral

$$
\int_{\theta_{1}}^{\theta_{2}} \frac{R^{2}(\theta)}{2} d \theta=\left[\frac{a b}{2} \tan ^{-1}\left(\frac{a \tan (\theta)}{b}\right)\right]_{\theta_{1}}^{\theta_{2}}
$$

Be careful...

- The integral uses inverse tangent function

$$
-\theta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)
$$

- Too near ellipses center

4 points of intersection

- Extension of the 2 points case

$$
\begin{aligned}
& E_{i}=\text { Area of ellipse i } \\
& a_{i}=\square
\end{aligned}
$$

$$
E_{1}+E_{2}-\sum_{i=1}^{4} a_{i}
$$

Area of intersection $=$

Hard to code

- Approximation by a four sided object

Performance

- The slow part of the program is if the ellipses actually intersect
- for 100,000 pairs of ellipses that intersect about 45% of the time, it takes between 640 and 710 seconds.

Monte Carlo integration

- The algorithm computes an estimate of a multidimensional integral

$$
I=\iiint_{x, y, z, \ldots} f(x, y, z, \ldots) d x d y d z \ldots
$$

- Naïve algorithm draws samples $\left(x_{i}, y_{i}, z_{i, \ldots}\right)$ uniformly from the integration area and estimates its value as follows

$$
\hat{I}=\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}, y_{i}, z_{i}, \ldots\right)
$$

Monte Carlo integration

- However, in many cases it is beneficial to draw samples from some pdf $p(x, y, z, \ldots)$

$$
I=\iiint_{x, y, z, \ldots} \frac{f(x, y, z, \ldots)}{p(x, y, z, \ldots)} p(x, y, z, \ldots) d x d y d z \ldots
$$

- And use the so called importance sampling

$$
\hat{I}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}, y_{i}, z_{i}, \ldots\right)}{p\left(x_{i}, y_{i}, z_{i}, \ldots\right)}
$$

Monte Carlo integration

- Normalized intersection area of two ellipses defined by the regions S_{1} and S_{2}

$$
g_{a}=\frac{\int 1_{x \in S_{1} \cap S_{2}} d \mathbf{x}}{\int 1_{x \in \min \left(S_{1}, S_{2}\right)} d \mathbf{x}}
$$

- Can be estimated using Monte Carlo with importance sampling

$$
g_{a}=\frac{\sum_{i=1}^{N} \frac{1}{p\left(\mathbf{x}_{i}\right)} 1_{\mathbf{x}_{i} \in S_{1} \cap S_{2}}}{\sum_{i=1}^{N} \frac{1}{p\left(\mathbf{x}_{i}\right)} 1_{\mathbf{x}_{i} \in \min \left(S_{1}, S_{2}\right)}}
$$

Monte Carlo integration

- Integrated product of two Gaussian distributions

$$
g_{p}=\int_{\mathbf{x}} p_{1}\left(\mathbf{x} \mid \Theta_{1}\right) p_{2}\left(\mathbf{x} \mid \Theta_{2}\right) d \mathbf{x}
$$

- Can be estimated using Monte Carlo even without importance sampling

$$
\hat{g}_{p}=\frac{1}{N} \sum_{i=1}^{N / 2} p_{1}\left(\mathbf{x}_{i}^{2} \mid \Theta_{1}\right)+\frac{1}{N} \sum_{i=1}^{N / 2} p_{2}\left(\mathbf{x}_{i}^{1} \mid \Theta_{2}\right)
$$

Generalized Likelihood Ratio

- We assume that a source provides us with measurements of target positions and Maximum Likelihood (ML) estimators of covariance matrices

$$
\mathbf{y}_{1}, \quad \hat{\mathbf{R}}_{1}, \quad \mathbf{y}_{2}, \quad \hat{\mathbf{R}}_{2}
$$

- And we choose to construct a test statistic to discriminate between the two hypotheses

$$
\begin{array}{ll}
H_{1}: & \boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2} \\
H_{0}: & \boldsymbol{\mu}_{1} \neq \boldsymbol{\mu}_{2}
\end{array}
$$

Generalized Likelihood Ratio

- In this case Uniformly Most Powerful test does not exist.
- However, we can resort to a suboptimum statistic that is called GLR

$$
\Lambda\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\frac{\max _{\Theta} p\left(\mathbf{y}_{1}, \mathbf{y}_{2} \mid \Theta, H_{1}\right)}{\max _{\Theta} p\left(\mathbf{y}_{1}, \mathbf{y}_{2} \mid \Theta, H_{0}\right)}
$$

- Here Θ stands for all the unknown parameters

Generalized Likelihood Ratio

- Given the Gaussian and independence assumptions we have

$$
\begin{aligned}
& p\left(\mathbf{y}_{1}, \mathbf{y}_{2} \mid \Theta, H\right)=\frac{1}{2 \pi \sqrt{\operatorname{det}\left(\mathbf{R}_{1}\right) \operatorname{det}\left(\mathbf{R}_{2}\right)}} \exp \\
& {\left[-\frac{1}{2}\left(\mathbf{y}_{1}-\boldsymbol{\mu}_{1}\right)^{T} \mathbf{R}_{1}^{-1}\left(\mathbf{y}_{1}-\mathbf{\mu}_{1}\right)-\frac{1}{2}\left(\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\right)^{T} \mathbf{R}_{2}^{-1}\left(\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\right)\right]}
\end{aligned}
$$

- We deduce immediately that

$$
\max _{\Theta} p\left(\mathbf{y}_{1}, \mathbf{y}_{2} \mid \Theta, H_{0}\right)=\frac{1}{2 \pi \sqrt{\operatorname{det}\left(\hat{\mathbf{R}}_{1}\right) \operatorname{det}\left(\hat{\mathbf{R}}_{2}\right)}}
$$

Generalized Likelihood Ratio

- To find the ML estimator of the mean under H_{1} we use $\mu_{1}=\mu_{2}=\mu$ and equate partial derivative to 0 :
$\frac{\partial}{\partial \boldsymbol{\mu}} \ln p\left(\mathbf{y}_{1}, \mathbf{y}_{2} \mid \Theta, H_{1}\right)=\mathbf{R}_{1}^{-1}\left(\mathbf{y}_{1}-\boldsymbol{\mu}\right)+\mathbf{R}_{2}^{-1}\left(\mathbf{y}_{2}-\boldsymbol{\mu}\right)=\overline{0}$
- Which results in the following expression for the ML estimator of the mean

$$
\hat{\boldsymbol{u}}=\left[\mathbf{R}_{1}^{-1}+\mathbf{R}_{2}^{-1}\right]^{-1}\left[\mathbf{R}_{1}^{-1} \mathbf{y}_{1}+\mathbf{R}_{2}^{-1} \mathbf{y}_{2}\right]
$$

Generalized Likelihood Ratio

- Substituting this estimator into likelihood ratio we get statistic of the form

$$
\Lambda\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\exp \left[-\frac{1}{2} \Delta^{T} \hat{\mathbf{R}}_{\Delta}^{-1} \Delta\right]
$$

- Where Δ is the difference between measurements:

$$
\Delta=\mathbf{y}_{1}-\mathbf{y}_{2}
$$

Generalized Likelihood Ratio

- And the estimate of the covariance inverse has the following "nice" expression

$$
\begin{aligned}
\hat{\mathbf{R}}_{\Delta}^{-1}= & \hat{\mathbf{R}}_{2}^{-1}\left[\hat{\mathbf{R}}_{1}^{-1}+\hat{\mathbf{R}}_{2}^{-1}\right]^{-1} \hat{\mathbf{R}}_{1}^{-1}\left[\hat{\mathbf{R}}_{1}^{-1}+\hat{\mathbf{R}}_{2}^{-1}\right]^{-1} \hat{\mathbf{R}}_{2}^{-1}+ \\
& +\hat{\mathbf{R}}_{1}^{-1}\left[\hat{\mathbf{R}}_{1}^{-1}+\hat{\mathbf{R}}_{2}^{-1}\right]^{-1} \hat{\mathbf{R}}_{2}^{-1}\left[\hat{\mathbf{R}}_{1}^{-1}+\hat{\mathbf{R}}_{2}^{-1}\right]^{-1} \hat{\mathbf{R}}_{1}^{-1}
\end{aligned}
$$

- However, using the rule "the inverse of the product is equal to the product of inverses in reversed order" we can show that

$$
\hat{\mathbf{R}}_{\Delta}^{-1}=\left[\hat{\mathbf{R}}_{1}+\hat{\mathbf{R}}_{2}\right]^{-1}
$$

Generalized Likelihood Ratio

- Thus the geofeasibility score based on GLR admits the following simple and intuitive form

$$
\begin{gathered}
g_{G} \equiv \Lambda\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) \\
g_{G}=\exp \left[-\frac{1}{2} \Delta^{T}\left[\hat{\mathbf{R}}_{1}+\hat{\mathbf{R}}_{2}\right]^{-1} \Delta\right]
\end{gathered}
$$

Simulation results

Error bars, Monte-Carlo integration of the overlap area $N=500$

Simulation results

Monte Carlo Mean Squared Error, $N=500$

Simulation results

Monte-Carlo error for a fixed value of relative overlap area equal to 0.391

Simulation results

Comparison of statistics

Simulation results

Calculation time for 100,000 evaluations, Monte-Carlo. Calculation time for GLR is 4 seconds ($\mathbf{0 . 0 4} \mathbf{~ m s l e v a l u a t i o n) ~}$

Questions

