
Lecture 2: Small Prime Gaps: Short Divisor
Sums, Correlations, and Moments

Daniel Goldston

A few comments on the last lecture:

1. We replaced the usual major arcs approxi-
mation for S(α) with

JQ(α) =
∑

q≤Q

∑

1≤a≤q
(a,q)=1

µ(q)

φ(q)
I(α−

a

q
)χQ(α,

a

q
)

with

VQ(α) =
∑

q≤Q

∑

1≤a≤q
(a,q)=1

µ(q)

φ(q)
I(α −

a

q
)

=
∑

n≤N


∑

q≤Q

µ(q)

φ(q)
cq(−n)


 e(nα)

=
∑

n≤N

λQ(n)e(nα)



and since

S(α) =
∑

n≤N

Λ(n)e(nα).

this suggests that the content of the circle

method is to approximate Λ(n) by λQ(n). In

turn, an approximation of λQ(n) is

ΛQ(n) =
∑

d|n
d≤Q

µ(d) log(Q/d),

but from elementary number theory

Λ(n) =
∑

d|n
µ(d) log(1/d).

Thus the content of the circle method for primes

is reduced to a short smoothed truncation of

this elementary formula.



But is this reasonable? For approximating the

twin prime problem both JQ and VQ give the

same correct conjectured singular series for-

mula if Q ≤ N1/2. However, as we saw,
∫ 1

0
|S(α)|2 dα =

∑

n≤N

Λ(n)2 ∼ N logN

but
∫ 1

0
|JQ(α)|2 dα ∼ N log

(
min(Q,

N

Q
)
)
.

Now Sid Graham (1976) proved, for 1 ≤ Q ≤ N

∑

n≤N

ΛQ(n)2 = N logQ+O(N)

so our approximation really does approximate

Λ(n) if Q is large enough. But since ΛQ(n) =

Λ(n) if Q ≥ n, this isn’t a total surprise. What

about λQ(n)? Here it is easy to prove
∑

n≤N

λQ(n)2 = N logQ+O(N) +O(Q2)



which is only good for Q ≤ N1/2. Hooley (1999

?) proved, Q ≤ N1−ε

∑

n≤N

λQ(n)2 ∼ N logQ



This says that for Q ≤ N1−ε

∫ 1

0
|VQ(α)|2 dα ∼ N logQ

The diagonal terms here contribute

∫ 1

0

∑

q≤Q

∑

1≤a≤q
(a,q)=1

µ(q)2

φ(q)2
|I(α −

a

q
)|2 dα

=
∑

q≤Q

∑

1≤a≤q
(a,q)=1

µ(q)2

φ(q)2

∫ 1

0
|I(α −

a

q
)|2 dα

= N
∑

q≤Q

∑

1≤a≤q
(a,q)=1

µ(q)2

φ(q)2

= N
∑

q≤Q

µ(q)2

φ(q)
∼ N logQ.

Thus this proves the overlapping spikes end up

not contributing anything extra here.



Given the idea of seeking a truncated divisor

sum approximation of Λ(n),

Consider

Minimize
∑

n≤N



Λ(n) −

∑

d|n
d≤Q

a(d,Q)




2

It is easy to see that this problem is equiva-

lent to the one Selberg solved in his 5 page

1950 sieve paper, the solution is that (with

mild conditions on a(d,Q)) the minimum is at-

tained with the choice λQ(n) , and this and

ΛQ(n) give the minimum

∼ N log(N/Q)



1. DIVISOR SUMS

We will use the von Mangoldt function

Λ(n) =

{
log p, if n = pm, p prime, m ≥ 1
0, otherwise.

Let

ψ(x) =
∑

n≤x

Λ(n).

The prime number theorem (PNT) implies

ψ(x) ∼ x, as x → ∞.

Now

Λ(n) =
∑

d|n
µ(d) log(1/d),

which is easily proved directly, or seen analyti-

cally by noting

ζ ′

ζ
=

1

ζ
× ζ ′.

Is this a worthless formula or not?



Let’s try to prove the PNT:

ψ(N) =
∑

n≤N

Λ(n) =
∑

n≤N

∑

d|n
µ(d) log(1/d)

=
∑

d≤N

µ(d) log(1/d)
∑

n≤N
d|n

1.

Since
∑

n≤N
d|n

1 =
[
N

d

]
,

we have

ψ(N) =
∑

d≤N

µ(d) log(1/d)
[
N

d

]

= N
∑

d≤N

µ(d) log(1/d)

d
+O(

∑

d≤N

log d)

= N
∑

d≤N

µ(d) log(1/d)

d
+O(N logN).



We have two problems:

1) The error term is bigger than the main term.

2) The main term still needs to be evaluated.

In fact, PNT is equivalent to an asymptotic

formula for main term and implies

∑

d≤N

µ(d) log(1/d)

d
= 1 +O(

1

logAN
).

But on the positive side, it was an easy argu-

ment.



2. SHORT SMOOTHED DIVISOR SUMS

We can handle the error term above by trun-

cating the divisor sum. Following Selberg, we

also smooth it. Smoothing is critical, and most

of the results that we obtain would be false for

a straight truncation. Thus, let

ΛR(n) =
∑

d|n
d≤R

µ(d) log(R/d).

Since

Λ(n) =
∑

d|n
µ(d) log(R/d), for n ≥ 2,

we see that ΛR(n) = Λ(n) for R ≥ n ≥ 2.

New viewpoint: ΛR(n) should retain to some

extent the properties we know or conjecture

that Λ(n) has.



PNT for ψR(N). We have as before

ψR(N) : =
∑

n≤N

ΛR(n)

= N
∑

d≤R

µ(d) log(R/d)

d
+O(

∑

d≤R

logR/d)

= N +O(
N

logAR
) +O(R),

Hence we obtain a PNT for ψR

if Nε ≤ R ≤ o(N).

Twin Prime Theorem for ψR(N). Consider

SR(k) =
∑

n≤N

ΛR(n)ΛR(n+ k).

Then

S2(k) =
∑

d,e≤R

µ(d)µ(e) log(R/d) log(R/e)
∑

n≤N
d|n

e|n+k

1.

The two divisibility conditions imply that n will
run through a residue class modulo [d, e] pro-
vided (d, e)|k, and there will be no solution for



n otherwise. Therefore
∑

n≤N
d|n

e|n+k

1 = [(d, e)|k]
(
N

[d, e]
+O(1)

)
,

where we use the Iverson notation

[P(x)] =

{
1, if P(x) is true,
0, if P(x) is false.

Thus

SR(k) = N
∑

d,e≤R
(d,e)|k

µ(d)µ(e) log(R/d) log(R/e)

[d, e]

+O

( ∑

d,e≤R

log(R/d) log(R/e)
)

Using standard PNT type arguments we will

discuss later in the talk we obtain,



if k 6= 0,

∑

n≤N

ΛR(n)ΛR(n+k) = NS(k)+O(
N

(logR)A
)+O(R2),

where

S(n) =





2C2
∏

p|n
p>2

(
p− 1

p− 2

)
, if n is even, n 6= 0;

0, if n is odd;

and

C2 =
∏

p>2

(
1 −

1

(p− 1)2

)
,

while in the case k = 0 we have
∑

n≤N

ΛR
2(n) = N logR+O(N) +O(R2).

Thus we get a twin prime type result for ΛR(n)
if R ≤ o(N1/2), but fail to get the binary form
of the prime number theorem, since

∑

n≤N

Λ2(n) = N logN +O(N).



3. MIXED CORRELATIONS

We can obtain information about primes through
the previous correlations of ΛR(n) and with the
mixed correlation with Λ(n)

S̃R(k) =
∑

n≤N

Λ(n)ΛR(n+k) ∼ logN
∑

p≤N

ΛR(p+k).

We have, for k 6= 0

S̃R(k) =
∑

d≤R

µ(d) log(R/d)
( ∑

n≤N
d|n+k

Λ(n)
)

=
∑

d≤R

µ(d) log(R/d)
( ∑

n≤N
n≡−k(d)

Λ(n)
)

We let

ψ(x; q, a) =
∑

n≤x
n≡a(q)

Λ(n),

and

E(x; q, a) = ψ(x; q, a) − [(a, q) = 1]
x

φ(q)
.



We need the estimate, for a fixed 0 < ϑ ≤ 1,
∑

1≤q≤xϑ−ε

max
a

(a,q)=1

|E(x; q, a)| �
x

logA x
,

for any ε > 0, any A = A(ε) > 0, and x suffi-

ciently large. This is a weakened form of the

Bombieri-Vinogradov theorem if ϑ = 1
2. Elliott

and Halberstam conjectured that ϑ = 1 holds.

Hence

S̃R(k) = N
∑

d≤R
(d,k)=1

µ(d)

φ(d)
log(R/d)

+O(
∑

d≤R

log(R/d)|E(N ; d,−k)|)

= NS(k) +O(
N

(logR)A
)

provided R ≤ Nθ, where 0 < θ < ϑ. We also

have immediately by PNT
∑

n≤N

ΛR(n)Λ(n) = N logR+O(N).



Thus the mixed correlations are the same asymp-

totically as the mixed correlations in the range

R = Nθ, 0 < θ < 1/2.



Detecting Prime Gaps Recall

Z(N ; k) : =
∑

n
1≤n,n+k≤N

Λ(n)Λ(n+ k)

=
∫ 1

0
|S(α)|2e(−kα) dα.

The minor arcs here are hopeless, but Hardy-
Littlewood had the following trick up their sleeve:
∫ 1

0
|S(α)|2|P(α)|2 dα ≥

∫

M⊂[0,1]
|S(α)|2|P(α)|2 dα

=
∫

M
|JQ(α) + RQ(α)|2|P(α)|2 dα

=
∫

M
|JQ(α)|2|P(α)|2 dα

+ 2Re
∫

M
JQ(α)RQ(α)|P(α)|2 dα

+
∫

M
|RQ(α)|2|P(α)|2 dα

≥
∫

M
|JQ(α)|2|P(α)|2 dα

+ 2Re
∫

M
JQ(α)RQ(α)|P(α)|2 dα

The first term gives the main term. In the sec-



ond, one uses GRH or in Bombieri-Davenport’s

paper the Bombieri-Vinogradov Theorem to

show this is an error.

Here

P(α) =
H∑

k=−H

t(k)e(kα),

but the optimal choice turns out to be

P(α) =
H∑

k=1

e(kα),

so

|P(α)|2 =
H∑

k=−H

(H − |k|)e(kα).



Thus we get the lower bound: Q = N1/2,

H∑

k=−H

(H − |k|)Z(N, k) > KN logQ

+N
H∑

k=−H

(H − |k|)S(k)

so using a singular series average (ignore ε’s)

HN logN+2
H∑

k=1

(H−|k|)Z(N, k) >
1

2
HN logN+NH2

so we get

2
H∑

k=1

(H − |k|)Z(N, k) > (H2 −
1

2
H logN)

> H(H −
1

2
logN)

> 0

provided H > 1
2 logN .



While M is made use of by Bombieri-Davenport,

one can use the full Farey decomposition with

no minor arcs in this argument. Thus throw-

ing away the |R|2term is a true loss due to the

approximation.



Bombieri-Davenport Proof using ΛR(n) and

Moments

We consider the second moment

M2(N,ψ) =
N∑

n=1

(
ψ(n+ h) − ψ(n)

)2

and the corresponding moments

M2(N,ψR) =
N∑

n=1

(
ψR(n+ h) − ψR(n)

)2

and

M̃2(N,ψR) =
N∑

n=1

(
ψ(n+h)−ψ(n)

)(
ψR(n+h)−ψ(n)

)
.

All three moments can be resolved into corre-

lations the result being, for h� N1/2,

M2(h, F) ∼
∑

|k|≤h

(h− |k|)
( ∑

n≤N

f(n)f(n+ k)
)
.



Hence, letting h = λ logN , R = Nθ we have

for 0 < θ < 1/2,

M2(N,ψR) ∼ Nh logR+ 2N
∑

1≤k≤h

(h− |k|)S(k)

∼ Nh logR+Nh2

∼
(
θλ+ λ2

)
N log2N,

and similarly for M̃2(N,ψR).

Bombieri and Davenport’s is equivalent to the

inequality

N∑

n=1

((
ψ(n+ h) − ψ(n)

)
−
(
ψR(n+ h)−ψR(n)

))2

≥ 0.

Expanding gives the lower bound

M2(N, h, ψ) ≥ 2M̃2(N, h, ψR) −M2(N,h, ψR)

which implies on taking θ = 1/2− ε

M2(N, h, ψ) ≥ (
1

2
λ+ λ2 − ε)N log2N.



If there are never two primes as close as λ logN ,

M2(N, h, ψ) ∼ (logN)M1(N, h, ψ) ∼ λN log2N

so that

λ ≥
1

2
λ+ λ2 − ε

so

0 ≥ λ(λ−
1

2
) − ε

which is false if λ > 1
2. We conclude that

lim inf
n→∞

(
pn+1 − pn

log pn

)
≤

1

2
.

This argument has an additional advantage

over Bombieri-Davenport’s argument: assum-

ing the Elliott-Halberstam for Λ(n) AND ΛR(n),

you do prove small gaps.



Gallagher (1976) Hardy-Littlewood Prime
Tuple conjecture implies Poisson distribution

(OBTAINING MOMENTS FROM CORRELA-
TIONS)

The Hardy-Littlewood prime-tuple conjecture
is that for j = (j1, j2, . . . , jr) with the ji’s dis-
tinct integers,

ψj(N) =
N∑

n=1

Λ(n+ j1)Λ(n+ j2) · · ·Λ(n+ jr)

∼ S(j)N

when S(j) 6= 0, where

S(j) =
∏

p

(
1 −

1

p

)−r (
1 −

νp(j)

p

)

and νp(j) is the number of distinct residue
classes modulo p that the ji’s occupy.

Consider the k-th moment

Mk(N, h, ψ) =
N∑

n=1

(ψ(n+ h) − ψ(n))k



We have

Mk(N, h, ψ) =
N∑

n=1


 ∑

1≤m≤h

Λ(n+m)




k

=
∑

1≤mi≤h
1≤i≤k

N∑

n=1

Λ(n+m1)Λ(n+m2) · · ·Λ(n+mk).

Now suppose that the k numbers m1,m2, . . . ,mk

take on r distinct values j1, j2, . . . , jr with ji
having multiplicity ai, so that

∑
1≤i≤r ai = k.

Grouping the terms above, we have that

Mk(N, h, ψ) =
k∑

r=1

∑

a1,a2,...,ar
ai≥1,

∑
ai=k

(
k

a1, a2, . . . , ar

)

×
∑

1≤j1<j2<···<jr≤h
distinct

ψk(N, j,a),

where

ψk(N, j,a) =
N∑

n=1

Λ(n+j1)
a1Λ(n+j2)

a2 · · ·Λ(n+jr)ar



and the multinomial coefficient counts the num-
ber of different innermost sums that occur. If
n+ ji is a prime then

Λ(n+ ji)
ai = Λ(n+ ji)(log(n+ ji))

ai−1,

and thus

ψk(N, j,a) ∼ (logN)k−rψj(N).

Since

By the Hardy-Littlewood conjecture assuming
it is valid uniformly for max |ji| ≤ h,

Mk(N, h, ψ) ∼

N
k∑

r=1

(logN)k−r
∑

a1,a2,...,ar
ai≥1,

∑
ai=k

(
k

a1, a2, . . . , ar

)

×
∑

1≤j1<j2<···<jr≤h
distinct

S(j).

Gallagher proved that, as h→ ∞,
∑

1≤j1,j2,··· ,jr≤h
distinct

S(j) ∼ hr,



and since this sum includes r! permutations of

the specified vector j when the components

are ordered, we have

Mk(N, h, ψ) ∼

N(logN)k
k∑

r=1

1

r!
(

h

logN
)r

∑

a1,a2,...,ar
ai≥1,

∑
ai=k

(
k

a1, a2, . . . , ar

)
.

Letting

{
k
r

}
denote the Stirling numbers of

the second type, then

∑

a1,a2,...,ar
ai≥1,

∑
ai=k

(
k

a1, a2, . . . , ar

)
= r!

{
k
r

}
.

We conclude that for h ∼ λ logN ,

Mk(N, h, ψ) ∼ N(logN)k
k∑

r=1

{
k
r

}
λr,

which are the moments of a Poisson distribu-



tion with mean λ. The first 4 moments are

M1(N, h, ψ) ∼ λN logN,

M2(N, h, ψ) ∼ (λ+ λ2)N log2N,

M3(N, h, ψ) ∼ (λ+ 3λ2 + λ3)N log3N,

M4(N, h, ψ) ∼ (λ+ 7λ2 + 6λ3 + λ4)N log4N.

These Poisson moments determine the distri-

bution function for small gaps:
∑

pn≤N
pn+1−pn≤λ log pn

1 ∼ (1 − e−λ)π(N),

This quantitative result suggests small gaps

occur fairly frequently.

5. HIGHER CORRELATIONS

In 1999 Yildirim and I were at MSRI. After

working for two months we figured out: For



R ≤ N
1
3

∑

n≤N

ΛR(n)3 ∼
3

4
N log2R,

Over the next year we added
∑

n≤N

ΛR(n)2ΛR(n+ k) ∼ S(k)N logR,

∑

n≤N

ΛR(n)ΛR(n+ k1)ΛR(n+ k2) ∼ S(k1, k2)N,

Why did it take so long?



8. Calculating Correlations

For j a non-negative integer, define

φj(p) = p− j,

φj(1) = 1, and extend the definition to square-
free integers by multiplicativity. Let

p(j) =

{
j, if j is a prime,
1, otherwise,

,

and define

Hj(n) =
∏

p|n
p 6=j−1, p 6=j

(
1 +

1

p− j

)

We define the singular series for j ≥ 1 and
n 6= 0 by

Sj(n) =

{
CjGj(n)Hj(n), if p(j)|n,
0, otherwise,

where

Gj(n) =
∏

p|n
p=j−1 or p=j

(
p

p− 1

)
,



and

Cj =
∏

p
p 6=j−1, p 6=j

(
1 −

j − 1

(p− 1)(p− j + 1)

)
.

Theorem 1 For R ≥ 1, j ≥ 0, p(j)|k, and 0 ≤
log |k| � logR, we have

∑

d≤R
(d,k)=1

µ(d)

φj(d)
log

R

d
= Sj+1(k) + rj(R, k),

where

rj(R, k) �j e
−c1

√
log R,

and c1 is an absolute positive constant.



The next lemma is a generalization of a result

of Hildebrand.

Theorem 2 For R ≥ 1, j ≥ 1 and p(j)|k, we

have

∑

d≤R
(d,k)=1

µ2(d)

φj(d)
=





1
Sj(k)

(
logR+Dj + hj(k)

)
+O(m(k)√

R
)

O(m(k)√
R

),

where

Dj = γ +
∑

p 6=j−1

(2 − j) log p

(p− j + 1)(p− 1)
,

hj(k) =
∑

p|k

log p

p− 1
−

∑

p|k
p 6=j−1

(2 − j) log p

(p− j + 1)(p− 1)
,

and

m(k) =
∑

d|k

µ2(d)√
d

=
∏

p|k

(
1 +

1
√
p

)
.



Let

S3(k1, k2, k3) =
N∑

n=1

ΛR(n+k1)ΛR(n+k2)ΛR(n+k3)

Expanding, we have

S3(k1, k2, k3) =

∑

d1,d2,d3≤R

3∏

i=1

µ(di) log(R/di)
∑

n≤N
d1|n+k1
d2|n+k2
d3|n+k3

1.

The sum over n is zero unless (d1, d2)|k2 − k1,

(d1, d3)|k3 − k1, and (d2, d3)|k3 − k2, in which

case the sum runs through a residue class mod-

ulo [d1, d2, d3], and we have

∑

n≤N
d1|n+k1
d2|n+k2
d3|n+k3

1 =
N

[d1, d2, d3]
+O(1).



We conclude

S3(k1, k2, k3)

= N
∑

d1,d2,d3≤R
(d1,d2)|k2−k1
(d1,d3)|k3−k1
(d2,d3)|k3−k2

∏3
i=1 µ(di) log(R/di)

[d1, d2, d3]
+O(R3).

We now decompose d1, d2, and d3 into rela-

tively prime factors

d1 = a1b12b13a123

d2 = a2b12b23a123

d3 = a3b13b23a123

where aχ or bχ is a divisor of the di’s where i

occurs in χ. Since the di’s are squarefree, these

new variables are pairwise relatively prime. The

letters a and b reflect the parity of the num-

ber of di’s that the new variable divides. We

will let D denote the set of aχ’s and bχ’s which



satisfy the conditions

a1b12b13a123 ≤ R

a2b12b23a123 ≤ R

a3b13b23a123 ≤ R

b12a123|k2 − k1

b13a123|k3 − k1

b23a123|k3 − k2.

Letting

Li(R) = log
R

di
, L = L1(R)L2(R)L3(R)

we have

T3(k1, k2, k3) =

∑′

D

µ(a1)µ(a2)µ(a3)µ
2(b12)µ

2(b13)µ
2(b23)µ(a123)

a1a2a3b12b13b23a123
L

We first sum over a1, a2, and a3. This even-



tually leads to

−
∑′

D(D3)
b12b13a123≤R1
b12b23a123≤R2
b13b23a123≤R3

µ2(D3)µ(a123)µ((D3,2))

φ(D3)

× S2(2D3)S3(2D3)

where D3 = b12b13b23a123, and R1, R2, R3 will

be chosen to either in terms of the k′is or to

be about Re−c(log logR)2.



Application to primes.

Using 4th moment approximations, we knew

that we would probably prove

lim inf
n→∞

(
pn+1 − pn

log pn

)
≤ .57

but we didn’t care.

In mid-2000 we had obtained from our triple

correlations:

Theorem 3 For h ∼ λ logN , λ� Rε, and R =

Nθk, where θk is fixed and 0 < θk <
1
k for 1 ≤

k ≤ 3, we have

M1(N, h, ψR) ∼ λN logN,

M2(N, h, ψR) ∼ (θ2λ+ λ2)N log2N,

M3(N, h, ψR) ∼ (
3

4
θ3

2λ+ 3θ3λ
2 + λ3)N log3N.



Theorem 4 For h ∼ λ logN , λ� Rε, and R =
Nθk, where θk is fixed, 0 < θ1 ≤ 1, and 0 < θk <

ϑ
k−1 for 2 ≤ k ≤ 3, we have,

M̃1(N, h, ψR) ∼ λN logN,

M̃2(N, h, ψR) ∼ (θ2λ+ λ2)N log2N,

M̃3(N, h, ψR) ∼ (θ3
2λ+ 3θ3λ

2 + λ3)N log3N.

Luckily, we stumbled on a better way to detect
primes:

M̃3(N, h, ψR, C) =
2N∑

n=N+1

ψh(n)
(
ψR(n+ h) − ψR(n) − C logN

)2
,

where ψh(n) = ψ(n+ h)−ψ(n), and C may be
chosen as a function of h and R to optimize
the argument. Our moment results can now
be applied, and on choosing C optimally we
obtain

Theorem 5 For r ≥ 1, we have

Ξr := lim inf
n→∞

(
pn+r − pn

log pn

)
≤ r −

1

2

√
r.



r = 1 gives 1/2, thus providing a 50 page proof

of Bombieri-Davenport result.



We decided we could ”In Principle” obtain asymp-

totic formulas for

Sk(N,k,a)

=
N∑

n=1

ΛR(n+ k1)
a1ΛR(n+ k2)

a2 · · ·ΛR(n+ kr)
ar

and

S̃k(N,k,a)

=
N∑

n=1

ΛR(n+ k1)
a1 · · ·ΛR(n+ kr−1)

ar−1Λ(n+ kr)

where k = (k1, k2, . . . , kr) and a = (a1, a2, . . . ar),

the ki’s are distinct integers, ai ≥ 1 and
∑r

i=1 ai =

k. In the mixed correlation we assume that

r ≥ 2 and take ar = 1.



Another 6 months, its 2001. Did: For R ≤ N
1
4

∑

n≤N

ΛR(n)3ΛR(n+ k) ∼
3

4
S(k)N log2R,

∑

n≤N

ΛR(n)2ΛR(n+k1)ΛR(n+k2) ∼ S(k1, k2)N logR,

and still needed to do
∑

n≤N

ΛR(n)4,
∑

n≤N

ΛR(n)2ΛR(n+ k)2,

∑

≤N

ΛR(n)ΛR(n+ k1)ΛR(n+ k2)ΛR(n+ k3)

At 2001 AIM meeting a shouted suggestion
from the audience let us actually do all the
correlations in a few weeks. Thanks to Sarnak,
Friedlander, Conrey, Farmer.

Theorem 6 Given k ≥ 1, maxi |ji| ≤ R and
R ≥ 2. Then

Sk(N, j,a) =
(
Ck(a)S(j)+ok(1)

)
N(logR)k−r+O(Rk).



For Nε � R � N
1

2(k−1),

S̃k(N, j,a) =
(
Ck(a)S(j) + o(1)

)
N(logR)k−r.

The Ck(a) are rational numbers, and Denoting

Ck(k) as Ck. With a = (a1, a2, . . . , ar)

Ck(a) =
r∏

i=1

Cai.

Here
∑

n≤N

ΛR(n)k ∼ CkN(logR)k−1

The correlation constants Ck are defined by the

absolutely convergent integrals

C1 =
1

2πi

∫

(c1)

es1

s1
ds1,

C2 =
1

(2πi)2

∫

(c2)

∫

(c1)

es1+s2

s1s2(s1 + s2)
ds1 ds2,



C3 =
1

(2πi)3

∫

(σ3)

∫

(σ2)

∫

(σ1)

(s1 + s2 + s3)e
s1+s2+s3

s1s2s3(s1 + s2)(s1 + s3)(s2 + s3)
ds1 ds2 ds3.

Currently (2006) we only know the values of

the first six correlation constants:

C1 = 1, C2 = 1, C3 =
3

4
, C4 =

3

4
,

C5 =
11065

214
= .675 . . . ,

C6 =
11460578803

234
= .667 . . . .

These values are obtained by residue calcu-

lations, the last three were found by David

Farmer using a Mathematica program he wrote.

It is routine to compute these moments from

correlations. We have used Mathematica for

the calculations. On taking C1 = 1 and

h = λ logN, R = Nθ,



M1 ∼ λ

M2 ∼ C2θλ+ λ2,

M3 ∼ C3θ2λ+ 3C2θλ2 + λ3,

M4 ∼ C4θ3λ+
(
4C3 + 3C2

2
)
θ2λ2 + 6C2θλ3 + λ4,

M5 ∼ C5θ4λ+
(
5C4 + 10C3C2

)
θ3λ2

+
(
10C3 + 15C22

)
θ2λ3 + 10C2θλ4 + λ5.

For the mixed moments we find

M̃1 ∼ λ,

M̃2 ∼ θλ+ λ2,

M̃3 ∼ θ2λ+
(
2 + C2

)
θλ2 + λ3,

M̃4 ∼ θ3λ+
(
3 + C3 + 3C2

)
θ2λ2 +

(
3 + 3C2

)
θλ3 + λ4,

M̃5 ∼ θ4λ+
(
4 + C4 + 4C3 + 6C2

)
θ3λ2

+
(
6 + 4C3 + 12C2 + 3C22

)
θ2λ3

+
(
4 + 6C2

)
θλ4 + λ5.

If all of the correlation constants are one, as

we expect in the case when all the ΛR’s are re-

placed by Λ, then we obtain truncation Poisson



moments

PM1 ∼ λ

PM2 ∼ θλ+ λ2

PM3 ∼ θ2λ+ 3θλ2 + λ3

PM4 ∼ θ3λ+ 7θ2λ2 + 6θλ3 + λ4

PM5 ∼ θ4λ+ 15θ3λ2 + 25θ2λ3 + 10θλ4 + λ5.

or in general

PMk ∼ θkPMk(
λ

θ
)

where the Poisson moments are given by

PMk(λ) =
k∑

r=1

{
k
r

}
λr,

and the coefficients are the Stirling numbers

of the second type.



OBTAINING GAPS FROM MOMENTS

To detect small gaps between primes, let L =

logN and

S2k+1 =
1

NL2k+1

2N∑

n=N+1

(ψ(n, h)−ρL)
(
Pk(ψR(n, h))

)2

where ρ ≥ 0 is a number we will eventually take

to approach 1+, and

Pk(ψR(n, h)) =
k∑

j=0

aj(ψR(n, h))jLk−j,

where the aj’s are arbitrary functions of N , R,

λ, and ρ which are to be chosen to optimize

the argument.

If we can prove S2k+1 > 0 for a ρ > 1 then

it follows that some of the intervals (n, n+ h]

must contain two primes, which produces a

gap between consecutive primes of size less

than h.



We need to take

θ <
1

4k
in order to evaluate S2k+1. Assuming the Elliott-

Halberstam conjecture we can take θ < 1
2k.

We found the following results for consecutive

gaps:

n Ξ Ξ2 EH Ξ EH Ξ2

3 .5 1.29289 .29289 1
5 .42580 1.16934 .22466 .85161
7 .38767 1.10435 .19068 .77529

We have also worked out a multiple trunca-

tion method: For the fifth moment we use the

weight

a3(ψR2
(n, h))2 + a2LψR2

(n, h)

+ a1LψR1
(n, h) + a0L

2

Now we can take

R1 = N1/4, R2 = N1/8.



Using constants computed by David Farmer we

found
n Ξ Ξ2

5 .401220 1.12665
7 .355892 .970955

compared to single truncation result

n Ξ Ξ2

3 .5 1.29289
5 .42580 1.16934
7 .38767 1.10435

A HINT : a2 = 0 in

a3(ψR2
(n, h))2 + a2LψR2

(n, h)

+ a1LψR1
(n, h) + a0L

2

ruins the result completely.



Speculation in an NSF proposal

The following table compares the results for Ξ

for truncated Poisson moments with moments

where we take the first 6 values of Ck to be the

correct values and set all other Ck = 2/3:

n Ξ Poisson Ck correct, k ≤ 6, Ck = 2/3, k ≥ 7

3 .5 .5
5 .43454 .42580
7 .40092 .38764
9 .37976 .36364
11 .36494 .34686
13 .35387 .33433
15 .34522 .32454
17 .33823 .31664



n Ξ Poisson Ξ EH Poisson

21 .327 .143
31 .311 .130
41 .301 .123
51 .294 .118
61 .290 .114
71 .285 .111
81 .284 .110
91 .281 .108
101 .279 .106
201 .268 .099
401 .262 .094
801 .257 .091
2001 .254 .088
4001 .252 .087
5001 .252 .085

Michael Rubinstein determined that the poly-
nomials here are associated Laguerre polyno-
mials, the smallest zero asymptotics are known,
and that the above values approach

1/4, 1/12 (EH)

He also apologized for finding this out.



Soundararajan (Oct 15, 2002) proved

Ck → ∞

actually

Ck � kk

He apologized about repercussions on the ar-

gument proposed in the NSF proposal.



Soundararajan’s result shows that

ΛR(n) =
∑

d|n
d≤R

µ(d) log(R/d)

fails to detect primes correctly in higher corre-

lations.

Thus perhaps the factor log(R/d) is the wrong

weight when trying to approximate k-tuples of

primes, and something else is needed.



In November 2003 Heath-Brown suggested us-

ing
∑

1≤i,j≤K

aijψRi
(n, h)ψRj

(n, h)

with RiRj = N1/4−ε in the moment argument,

determine optimal aij, and then rewriting above

as
∑

d,d′

dd′≤N1/4−ε

h(d, d′)

one can get an approximation for h(d,d’) from

which one can maybe guess the right weight.

THE NEW IDEA (BUT TOTALLY WRONG)

Up to now we used the truncated divisor sum

ΛR(n) =
∑

d|n
d≤R

µ(d) log(R/d)



which is a truncated and smoothed approx-
imation for the von Mangoldt function Λ(n)
because

Λ(n) =
∑

d|n
µ(d) log(1/d).

ΛR(n) gives asymptotically the best least square
fit to Λ(n).

But what should be used to approximate a 2-
tuples of primes:

Λ(n)Λ(n+ k)?

Up to now we have used

Λ(n)Λ(n+k) ≈ ΛR1
(n)ΛR2

(n+k), R1R2 = R.

The problem with this: We can not take dif-
ferent choices of R1 and R2 within the same
sum. However:

d1 ≤ R1 and d2 ≤ R2 ⇒ d1d2 ≤ R1R2 = R,



and the latter inequality includes all possible

divisors that can occur for every value of R1

and R2 with R1R2 ≤ R.



Therefore consider divisor sums with this new

truncation, and then smooth in an appropriate

fashion. AND: This also allows us to eliminate

the correlation constants encountered before.

NEW IDEA- BUT WRONG Approximate

Λ(n)Λ(n + k) by the truncated double divisor

sum

ΛR(n, n+ k) =
∑

d1|n, d2|n+k
[d1,d2]≤R

(
1 −

[d1, d2]

R

)
µ(d1)µ(d2) log

R

d1
log

R
d2

(d1,d2)

.

The weight 1− [d1,d2]
R was only inserted to sim-

plify the proofs, and may be deleted.



Generalizing for r-tuples, we let D0 = 1 and

for r ≥ 1, let

Dr = [d1, d2, . . . , dr],

and define for m = (m1,m2, . . . ,mr)

ΛR(m) =
∑

dj|mj, 1≤j≤r
Dr≤R

(
1 −

Dr

R

) r∏

j=1

µ(dj) log
R
dj

(Dj−1,dj)

,

which is an approximation of Λ(m1)Λ(m2) · · ·Λ(mr)



Granville and Soundararajan found this doesn’t

work, but also set the stage so that all the

problems above - Correlation coefficients and

detecting primes correctly were solved. Only a

new approximation idea was needed.


