
Space-Time Discontinuous Galerkin Finite

Element Methods

J.J.W. van der Vegt
University of Twente, Department of Applied Mathematics

P.O. Box 217, 7500 AE, Enschede, The Netherlands

email: j.j.w.vandervegt@math.utwente.nl

Abstract

In these notes an introduction is given to space-time discontinuous Galerkin
(DG) finite element methods for hyperbolic and parabolic conservation laws on
time dependent domains. The space-time DG discretization is explained in detail,
including the definition of the numerical fluxes and stabilization operators neces-
sary to maintain stable and non-oscillatory solutions. In addition, a pseudo-time
integration method for the solution of the algebraic equations resulting from the
DG discretization and the relation between the space-time DG method and an arbi-
trary Lagrangian Eulerian approach are discussed. Finally, a brief overview of some
applications to aerodynamics is given.

Keywords: discontinuous Galerkin finite element methods, space-time finite element
methods, hyperbolic and parabolic conservation laws, upwind schemes, pseudo-time inte-
gration methods, local mesh refinement, compressible gas dynamics, dynamic grid motion,
Arbitrary Lagrangian Eulerian (ALE) methods.

Subject classifications: 65P25, 76N15.

1 Introduction

Many applications in fluid dynamics have time-dependent boundaries where the bound-
ary movement is either prescribed or part of the solution. Examples are fluid-structure
interaction, two-phase flows with free surfaces, Stefan problems and water waves. In all
of these problems the computational mesh has to follow the boundary movement, which
requires the interior mesh points to move also in order to maintain a consistent mesh
without grid folding. This mesh movement imposes, however, additional complications
for the numerical discretization. In particular, ensuring that the numerical discretization
is conservative on time-dependent meshes is non-trivial. This is important because the
equations of fluid dynamics express conservation of mass, momentum and energy, which
should also be satisfied at the discrete level.

A very natural way to derive numerical discretizations for problems which require
deforming and moving meshes is to use the space-time approach, in particular the space-
time discontinuous Galerkin finite element method. In this technique time is considered
as an extra dimension and treated in the same way as the spatial coordinates. Space-time

1

DG methods combine well known benefits of a DG method, such as optimal flexibility for
local mesh refinement (h-adaptation), adjustment of the polynomial order in each element
(p-adaptation) and excellent performance on parallel computers, with a fully conservative
Arbitrary Lagrangian Eulerian (ALE) approach to deal with deforming meshes.

Discontinuous Galerkin methods have recently received significant attention, both for
hyperbolic and (incompletely) parabolic problems. For surveys of DG methods to dis-
cretize elliptic, parabolic and hyperbolic partial differential equations in space we refer to
[4; 16; 19; 21]. In these notes we will focus on the main aspects of the space-time dis-
continuous Galerkin finite element method. We will use scalar hyperbolic and parabolic
conservation laws as an example since they are well suited to highlight the main concepts.

The extension of the techniques described in these notes to inviscid compressible flows
described by the Euler equations of gas dynamics, including local mesh refinement and
a multigrid accelerated pseudo-time integration method to solve the non-linear algebraic
equations resulting from the DG discretization, can be found in van der Vegt and van
der Ven [42], whereas quadrature techniques to improve the efficiency of the algorithm
are discussed and analyzed in van der Ven and van der Vegt [44]. The space-time DG
method discussed in [42; 44] has been recently extended to the compressible Navier-Stokes
equations in Klaij, van der Vegt and van der Ven [26; 27; 28] and applied to a number
of (unsteady) viscous aerodynamic flows. Applications of the space-time DG method to
rotorcraft can be found in Boelens and van der Ven [11; 45] and for deforming wings in
van der Ven, van der Vegt and Bouwman [46]. A detailed error and stability analysis of
the space-time DG method for the advection-diffusion equation is given in Sudirham, van
der Vegt and van Damme [35] and the Oseen equations in van der Vegt and Sudirham
[41].

Applications to nonconservative hyperbolic partial differential equations, in particular
models for dispersed multiphase flows, can be found in Rhebergen, Bokhove and van der
Vegt [33]. The use of entropy and pressure-primitive variables in DG discretizations of
the compressible Navier-Stokes equations to deal with (nearly) incompressible flows and
general equations of states is discussed in [32]. Another important field of applications of
space-(time) DG methods is the simulation of nonlinear water waves, see e.g. Bokhove
[12], Ambati and Bokhove [1; 2], van der Vegt and Tomar [40], van der Vegt and Xu [43],
Tomar and van der Vegt [38]. Shallow flows, including sediment transport, can be found
in Tassi et al. [36; 37]. An overview of a software toolkit for DG finite element methods
is given in [31].

The outline of these notes is as follows. In Section 2 we start with an introduction to
space-time DG methods for scalar hyperbolic conservation laws in one space dimension.
This section serves to explain the basic aspects of space-time DG methods. First, the
space-time formulation is introduced and the geometry of the space-time domain and
elements is defined in Section 2.1. Next, we discuss the space-time discontinuous Galerkin
discretization in Section 2.2. An important aspect for any numerical discretization of
hyperbolic partial differential equations is to ensure that it does not introduce numerical
oscillations around discontinuities. For this purpose we introduce a stabilization operator
in Section 2.3. The space-time DG discretization results in a large set of coupled non-
linear equations which need to be solved each time step. This is done efficiently with a
pseudo-time integration method, which is discussed in Section 2.4. The stability analysis
of the pseudo-time integration method is discussed in Section 2.5.

In Section 3 we present the extension of the space-time DG method to multiple dimen-
sions and to parabolic scalar conservation laws. After a brief introduction in Section 3.1,

2

the space-time formulation is discussed in Section 3.2, the finite element spaces, trace and
lifting operators in Section 3.3, and the space-time DG discretization is derived in Section
3.4. For this purpose the parabolic scalar conservation law is rewritten as a first order
system by introducing auxiliary variables. This system is then subsequently discretized,
after which the auxiliary variables are eliminated using lifting operators. The relation of
the space-time formulation with the ALE method is also explained in this section. Finally,
in Section 4 a brief overview of the extension to the compressible Navier-Stokes equations
and some advanced applications in aerodynamics are discussed.

2 Space-time methods for scalar hyperbolic conser-

vation laws in one space dimension

2.1 Space-time formulation

Consider a scalar conservation law in a time dependent flow domain Ω(t) ⊆ R
d with

boundary ∂Ω:

∂u

∂t
+ divf(u) = 0, x̄ ∈ Ω(t), t ∈ (t0, T), (1)

with u : Ω → R the conserved quantity, f : R → R
d the flux vector and boundary

conditions:

u(t, x̄) = B(u, uw), x̄ ∈ ∂Ω(t), t ∈ (t0, T), (2)

and initial condition:

u(0, x̄) = u0(x̄), x̄ ∈ Ω(t0). (3)

Here, u denotes a scalar quantity, t represents time, with t0 the initial and T the final time
of the time evolution. The boundary operator is denoted as B(u, uw), with uw prescribed
data at the boundary, and defines which type of boundary conditions are imposed at
∂Ω. Examples are Dirichlet boundary conditions, with u = uw, or Neumann boundary
conditions with ∂u

∂n̄
= uw, where n̄ denotes the unit outward normal vector at ∂Ω. An

example of a time-dependent domain, resembling a piston moving into and out of a
cylinder is given in Figure 1.

If we would directly discretize (1)-(3) with a finite element or finite volume method
then at each instant of time the mesh points have to move in order to account for the
boundary movement. At their new position we generally do not have data points available
and we need to interpolate or extrapolate the data from the old mesh to the new mesh.
This interpolation process is generally non-conservative and can introduce substantial
errors. Also, one has to be very careful in defining the proper mesh velocities. For a
detailed discussion see Lesoinne and Farhat [29].

An alternative approach is provided by the space-time discretization method. In a
space-time discretization we directly consider the domain in R

d+1. A point x ∈ R
d+1 has

coordinates (x0, x̄), with x0 = t representing time and x̄ ∈ R
d the spatial coordinate. We

define the space-time domain as the open domain E ⊂ R
d+1, see Figure 2. The boundary

∂E of the space-time domain E consists of the hypersurfaces Ω(t0) := {x ∈ ∂E | x0 = t0},

3

x1(t)

t

1x

(t)Ω

Ω (t)

Figure 1: Example of a time dependent flow domain Ω(t).

Ω(T) := {x ∈ ∂E | x0 = T}, and Q := {x ∈ ∂E | t0 < x0 < T}. The space-time domain
boundary ∂E therefore is equal to ∂E = Ω(t0) ∪Q ∪ Ω(T).

The scalar conservation law (1) can now be reformulated in the space-time frame work.
The space-time formulation of the scalar conservation law (1) is obtained by introducing
the space-time flux vector:

F(u) := (u, f(u))T .

The scalar conservation law (1) then can be written as:

divF(u(x)) = 0, x ∈ E , (4)

with boundary conditions:

u(x) = B(u, uw), x ∈ Q, (5)

and initial condition:

u(x) = u0(x), x ∈ Ω(t0). (6)

Here, the div operator is defined as divF = ∂Fi

∂xi
and the summation convention is used

on repeated indices.
The space-time formulation requires the introduction of a space-time slab, elements

and faces. First, consider the time interval I = [t0, T], partitioned by an ordered series of
time levels t0 < t1 < · · · < tNT

= T . Denoting the nth time interval as In = (tn, tn+1), we
have I = ∪nĪn. The length of In is defined as 4tn = tn+1−tn. Let Ω(tn) be the space-time
domain at time t = tn. A space-time slab is then defined as the domain En = E ∩ In, with
boundaries Ω(tn), Ω(tn+1) and Qn = ∂En\(Ω(tn) ∪ Ω(tn+1)).

4

Q

x

1x

Q

)0(tΩ

Ω (t)

Ω(T)

E

0

Figure 2: Example of a space-time domain E .

We now describe the construction of the space-time elements K in the space-time slab
En. Let the domain Ω(tn) be divided into Nn non-overlapping spatial elements Kn. At
tn+1 the spatial elements Kn+1 are obtained by mapping the vertices of the elements Kn to
their new position at t = tn+1. Each space-time element K is then obtained by connecting
the elements Kn and Kn+1 using linear interpolation in time. A sketch of the space-time
slab En is shown in Figure 3. The boundary of the space-time element is denoted as ∂K
and consists of three parts Kn, Kn+1, and Qn

K = ∂K\(Kn ∪Kn+1).
The geometry of the space-time element can be defined by introducing the mapping

Gn
K . This mapping connects the space-time element Kn to the reference element K̂ =

(−1, 1)d+1 and is defined using the following steps. First, we define a smooth, orientation
preserving and invertible mapping Φn

t in the interval In as:

Φn
t : Ω(tn) → Ω(t) : x̄ 7→ Φn

t (x̄), t ∈ In.

Next, we split Ω(tn) into the tessellation T̄ n
h with non-overlapping elements Kj. The

elements K ∈ T̄ n
h are defined using the mapping F n

K :

F n
K : (−1, 1)d → Kn : ξ̄ 7−→

Nv∑

i=1

xi(K
n)χi(ξ̄),

with xi(K
n) the spatial coordinates of the Nv nodal points of the space-time element

at time t = tn and χi the standard linear finite element shape functions defined on the
interval (−1, 1)d. Similarly, we use the mapping F n+1

K to define the element Kn+1:

F n+1
K : (−1, 1)d → Kn+1 : ξ̄ 7−→

Nv∑

i=1

Φn
tn+1

(xi(K
n))χi(ξ̄).

5

x

T

1x

K

K

n

n

n+1t

nt

I

j

n+1
j

E

jK
n

QjQ
n

j
n

Ω(T)
0

Figure 3: Space-time slab in space-time domain E .

Using linear interpolation in time the space-time element K can now be defined using the
mapping:

Gn
K : (−1, 1)d+1 → Kn : (ξ0, ξ̄) 7−→ (x0, x̄), (7)

with:

(x0, x̄) =
(

1
2
(tn + tn+1) −

1
2
(tn − tn+1)ξ0,

1
2
(1 − ξ0)F

n
K(ξ̄) + 1

2
(1 + ξ0)F

n+1
K (ξ̄)

)

.

An overview of the different mappings is given in Figure 4. The space-time tessellation is
now defined as:

T n
h := {K = Gn

K(K̂) |K ∈ T̄ n
h }.

2.2 Space-time discontinuous Galerkin finite element discretiza-

tion

The space-time formulation can be used both in continuous and discontinuous finite ele-
ment methods. The key difference here is if continuous or discontinuous basis functions
are used inside a space-time slab. In this section we will discuss the construction of a
space-time discontinuous Galerkin discretization for the scalar conservation law (4). The
first step is the definition of the basis functions φ̂m, (m = 0, · · · ,M) on the master element
K̂ = (−1, 1)d+1, for which we use monomials of total degree p:

φ̂m(ξ0, ξ1) = ξi0
0 ξ

i1
1 · · · ξid

d .

Note, this is the most simple choice for the basis functions. For higher order discretiza-
tions hierarchic polynomial basis functions are, however, generally more suitable, see for

6

t

x

∆

∆

t

x

∆
∆t−

F
n

K

GK

1

1
ξ

ξ

[−1,1]
2

S

n

S
2

t2

0

K
n+1

K

K
n

x
n=

n

Figure 4: Geometry of 2D space-time element in both computational and physical space.

instance [34; 23]. These basis functions result in better conditioned matrices and changing
the polynomial order in an element is relatively straightforward. Using the mapping (7),
the basis functions φm on the space-time element K can now be defined as:

φm(x) = φ̂m ◦G−1
K (x).

It is important to realize that these polynomial basis functions are defined independently
on each element. We do not require any continuity across element faces, both in space and
time. This is the main difference with the Runge-Kutta discontinuous Galerkin method
where only discontinuous basis functions in space are used and the integration in time
is performed with a Runge-Kutta method. For a survey of the RKDG method see [16;
19; 21]. An impression of the basis functions for linear polynomials is given in Figure 5,
where we indicated the discontinuities in the polynomial approximation at the element
boundaries. For a number of reasons, in particular the definition of a stabilization operator
to deal with discontinuous solutions, it is beneficial to split the test and trial functions
into an element mean at time tn+1 and a fluctuating part. We introduce therefore the
basis functions ψm : K → R:

ψm(x) = 1, if m = 0,

= φm(x) −
1

|K(tn+1)|

∫

K(tn+1)

φmdK, if m ≥ 1.

For many applications this splitting is, however, not necessary and one can work directly
with the φm basis functions.

The discontinuous Galerkin discretization requires the definition of the following finite
element space:

V p
h (T n

h) :=
{

vh

∣
∣
∣ vh|K ◦Gn

K ∈ Qp(K), ∀K ∈ T n
h

}

,

7

Figure 5: Discontinous Galerkin approximation of a function.

with Qp(K) = span
{
ψm, m = 0, · · · ,M

}
. The trial functions uh : K → R

d+1 are defined
in each element K ∈ T n

h as:

uh(x) =
M∑

m=0

Ûm(K)ψm(x), x ∈ K, (8)

with Ûm the expansion coefficients. Due to the definition of the basis functions ψm, which
ensures that

∫

K(tn+1)
ψm(x)dK = 0 for m ≥ 1, we have the relation:

ūh(K(tn+1)) :=
1

|K(tn+1)|

∫

K(tn+1)

uhdK = Û1,

and we can write:
uh(x) = ūh(K(tn+1)) + ũh(x),

with ūh(K(tn+1)) the mean solution at tn+1 and ũh(x) the fluctuations in element Kn with
∫

K(tn+1)
ũ(x)dK = 0. One of the main benefits of this splitting is that the equation for Û0

is very similar to a first order finite volume discretization and is only weakly coupled to
the equations for ũh.

The discontinuous Galerkin finite element formulation is now obtained using the fol-
lowing steps. First, equation (4) is multiplied with arbitrary test functions wh ∈ V p

h (T n
h)

and integrated over the space-time domain E , split into space-time elements. After in-
troducing the trial functions uh ∈ V p

h (T n
h), we obtain the weighted residual formulation:

Find a uh ∈ V p
h (T n

h), such that for all wh ∈ V p
h (T n

h), we have:

NT∑

n=0

Nn∑

j=1

(∫

Kn
j

wh divF(uh)dK +

∫

Kn
j

(gradwh)
T

D(uh) graduhdK
)

= 0. (9)

8

Here, the second integral is the stabilization operator, with D(uh) ∈ R
(d+1)×(d+1) the

stabilization matrix, which is necessary to obtain monotone solutions near discontinuities.
This contribution will be discussed in Section 2.3. The discontinuous Galerkin weak
formulation is now obtained by integrating (9) by parts, resulting in:

Find a uh ∈ V p
h (T n

h), such that for all wh ∈ V p
h (T n

h), we have:

NT∑

n=0

Nn∑

j=1

(

−

∫

Kn
j

gradwh · F(uh)dK +

∫

∂Kn
j

w−
h n

− · F(u−h)d(∂K)

+

∫

Kn
j

(gradwh)
T

D(uh) graduhdK
)

= 0. (10)

In the evaluation of the integrals in the weak formulation it is important to make a
distinction between the traces at the element boundary taken from either the inside or
the outside of the element since the basis functions are discontinuous at the element faces.
The traces at ∂K are defined as:

w±
h = lim

ε↓0
wh(x± εnK),

with n the unit outward space-time normal vector at ∂K.
The integrals over the faces ∂K in the weak formulation (10) can be further evaluated

using the fact that the interior faces are counted twice in the summation over the elements.
The same applies for boundary faces if we extend the mesh with ghostcells. We can
transform the integrals over the element boundaries therefore into:

∑

K

∫

∂K

w−
h n

− · F−d(∂K) =
∑

S

∫

S

1
2
(w−

h n
− + w+

h n
+) · (F− + F+)+

1
2
(w−

h + w+
h)(F− · n− + F+ · n+)dS, (11)

with F± = F(u±h), S the faces in the tessellation, and n−, n+ the normal vectors at each
side of the face S, which satisfy n+ = −n−. Since the formulation should be conservative,
we must impose the condition:

∫

S

whn
− · F−dS = −

∫

S

whn
+ · F+dS, ∀wh ∈ V p

h (T n
h),

hence the second contribution in (11) is zero. The boundary integrals therefore are equal
to:

∑

K

∫

∂K

w−
h n

− · F−d(∂K) =
∑

S

∫

S

(w−
h − w+

h)1
2
n− · (F− + F+)dS,

using the relation n+ = −n−. The next step is to replace the multi-valued trace of the
flux F at S with a numerical flux function:

H(u−h , u
+
h , n) ∼= 1

2
n · (F− + F+).

Depending on the choice of the numerical flux function this can introduce upwind in-
formation into the DG formulation. The use of a numerical flux function shows a close

9

resemblance with upwind finite volume methods. The boundary integrals at the element
faces can now be expressed as:

∑

K

∫

∂K

w−
h n

− · F−d(∂K) =
∑

S

∫

S

(w−
h − w+

h)H(u−h , u
+
h , n

−)dS

=
∑

K

∫

∂K

w−
hH(u−h , u

+
h , n

−)d(∂K),

where we used the fact that the numerical flux has to be conservative, which imposes the
condition H(u−h , u

+
h , n

−) = −H(u+
h , u

−
h , n

+).
In the definition of the numerical flux we have to make a distinction between the faces

Kn and Kn+1 at the time levels t = tn and tn+1, respectively, and the faces Qn. The first
two faces have a space-time normal vector n = (±1, 0, · · · , 0)T and information should
only move from the past to the future, whereas through the faces Qn information flows
both into and out of the element K. The numerical flux at the boundary faces Kn and
Kn+1, therefore is defined as:

H(u−h , u
+
h , n

−) = u+
h at Kn

= u−h at Kn+1.

The numerical flux at the boundary faces Qn is chosen as a monotone Lipschitz
H(u−h , u

+
h , n), which is consistent:

H(u, u, n) = n · f(u)

and conservative:
H(u−h , u

+
h , n

−) = −H(u+
h , u

−
h , n

+).

The monotone Lipschitz flux H(u−h , u
+
h , n) is obtained by (approximately) solving a Rie-

mann problem with initial states u−h and u+
h at the element faces Qn at time t = tn.

Important consistent and monotone Lipschitz fluxes are the:

• Godunov flux

HG(u−h , u
+
h , n) =

min
u∈[u−

h
,u+

h
]
f̂(u), if u−h ≤ u+

h

max
u∈[u+

h
,u−

h
]
f̂(u), otherwise,

(12)

with f̂(u) = f(u) · n.

• Engquist-Osher flux

HEO(u−h , u
+
h , n) =

∫ u+

h

0

min(f̂ ′(s), 0)ds+

∫ u−

h

0

max(f̂ ′(s), 0)ds+ f̂(0), (13)

where a prime denotes differentiation.

• Local Lax-Friedrichs flux

HLLF (u−h , u
+
h , n) =

1

2
(f̂(u−h) + f̂(u+

h) − C(u+
h − u−h)), (14)

C = max
min(u−

h
,u+

h
)≤s≤max(u−

h
,u+

h
)
|f̂ ′(s)|,

10

• Roe flux with ’entropy fix’

HR(u−h , u
+
h , n) =

f̂(u−h), if f̂ ′(u) ≥ 0 for u ∈ [min[u−h , u
+
h],max[u−h , u

+
h]]

f̂(u+
h), if f̂ ′(u) ≤ 0 for u ∈ [min[u−h , u

+
h],max[u−h , u

+
h]]

HLLF (u−h , u
+
h , n), otherwise.

(15)

For an excellent overview of all these (approximate) Riemann solvers, see [39]. The choice
which numerical flux should be used depends on many aspects, e.g. accuracy, robustness,
computational complexity, and also personal preference.

The space-time flux can be straightforwardly transformed into an arbitrary Lagrangian
Eulerian form. At the boundary faces Qn a simple calculation, see Figure 4, shows that
the space-time normal vector can be expressed as:

n = (−ug · n̄, n̄),

with ug the velocity of the point at Qn where the space-time normal vector is computed
and n̄ the spatial component of the space-time normal vector n. If we introduce this
relation into the numerical fluxes defined in (12-15) then

f̂(u) = f(u) · n̄− ug · n̄ u,

which is exactly the flux in an ALE formulation. For more details, see [24; 42].
After introducing the numerical fluxes we can transform the weak formulation (10)

into:

Find a uh ∈ V p
h (T n

h), such that for all wh ∈ V p
h (T n

h), the following variational equation
is satisfied:

Nn∑

j=1

(

−

∫

Kn
j

(gradwh) · F(uh)dK +

∫

Kj(tn+1)

w−
h u

−
h dK−

∫

Kj(tn)

w−
h u

+
h dK +

∫

Qn
j

w−
hH(u−h , u

+
h , n

−)dQ+

∫

Kn
j

(grad wh)
T
D(uh) graduh dK

)

= 0. (16)

This formulation shows that due to the causality of the time-flux, the solution in a space-
time slab now only depends explicitly on the data from the previous space-time slab.

The algebraic equations for the DG discretization are obtained by introducing the
polynomial expansions for uh and wh, given by (8) into the weak formulation (16) and
using the fact that the coefficients ŵm are arbitrary. The following set of equations for
the element mean ūh(Kj(tn+1)) are then obtained:

∣
∣Kj(tn+1)

∣
∣ūh(Kj(tn+1)) −

∣
∣Kj(tn)

∣
∣ūh(Kj(tn)) +

∫

Qn
j

H(u−h , u
+
h , n

−)dQ = 0. (17)

Note, these equations have a similar structure as a first order accurate finite volume
formulation, except that more accurate data are used at the element faces.

11

The equations for the coefficients Ûm(Kn
j), (m ≥ 1) related to the fluctuating part of

the flow field ũh are equal to:

M∑

m=1

Ûm(Kn
j)

(

−

∫

Kn
j

∂ψl

∂t
ψmdK +

∫

Kn+1

j

ψl(t
−
n+1, x̄)ψm(t−n+1, x̄)dK

+

∫

Kn
j

∂ψl

∂xk

Dkp(uh)
∂ψm

∂xp

dK
)

−

∫

Kn
j

uh(t
−
n , x̄)ψl(t

+
n , x̄)dK

+

∫

Qn
j

ψlH(u−h , u
+
h , n

−)dQ−

∫

Kn
j

∂ψl

∂x̄i

Fi(uh)dK = 0, l = 1, · · · ,M. (18)

The algebraic system given by (17)-(18) is in general non-linear, except for the case of
a linear advection equation when f(u) = au, with a a constant. The solution of this
non-linear system of equations will be discussed in Section 2.4.

2.3 Stabilization operator

The discontinuous Galerkin finite element method without stabilization operator does
not guarantee monotone solutions around discontinuities and sharp gradients. In these
regions numerical oscillations develop when polynomials of degree one or higher are used.
In order to prevent these numerical oscillations frequently a slope limiter is used which re-
duces the slope of uh in regions where the solution is oscillatory. The use of a slope limiter
in combination with a DG method has become quite popular, but also has serious disad-
vantages. It may result in an unnecessary reduction in accuracy in smooth parts of the
flow field and prevents convergence to steady state, which is particularly important when
an implicit time integration method is used. The problems in obtaining a steady state
solution originate from an inconsistency in the combination of a discontinuous Galerkin
discretization and a slope limiter. Since the limited solution does not satisfy the steady
state of the discontinuous Galerkin equations, it is not possible to reduce the residual
to machine accuracy. Instead, the scheme tries to converge to the unlimited solution,
which suffers, however, from numerical oscillations, and the limiter must remain active to
prevent this, resulting in limit cycle behavior.

A better alternative is provided by adding a stabilization operator to the DG dis-
cretization, such as proposed by Cockburn and Gremaud [17] and Jaffre, Johnson and
Szepessy [25].

The stabilization operator uses the jump in the polynomial representation at the el-
ement faces in the discontinuous Galerkin discretization and the element residual. In
this way optimal use is made of the information contained in a DG discretization and we
maintain the compact stencil of the discontinuous Galerkin method.

The effectiveness of the stabilization operator in (16) strongly depends on the artificial
viscosity matrix D(uh) ∈ R

(d+1)×(d+1). The definition of the artificial viscosity matrix is
more straightforward if the stabilization operator acts independently in all computational
coordinate directions. This is achieved by introducing the artificial viscosity matrix D̃ ∈
R

(d+1)×(d+1) in computational space using the relation:

D(uh|Kn, u∗h|Kn) = RT
D̃(uh|Kn , u∗h|Kn)R, (19)

with u∗h|Kn the solution data in the neighboring elements of Kn. The matrix R ∈
R

(d+1)×(d+1) is defined as:
R = 2H−1 gradGK. (20)

12

The matrix H ∈ R
(d+1)×(d+1) is introduced to ensure that both D and D̃ have the same

mesh dependence as a function of hi, and is defined as:

H = diag (h0, h1, · · · , hd),

with hi ∈ R
+ the leading terms of the expansion of the mapping Gn

K (7) in the computa-
tional coordinates ξi, (0 ≤ i ≤ d). The multiplication with the factor two in (20) ensures
that for orthogonal cells the matrix R is the rotation matrix from the computational space
to the physical space. The stabilization operator in (16) can now be further evaluated,
resulting in:

∫

Kn

∂ψl

∂xk

RpkD̃pq(uh|Kn, u∗h|Kn)Rql

∂ψm

∂xl

dK

=

∫

K̂

(H−1)pi

∂ψ̂l

∂ξi
D̃pq(uh|Kn , u∗h|Kn)(H−1)qj

∂ψ̂m

∂ξj
|JGK

|dK̂,

where we used the relation: (gradGn
K)ij = ∂xj/∂ξi and made the assumption that D̃ is

constant in each element.
The stabilization operator should act only in areas with discontinuities or when the

mesh resolution is insufficient. This requirement can be directly coupled to the jump in
the solution across element faces and the element residual, respectively, both of which
are readily available in the discontinuous Galerkin discretization. In regions with smooth
solutions these contributions are of the order of the truncation error and will therefore
not reduce the accuracy in these regions.

For problems with discontinuities the artificial viscosity model proposed and analyzed
by Jaffre, Johnson and Szepessy [25] is useful. In this model both the jumps at the element
faces and the element residual are used to define the artificial viscosity:

D̃qq(uh|Kn, u∗h|Kn) = max
(
C2h

2−β
K Rq(uh|Kn, u∗h|Kn) , C1h

3

2

K

)
, q = 1, · · · , d,

=0, otherwise,

with

R(uh|Kn, u∗h|Kn) =
∣
∣
∣

d∑

k=0

∂F(uh)

∂uh

∂uh(GK(0))

∂xk

∣
∣
∣ + C0

∣
∣u+

h (x(Kn)) − u−h (x(Kn+1))
∣
∣/hK+

MQ∑

m=1

1

hK

∣
∣n̄T

Kf(u+
h (x(m))) − n̄T

Kf(u−h (x(m)))
∣
∣, (21)

with hK =
√

h2
0 + h2

1 + · · · + h2
d, xKn, the diameter of the space-time element, x(Kn),

x(Kn+1) the midpoints of the space-time faces at times t = tn and tn+1, respectively, and
MQ the midpoints of the other space-time faces. The coefficients β, C0, C1 and C2 are
positive constants and set equal to C0 = 1.2, C1 = 0.1, C2 = 1.0 and β = 0.1. For
stronger shocks the addition of the quasi-linear form of the conservation law, which is the
first contribution on the righthand side of (21), significantly improves the robustness of
the numerical scheme since this contribution detects discontinuities very well. Numerical
tests showed that the contributions of the element residual of the quasi-linear equations
and the contributions in the jump of the flux at the element faces are equally important.

13

2.4 Solution of algebraic equations for the DG expansion coef-

ficients

The space-time DG formulation results in an implicit time-integration scheme. The equa-
tions for the DG expansion coefficients (17)-(18) in the space-time slab En can be repre-
sented symbolically as an equation for Ûn(K):

L(Ûn(K); Ûn−1(K)) = 0, (22)

with Ûn−1(K) the expansion coefficients in the previous time slab En−1. In general the
equations for the expansion coefficients will be non-linear, only for the flux f(u) = au,
with a a constant, a linear system will be obtained. There are several ways to solve
these non-linear equations. A standard procedure would be to apply a Newton method,
but this technique has several disadvantages. In the first place computing the Jacobian
matrix, either analytically or numerically, is a non-trivial and computationally expensive
task. Also, efficient linear algebra techniques need to be used to solve the linear system.
Considering its size this generally have to be iterative, Krylov subspace methods, but
finding good preconditioners for the linear system, which strongly influence both the
convergence rate and robustness, is difficult. Another disadvantage of a Newton method
is that the locality of the DG discretization is lost, because a large global linear system
must be solved. This particularly complicates the implementation on a parallel computer.

An alternative technique to solve the non-linear system of algebraic equations (17)-(18)
is to use a pseudo-time integration method. In this technique a pseudo-time derivative
of the expansion coefficients is added to (22) and this equation is solved by marching the
solution with a Runge-Kutta method to a steady state:

∂Û∗(K)

∂τ
=

1

4t
L(Û∗(K); Ûn−1(K)).

At steady state, when ∂Û∗(K)
∂τ

= 0, then Ûn(K) = Û∗(K).
The pseudo-time integration scheme uses a point-implicit five stage Runge-Kutta (RK)

scheme, which can be summarized as:

Algorithm 1. Runge-Kutta algorithm for pseudo-time integration.

1. Initialize the first Runge-Kutta stage: V̂ (0) = Ûn−1.

2. Do for all stages s = 1 to 5:

(1 + αsλ̄)V̂ (s) = V̂ (0) + αsλ̄
(

V̂ (s−1) − Lk(V̂ (s−1), Ûn−1)
)

(23)

3. End do

4. Update solution: Ûn = V̂ (5).

Here, λ is defined as λ̄ = 4τ/4t and the Runge-Kutta coefficients are equal to α1 =
0.0791451, α2 = 0.163551, α3 = 0.283663, α4 = 0.5, and α5 = 1.0.

This pseudo-time integration technique is very simple to implement and preserves the
locality of the DG discretization. It will, however, only be efficient when fast convergence
to steady is achieved. For this purpose the coefficients in the Runge-Kutta scheme have
been optimized to damp the transients in the pseudo-time integration as quickly as pos-
sible and to allow large pseudo-time steps. In addition, the use of a point implicit RK

14

scheme ensures that the pseudo-time integration method is stable for any positive value
of λ. More details about the RK scheme will be given in the next section. Optimizing
the Runge-Kutta scheme is, however, not sufficient to obtain an efficient solver. Conver-
gence to steady state is therefore further accelerated using a multigrid technique. In this
method the original fine mesh is coarsened a number of times and the solution on the
coarse meshes is used to accelerate convergence to steady state on the fine mesh. For the
details of the multigrid algorithm, see van der Vegt and van der Ven [42] and Klaij et al.
[28] since they are beyond the scope of these notes.

2.5 Stability analysis of the pseudo-time integration method for

the linear advection equation

A simple example of a space-time DG discretization is obtained by considering the linear
advection equation:

ut + aux = 0,

with a > 0. After some lengthy algebra, the space-time discontinuous Galerkin discretiza-
tion for the linear advection equation using linear basis functions and a mesh with grid
velocities sj ≤ a, j = 1, · · ·N , with N the number of mesh points, can be represented in
matrix form as:

AÛ(Kn
j) − BÛ(Kn

j−1) = CÛ(Kn−1
j),

with:

A =

4xn+1
j + cn

j+ 1

2

cn
j+ 1

2

−cn
j+ 1

2

2a1 +cn
j+ 1

2

−2a4tn
1
3
a2 +cn

j+ 1

2

+d11 −2a1 − cn
j+ 1

2

+ 2a4tn

−4xn
j −4xn+1

j − cn
j+ 1

2

−cn
j+ 1

2

2
3
a3 + 4

3
cn
j+ 1

2

+ d22

B =

cn
j− 1

2

cn
j− 1

2

−cn
j− 1

2

−cn
j− 1

2

−cn
j− 1

2

cn
j− 1

2

−cn
j− 1

2

−cn
j− 1

2

4
3
cn
j− 1

2

, C =

4xn
j 0 0

0 1
3
4xn

j 0

−24xn
j 0 0

,

with 4xn
j = xn

j+1 − xn
j , x̄n

j = 1
2
(xn

j + xn
j+1), a1 = x̄n+1

j − x̄n
j , a2 = 24xn+1

j − 4xn
j ,

a3 = 24xn
j +4xn+1

j , cn
j± 1

2

= 4tn(a− sj± 1

2
), and sn

j+ 1

2

= (xn+1
j+1 − xn

j+1)/4tn. Here xn
j and

xn
j+1 denote the begin and end points of the element at time tn, respectively. The terms
d11 and d22 are determined by the artificial dissipation operator.

The linear advection equation provides a nice model problem to study the stability of
the pseudo-time integration method. For this purpose, we assume periodic boundary con-
ditions and use Fourier analysis to investigate the properties of the Runge-Kutta scheme.
If we assume that the mesh size is uniform and the time step, element size, and velocity
remain constant, i.e. 4t = 4tn, ∆x = 4xn+1

j = 4xn
j , and s = sn

j− 1

2

= sn
j+ 1

2

for all j and

n, and set the artificial viscosity coefficients equal to zero, then the operator L can be
expressed as:

L(Ûn; Ûn−1) = AÛ(Kn
j) − BÛ (Kn

j−1) − CÛ(Kn−1
j), (24)

15

with the matrices A,B, C ∈ R
3×3 defined as:

A =

1 + δ δ −δ

−δ 1
3

+ δ δ

−2 − δ −δ 2 + 4
3
δ

 , B =

δ δ −δ

−δ −δ δ

−δ −δ 4
3
δ

 , C =

1 0 0

0 1
3

0

−2 0 0

 ,

where δ = 4t(a− s)/4x and s ≤ a.
Consider the spatial Fourier mode Û(Kn

j) = eiθjÛF , and introduce this into (24), then
the stability of the pseudo-time integration algorithm is determined by the equation:

dÛF

dτ
= −

1

∆t
P(θ)ÛF ,

with P(θ) = A − e−iθB. Since the linear advection equation is hyperbolic the matrix
P can be written as: P = QMQ−1, with Q the matrix of the right eigenvectors of P
and M a diagonal matrix with the eigenvalues µm(θ) of P(θ). Introducing a new vector
V̂ F = Q−1ÛF , we obtain a system of independent ODEs:

dV̂ F
m

dτ
= −

µm(θ)

4t
V̂ F

m , for m = 0, 1, 2.

This system of ordinary differential equations is solved with the point-implicit Runge-
Kutta scheme given by Algorithm 1. The amplification factor G(z) is defined recursively
as:

G(z) = 1

For s = 1 to 5

G(z) =
1 + αs(λ̄+ z)G(z)

1 + αsλ̄

End for

The pseudo-time integration method is stable if the amplification factor G satisfies the
condition |G(zm(θ))| ≤ 1, for m = 0, 1, 2; θ ∈ [0, 2π) with zm(θ) defined as zm(θ) =
−∆τ

∆t
µm(θ). The stability is analyzed for different values of the physical and pseudo-time

step CFL-numbers (defined as CFL4t = a4t/4x and CFL4τ = a4τ/4x, respectively),
and the ratio s/a.

In Figure 6 contour values of the stability domain |G(z)| ≤ 1 for the 5-stage point-
implicit Runge-Kutta scheme with optimized coefficients given by Algorithm 1 are shown
for the physical CFL numbers CFL4t = 1 and 100, respectively. Also shown are the loci
of the eigenvalues zm(θ), θ ∈ [0, 2π), which must be inside the stability region to ensure
the stability of the pseudo-time integration. For CFL4t = 1 the Runge-Kutta scheme
is stable for CFL4τ ≤ 1.94 and for CFL4t = 100 the pseudo-time step CFL number
must be less than CFL4τ ≤ 1.85, which is unchanged for larger values of CFL4t. The
large stability domain and excellent smoothing properties of the point-implicit Runge-
Kutta method for small values of the physical time step CFL number is important for
time-accurate simulations.

In Figure 7(top) the effect of not using the point-implicit treatment of V̂ in Algorithm
1 is shown for CFL4t = 1. In this case (23) is replaced with

V̂ (s) = V̂ (0) −
αsλ̄

|Kn|
Lk(V̂ (s−1), Ûn−1)

)

(25)

16

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)
0.2

0.
2

0.4

0.4

0.6

0.
6

0.8

0.8

1

1

−6 −5 −4 −3 −2 −1 0
−5

−4

−3

−2

−1

0

1

2

3

4

5

Re(z)

Im
(z

)

0.2

0.
2

0.4

0.4

0.6

0.6

0.8

0.8

1
1

Figure 6: Loci of the eigenvalues zm(θ), θ ∈ [0, 2π), (dots) of the DG discretization
of ut + aux = 0 and the stability domain of the 5-stage point-implicit Runge-Kutta
method with optimized coefficients. CFL4t = 1.0, CFL4τ = 1.8 (top), CFL4t = 100.0,
CFL4τ = 1.8 (bottom), no grid velocity.

17

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
−5

−4

−3

−2

−1

0

1

2

3

4

5

Re(z)

Im
(z

) 0.
6

0.8

0.4

0.
4

0.2

0.
2

0.4

0.6
0.

8

1

1

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

0.
2

0.2

0.
2

0.2

0.
2

0.
4

0.
4

0.6

0.
6

0.8

0.8

1

1

Figure 7: Loci of the eigenvalues zm(θ), θ ∈ [0, 2π), (dots) of the DG discretization of
ut + aux = 0 and the stability domain of the explicit 5-stage Runge-Kutta method (25)
with optimized coefficients (top) and the five stage point-implicit Jameson Runge-Kutta
scheme (bottom). CFL4t = 1.0. CFL4τ = 1.8, no grid velocity.

18

and the resulting scheme is unstable when the same pseudo-time step CFL numbers are
used as for the point-implicit scheme. For small physical time step CFL numbers the
stabilizing effect of this technique is very large and the pseudo-time step CFL number
must be reduced to 1.08 to ensure stability when the explicit Runge-Kutta scheme (25) is
used. For physical CFL numbers larger than 100 the effect of the point-implicit Runge-
Kutta scheme is, however, negligible.

The effect of using optimized coefficients in the Runge-Kutta scheme is also large, as
can be seen in Figure 7(bottom) where the stability contours for the point-implicit Runge-
Kutta scheme with coefficients αs = 1

4
, 1

6
, 3

8
, 1

2
, 1 for the stages s = 1, · · · , 5 are shown.

This are the coefficients for the Jameson Runge-Kutta scheme, which is a popular Runge-
Kutta method in computational fluid dynamics and also frequently used as a smoother
in multigrid algorithms. For this Runge-Kutta scheme the pseudo-time step CFL number
must be reduced to CFL4τ ≤ 0.88, when the physical CFL number is equal to CFL4t =
1. When the physical CFL number is equal to CFL4t = 100 then the pseudo-time step
CFL number must be reduced to CFL4τ ≤ 0.95 for the Jameson Runge-Kutta scheme.
The effect of grid velocity is stabilizing if the grid velocity is in the range 0 ≤ s ≤ a. This
is a direct consequence of the relation δ = CFL4t(1 − s/a). When the grid velocity is
in this range then it reduces the effective physical time step CFL number and since the
pseudo-time integration has a larger stability domain for smaller values of CFL4t this
improves stability.

3 Space-time methods for parabolic scalar conserva-

tion laws

3.1 Introduction

In this section we will present the extension of the space-time discontinuous Galerkin
method for hyperbolic partial differential equations in one dimension, discussed in Sec-
tion 2, to parabolic scalar conservation laws in multiple dimensions. In addition, the re-
lation between the space-time DG method and the Arbitrary Lagrangian Eulerian (ALE)
formulation will be explained.

The development of discontinuous Galerkin finite element methods for elliptic and
parabolic partial differential equations initially started in the seventies with the research
on interior penalty methods, see for example [3; 22; 47]. The interior penalty method
requires, however, a stabilization term with a mesh dependent constant which needs to be
properly chosen to ensure stability. Also, the interior penalty method is considerably more
complicated than the continuous Galerkin finite element method and did not receive much
attention. The suitability of discontinuous Galerkin methods for hp-adaptation and par-
allel computing, which was clearly demonstrated for hyperbolic partial differential equa-
tions, recently initiated the development of several new discontinuous Galerkin methods
for elliptic and parabolic partial differential equations. The extension of the DG method
for hyperbolic partial differential equations to convection-diffusion problems was made by
Bassi and Rebay [5], which developed a discontinuous Galerkin finite element method for
the compressible Navier-Stokes equations. This method suffered, however, from a weak
instability which was removed by Brezzi [13; 14]. During the same period Baumann and
Oden [8; 30; 9] developed a DG algorithm without a free parameter, but this algorithm
is suboptimal in accuracy and unstable for linear polynomials. A better alternative is
provided by the local discontinuous Galerkin method developed by Cockburn and Shu

19

[20], see also [15; 18]. A detailed survey and analysis of all these method is provided in
Arnold et al. [4], which gives a clear framework for the DG methods for elliptic partial
differential equations developed so far.

The extension of the space-time DG method to parabolic pde’s discussed in this section
will be based on the DG algorithms developed by Brezzi [13; 14] and Bassi and Rebay
[7; 6]. The main benefit of this approach is that no mesh dependent parameters are
required to guarantee the stability of the DG algorithm. In particular, we will consider
the so-called primal formulation which does not require the use of auxiliary variables,
which are eliminated using lifting operators. The resulting algorithm has optimal order of
accuracy and results in a very compact stencil, containing only contributions from nearest
neighboring elements. The discussion in this chapter is based on Sudirham, van der Vegt
and van Damme [35] to which we refer for more details, including an extensive error and
stability analysis of the space-time discontinuous Galerkin method for the linear advection
diffusion equation.

3.2 Space-time formulation

In this section we consider a parabolic scalar conservation law defined on a time dependent
domain and its formulation in the space-time framework. Let Ωt be an open, bounded
domain in R

d, with d the number of spatial dimensions. The closure of Ωt is Ωt and the
boundary of Ωt is denoted by ∂Ωt. The subscript t denotes the domain at time t as we
consider the geometry of the spatial domain to be time-dependent. The outward normal
vector to ∂Ωt is denoted by n̄ = (n1, . . . , nd). Denoting x̄ = (x1, . . . , xd) as the spatial
variables, we consider a time-dependent parabolic scalar conservation law:

∂u

∂t
+

d∑

i=1

∂

∂xi

fi(u(t, x̄)) −
d∑

i,j=1

∂

∂xj

(

Dij(t, x̄)
∂u

∂xi

)

= 0, in Ωt, (26)

where fi, i = 1, · · · , d are real-valued flux functions on Ω̄t and u is a scalar quantity.
Furthermore, D ∈ R

d×d is a symmetric matrix of diffusion coefficients on Ω̄t whose entries
are continuous real-valued functions. This matrix is positive definite in Ωt and positive
semi-definite on ∂Ωt.

In the space-time discretization we directly consider a domain in R
d+1. A point x ∈

R
d+1 has coordinates (x0, x̄), with x0 = t representing time. We then define the space-

time domain E ⊂ R
d+1. The boundary of the space-time domain ∂E consists of the

hypersurfaces Ω0 := {x ∈ ∂E | x0 = 0}, ΩT := {x ∈ ∂E | x0 = T}, and Q := {x ∈ ∂E |
0 < x0 < T}. We reformulate the parabolic scalar conservation law now in the space-time
framework. First, we introduce the convective flux F ∈ R

d+1 and the symmetric matrix
A ∈ R

(d+1)×(d+1) as:
F(u) =

(
u, f1(u), · · · , fd(u)

)
,

A =

(
0 0
0 D

)

.

Then the parabolic scalar conservation law (26) can be transformed into a space-time
formulation as:

−∇ · (−F(u) + A∇u) = 0 in E , (27)

where ∇ =
(

∂
∂x0
, ∂

∂x1
, . . . , ∂

∂xd

)
denotes the gradient operator in R

d+1.

20

As different boundary conditions are imposed on ∂E , we discuss in more detail the
subdivision of ∂E into different parts. The boundary ∂E is divided into disjoint boundary
subsets ΓS,Γ−, and Γ+, where each subset is defined as follows:

ΓS := {x ∈ ∂E : n̄TDn̄ > 0},

Γ− := {x ∈ ∂E \ ΓS : λ(u) < 0}, Γ+ := {x ∈ ∂E \ ΓS : λ(u) ≥ 0},

where the unit outward normal vector at ∂E is denoted with n and λ(u) = d
du

(F (u) · n).
The subscript S denotes the part of ∂E where matrix D is symmetric positive definite,
while the subscripts − and + denote the inflow and outflow boundaries, respectively. We
assume that ΓS has a non-zero surface measure. Note that ∂E = ΓS ∪ Γ− ∪ Γ+. We
subdivide ΓS further into two sets: ΓS = ΓDS ∪ ΓM , with ΓDS the part of ΓS with a
Dirichlet boundary condition and ΓM the part of ΓS with a mixed boundary condition.
We also subdivide Γ− into two parts: Γ− = ΓDB ∪ Ω0, with ΓDB the part of Γ− with a
Dirichlet boundary condition and Ω0 the part of Γ− with the initial condition. Note that
ΓD = ΓDS ∪ ΓDB ⊂ ∂E is the part of the space-time domain boundary with a Dirichlet
boundary condition. The boundary conditions on different parts of ∂E are written as

u = u0 on Ω0,

u = gD on ΓD,

αu+ n · (A∇u) = gM on ΓM , (28)

with α ≥ 0 and u0, gD, gM given functions defined on the boundary. There is no boundary
condition imposed on Γ+.

3.3 Space-time description, finite element spaces and trace op-

erators

3.3.1 Definition of space-time slabs, elements and faces

In this section we give a description of the space-time slabs, elements and faces used in
the DG discretization. First, consider the time interval I = [0, T], partitioned by an
ordered series of time levels t0 = 0 < t1 < . . . < tNt

= T . Denoting the nth time interval
as In = (tn, tn+1), we have I = ∪nĪn. The length of In is defined as 4nt = tn+1 − tn.
Let Ωtn be an approximation to the spatial domain Ω at tn for each n = 0, . . . , Nt. A
space-time slab is defined as the domain En = E ∩ (In × R

d) with boundaries Ωtn , Ωtn+1

and Qn = ∂En \ (Ωtn ∪ Ωtn+1
).

We now describe the construction of the space-time elements K in the space-time slab
En. Let the domain Ωtn be divided into Nn non-overlapping spatial elements Kn. At
tn+1 the spatial elements Kn+1 are obtained by mapping the elements Kn to their new
position. Each space-time element K is obtained by connecting elements Kn and Kn+1

using linear interpolation in time. A sketch of the space-time slab En and element K for
two spatial dimensions is shown in Fig. 8. We denote by hK the radius of the smallest
sphere containing each element K. The element boundary ∂K is the union of open faces
of K, which contains three parts Kn, Kn+1, and Qn

K = ∂K \ (Kn ∪Kn+1). We denote by
nK the unit outward space-time normal vector on ∂K. The definition of the space-time
domain is completed with the tessellation T n

h , which consists of all space-time elements
in En, and Th = ∪nT

n
h , which consists of all space-time elements in E .

21

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

I n
t n+1

tn

t0

Qn

Ω

Ω n

n+1

y

x

t
K

Figure 8: Space-time slab En with space-time element K.

Next, we consider several sets of faces S. The set of all faces in Ē is denoted with F ,
the set of all interior faces in E with Fint, and the set of all boundary faces on ∂E with
Fbnd. In the space-time slab En we denote the set of all faces with Fn and the set of
all interior faces with Sn

I . The faces separating two space-time slabs are denoted as Sn
S .

Several sets of boundary faces are defined as follows. The set of faces on ΓDS and ΓDB

are denoted with Sn
DS and Sn

DB, respectively. These sets are grouped into Sn
D. The set of

faces with a mixed boundary condition is denoted with Sn
M . The set of faces with either

a Dirichlet or a mixed boundary condition is denoted as Sn
DM . The sets Sn

I and Sn
D are

grouped into Sn
ID.

Depending on whether the convective flux on Sn
DS is inflow or outflow, we subdivide

Sn
DS further into Sn

DSm and Sn
DSp, where λ(u) < 0 on Sn

DSm and λ(u) ≥ 0 on Sn
DSp. The

sets Sn
DB and Sn

DSm are grouped into Sn
DBSm, while the sets Sn

M and Sn
DSp are grouped into

Sn
MDSp. These sets are important when we discuss the convective flux in Section 3.4.2.

3.3.2 Finite element spaces and trace operators

For the definition of the finite element spaces we assume that each element K ∈ Th is an
image of a fixed master element K̂, with K̂ an open unit hypercube in R

d+1, constructed
via the mapping GK : K̂ → K, which is supposed to be a diffeomorphism and is a
straightforward extension to d-space dimensions of the mapping defined in (7). We now
introduce the finite element spaces associated with the tessellation Th that will be used in
these notes. To each element K we assign a pair of nonnegative integers pK = (pt,K, ps,K) as
local polynomial degrees, where the subscripts t and s denote time and space, and collect
them into a vector p = {pK : K ∈ Th}. Defining Qpt,K,ps,K

(K̂) as the set of all tensor-

product polynomials on K̂ of degree pt,K in the time direction and degree ps,K in each
spatial coordinate direction, we then introduce the finite element space of discontinuous

22

piecewise polynomial functions as

V
(pt,ps)
h := {v ∈ L2(E) : v|K ◦GK ∈ Q(pt,K,ps,K)(K̂), ∀K ∈ Th}.

In the derivation and analysis of the numerical discretization we also make use of the
auxiliary space Σ

(pt,ps)
h :

Σ
(pt,ps)
h := {τ ∈ L2(E)d+1 : τ |K ◦GK ∈ [Q(pt,K,ps,K)(K̂)]d+1, ∀K ∈ Th}.

The so called traces of v ∈ V
(pt,ps)
h on ∂K are defined as: v±K = limε↓0 v(x ± εnK). The

traces of τ ∈ Σ
(pt,ps)
h are defined similarly.

Next, we define the average {{·}} and jump [[·]] operators as trace operators for the sets

Fint and Fbnd. Note that functions v ∈ V
(pt,ps)
h and τ ∈ Σ

(pt,ps)
h are in general multivalued

on a face S ∈ Fint. Introducing the functions vi := v|Ki
, τi := τ |Ki

, ni := n|∂Ki
, we define

the average operator on S ∈ Fint as:

{{v}} =
1

2
(v−i + v−j), {{τ}} =

1

2
(τ−i + τ−j), onS ∈ Fint,

while the jump operator is defined as:

[[v]] = v−i ni + v−j nj , [[τ]] = τ−i · ni + τ−j · nj , on S ∈ Fint,

with i and j the indices of the elements Ki and Kj which connect to the face S ∈ Fint.
On a face S ∈ Fbnd, the average and jump operators are defined as:

{{v}} = v−, {{τ}} = τ−, [[v]] = v− n, [[τ]] = τ− · n, onS ∈ Fbnd.

Note that the jump [[v]] is a vector parallel to the normal vector n and the jump [[τ]] is

a scalar quantity. We also need the spatial jump operator 〈〈·〉〉 for functions v ∈ V
(pt,ps)
h ,

which is defined as:

〈〈v〉〉 = v−i n̄i + v−j n̄j , on S ∈ Fint, 〈〈v〉〉 = v− n̄, on S ∈ Fbnd.

3.3.3 Lifting operators

In this section we introduce several lifting operators. The lifting operators discussed in
this section are similar to the ones introduced in [4; 14]. These operators are required for
the derivation of the space-time DG formulation in Section 3.4.

First, we introduce the local lifting operator rS : (L2(S))d+1 → Σ
(pt,ps)
h as:

∫

E

rS(φ) · q dE = −

∫

S

φ · {{q}} dS, ∀q ∈ Σ
(pt,ps)
h , ∀S ∈ ∪nS

n
ID. (29)

The support of the operator rS is limited to the element(s) that share the face S. Then

we introduce the global lifting operator R : (L2(∪nS
n
ID))d+1 → Σ

(pt,ps)
h as:

∫

E

R(φ) · q dE =
∑

S

∫

E

rS(φ) · q dE , ∀q ∈ Σ
(pt,ps)
h , ∀S ∈ ∪nS

n
ID. (30)

We also specify the above lifting operators for the Dirichlet boundary condition. Let P
be the L2 projection on Σ

(pt,ps)
h , and replace φ by PgDn in (29). Then on faces S ∈ ∪nS

n
D

we have
∫

E

rS(PgDn) · q dE = −

∫

S

gDn · q dS, ∀q ∈ Σ
(pt,ps)
h , ∀S ∈ ∪nS

n
D. (31)

23

For the global lifting operators, we proceed in a similar way. Using the projection
operator P, we replace φ by PgDn in (30) and (29) to have:

∫

E

R(PgDn) · q dE = −
∑

S

∫

S

gDn · q dS, ∀q ∈ Σ
(pt,ps)
h , ∀S ∈ ∪nS

n
D. (32)

Using (30) and (32), we then introduce RID : (L2(∪nS
n
ID))d+1 → Σ

(pt,ps)
h as:

RID(φ) = R(φ) −R(PgDn). (33)

The spatial part of the lifting operators R and rS, denoted by R̄ and r̄S, are obtained by
eliminating the first component of R and rS, respectively.

3.4 Space-time DG discretization for the parabolic scalar con-

servation law

In this section, we describe the derivation of the space-time DG weak formulation for
the parabolic scalar conservation law. As shown in e.g. [4; 14], it is beneficial for a DG
discretization to rewrite the second order partial differential equation (27) into a system
of first order equations. Following the same approach, we introduce an auxiliary variable
σ = A∇u to obtain the following system of first order equations:

σ = A∇u, (34)

−∇ · (−F(u) + σ) = 0. (35)

In the next section we discuss the derivation of the weak formulation for (34)-(35) in the
space-time framework.

3.4.1 Weak formulation for the auxiliary variable

First, we consider the auxiliary equation (34). By multiplying this equation with an

arbitrary test function τ ∈ Σ
(pt,ps)
h and integrating over an element K ∈ Th, we obtain:

∫

K

σ · τ dK =

∫

K

A∇u · τ dK, ∀τ ∈ Σ
(pt,ps)
h .

Next, we substitute σ and u with their numerical approximation σh ∈ Σ
(pt,ps)
h and uh ∈

V
(pt,ps)
h . After integration by parts twice and summation over all elements, we have for

all τ ∈ Σ
(pt,ps)
h the following formulation:

∫

E

σh · τ dE =

∫

E

A∇huh · τ dE +
∑

K∈Th

∫

∂K

A(ûh − u−h)n · τ− d∂K. (36)

The variable ûh is the numerical flux that must be introduced to account for the multi-
valued trace on ∂K.

We recall the following relation (see [4] relation (3.3)), which holds for vectors τ and
scalars φ, piecewise smooth on Th:

∑

K∈Th

∫

∂K

(τ · n)φ d∂K =
∑

S∈F

∫

S

{{τ}} · [[φ]] dS +
∑

S∈Fint

∫

S

[[τ]]{{φ}} dS. (37)

24

When applied to the last contribution in (36) and using the symmetry of the matrix A,
this results in

∑

K∈Th

∫

∂K

A(ûh − u−h)n · τ− d∂K

=
∑

S∈F

∫

S

[[ûh − uh]] · {{Aτ}} dS +
∑

S∈Fint

∫

S

{{ûh − uh}}[[Aτ]] dS. (38)

We consider now the choice for the numerical flux ûh. There are several options listed
in [4]. After a thorough study concerning the consistency, conservation properties, and
matrix sparsity of each option, we choose the following numerical flux, which is similar to
the choices in [6; 13; 14]:

ûh = {{uh}} on S ∈ Fint, ûh = gD on S ∈ ∪nS
n
D, ûh = u−h elsewhere. (39)

Note that on faces S ∈ Sn
S , which are the element boundaries Kn and Kn+1, the normal

vector n has values n = (±1, 0, . . . , 0
︸ ︷︷ ︸

d ×

) and thus An = (0, . . . , 0
︸ ︷︷ ︸

(d+1) ×

). Hence there is no

coupling between the space-time slabs. Substituting the choices for the numerical flux
(39) into (38) and using the fact that entries of the matrix A are continuous functions,
we obtain for each space-time slab En:

∑

K∈T n
h

∫

∂K

A(ûh − u−h)n · τ− d∂K

= −
∑

S∈Sn
ID

∫

S

[[uh]] · A{{τ}} dS +
∑

S∈Sn
D

∫

S

gDn · Aτ dS. (40)

After summation over all space-time slabs, and using the symmetry of matrix A we can
introduce the lifting operator (33) into (40) to obtain

∑

K∈Th

∫

∂K

A(ûh − u−h)n · τ− d∂K =

∫

E

ARID([[uh]]) · τ dE . (41)

Introducing (41) into (36), we obtain for all τ ∈ Σ
(pt,ps)
h :

∫

E

σh · τ dE =

∫

E

A∇huh · τ dE +

∫

E

ARID([[uh]]) · τ dE ,

which implies that we can express σh ∈ Σ
(pt,ps)
h as:

σh = A∇huh + ARID([[uh]]) a.e. ∀x ∈ E . (42)

3.4.2 Weak formulation of the parabolic scalar conservation law

The weak formulation for the parabolic scalar conservation law is obtained if we multiply
(35) with arbitrary test functions v ∈ V

(pt,ps)
h , integrate by parts over element K, and then

substitute u, σ with their numerical approximation uh ∈ V
(pt,ps)
h , σh ∈ Σ

(pt,ps)
h :

∫

E

(−F(uh) + σh) · ∇hv dE −
∑

K∈Th

∫

∂K

(−F̂h + σ̂h) · nv
− d∂K = 0. (43)

25

Here we replaced F(uh), σh on ∂K with the numerical fluxes F̂h, σ̂h, to account for the
multivalued traces on ∂K.

The next step is to find appropriate choices for the numerical fluxes. We separate the
numerical fluxes into an convective flux F̂h and a diffusive flux σ̂h. For the convective
flux, the obvious choice is an upwind flux, as described in [42] and we use here the Lax-
Friedrichs flux for convenience. For more details, see [39]. Thus, we write the numerical
flux F̂h as:

F̂h(u
−
h , u

+
h) = {{F(uh)}} + CS[[uh]]. (44)

The parameter CS is chosen as:

CS = max
u∈[u−

h
,u+

h
]
|λ(u)| on S ∈ Fint. (45)

If we substitute τ and φ in relation (37) with {{F(uh)}}+CS[[uh]] and v, respectively, the
summation over the boundaries ∂K can be written as a sum over all faces as follows:

∑

K∈Th

∫

∂K

({{F(uh)}} + CS[[uh]]) · nv
− d∂K

=
∑

S∈Fint

∫

S

({{F(uh)}} + CS[[uh]]) · [[v]] dS +
∑

S∈Fbnd

∫

S

F(uh) · nv dS. (46)

Now we consider the numerical flux σ̂h. From [4], we have several options for this
numerical flux. For similar reasons as in Section 3.4.1, we choose σ̂h = {{σh}}, which is the
same as in [13; 14]. By replacing σ̂h with {{σh}}, then using (37) the contribution with σ̂h

in (43) can also be written as a sum over all faces S ∈ F as:
∑

K∈Th

∫

∂K

{{σ̂h}} · nv
− d∂K =

∑

S∈F

∫

S

{{σh}} · [[v]] dS. (47)

Using (46)-(47) and (42) (to eliminate σh), the primal formulation for uh is obtained:
∫

E

(
−F(uh) + A∇huh + ARID([[uh]])

)
· ∇hv dE

+
∑

S∈Fint

∫

S

({{F(uh)}} + CS[[uh]]) · [[v]] dS +
∑

S∈Fbnd

∫

S

Fh(uh) · nv dS

−
∑

S∈F

∫

S

(
A{{∇huh}} + A{{RID([[uh]])}}

)
· [[v]] dS = 0. (48)

This relation can be simplified using the following steps. Due to the symmetry of the
matrix A and using the lifting operator RID (33) we have the relation

∫

E

ARID([[uh]]) · ∇hv dE

= −
∑

S∈∪nSn
ID

∫

S

A[[uh]] · {{∇hv}} dS +
∑

S∈∪nSn
D

∫

S

AgDn · ∇hv dS. (49)

Further, the lifting operator RID has nonzero values only on faces S ∈ Sn
ID. Using R,RID

(see (30) and (33)) we obtain the following relation

−
∑

S∈F

∫

S

A{{RID([[uh]])}} · [[v]] dS

=

∫

E

AR([[uh]]) ·R([[v]]) dE −

∫

E

AR(PgDn) ·R([[v]]) dE . (50)

26

Following a similar approach as in [14], we replace each term in (50) with the local
lifting operator rS, defined in Section 3.3.3, and make the following simplifications:

∫

E

AR([[uh]]) · R([[v]]) dE ∼=
∑

S∈∪nSn
ID

∑

K∈Th

ηK

∫

K

ArS([[uh]]) · rS([[v]]) dK, (51)

∫

E

AR(PgDn) · R([[v]]) dE ∼=
∑

S∈∪nSn
D

∑

K∈Th

ηK

∫

K

ArS(PgDn) · rS([[v]]) dK. (52)

A sufficient condition for the constant ηK to guarantee a stable and unique solution is
ηK > nf , with nf the number of faces of an element. For a proof, see [35]. The advantage
of this replacement is that the stiffness matrix in the weak formulation using the local
lifting operators is considerably sparser than the stiffness matrix resulting from the weak
formulation with global lifting operators. We refer to [4; 14] for a further explanation.

Substituting relations (49)-(50) into (48), using relations (51)-(52), and considering
the structure of matrix A, we then obtain:

−

∫

E

F(uh) · ∇hv dE +

∫

E

D∇huh · ∇hv dE −
∑

S∈∪nSn
ID

∫

S

D〈〈uh〉〉 · {{∇hv}} dS

+
∑

S∈∪nSn
D

∫

S

gDDn̄ · ∇hv dS +
∑

S∈Fint

∫

S

({{F(uh)}} + CS[[uh]]) · [[v]] dS

+
∑

S∈Fbnd

∫

S

F(uh) · nv dS −
∑

S∈∪nSn
ID

∫

S

D{{∇huh}} · 〈〈v〉〉 dS

−
∑

S∈Fbnd\∪nSn
D

∫

S

D∇huh · n̄v dS +
∑

S∈∪nSn
ID

∑

K∈Th

ηK

∫

K

Dr̄S([[uh]]) · r̄S([[v]]) dK

−
∑

S∈∪nSn
D

∑

K∈Th

ηK

∫

K

Dr̄S(PgDn) · r̄S([[v]]) dK = 0. (53)

Here we used the spatial gradient operator ∇, the spatial jump operator 〈〈·〉〉 (see Section
3.3.2) and the spatial lifting operator r̄S (see Section 3.3.3). Next, we introduce the
following boundary and initial conditions:

D∇huh · n̄ = gM − αuh on S ∈ ∪nS
n
M ,

uh = gD on S ∈ ∪nS
n
DBSm,

uh = u0 on Ω0,

into (53). We introduce a : V
(pt,ps)
h × V

(pt,ps)
h → R:

a(uh, v) = aa(uh, v) + ad(uh, v), (54)

with aa : V
(pt,ps)
h × V

(pt,ps)
h → R, ad : V

(pt,ps)
h × V

(pt,ps)
h → R defined as:

aa(uh, v) = −

∫

E

F(uh) · ∇hv dE +
∑

S∈Fint

∫

S

({{F(uh)}} + CS[[uh]]) · [[v]] dS

+
∑

S∈(∪nSn
MDSp

∪Γ+)

∫

S

F(uh) · nv dS, (55)

27

ad(uh, v) =

∫

E

D∇huh · ∇hv dE

−
∑

S∈∪nSn
ID

∫

S

(
D〈〈uh〉〉 · {{∇hv}} +D{{∇huh}} · 〈〈v〉〉

)
dS

+
∑

S∈∪nSn
ID

∑

K∈Th

ηK

∫

K

Dr̄S([[uh]]) · r̄S([[v]]) dK

+
∑

S∈∪nSn
M

∫

S

αuhv dS, (56)

and the linear form ` : V
(pt,ps)
h → R defined as:

`(v) = −
∑

S∈∪nSn
D

∫

S

gDDn̄ · ∇hv dS

+
∑

S∈∪nSn
D

∑

K∈Th

ηK

∫

K

Dr̄S(PgDn) · r̄S([[v]]) dK +
∑

S∈∪nSn
M

∫

S

gMv dS

−
∑

S∈∪nSn
DBSm

∫

S

F (gD) · nv dS +

∫

Ω0

c0v dΩ. (57)

Note that the term
∑

S∈Fbnd\∪nSn
DM

∫

S
D∇huh · n̄v dS is dropped from the bilinear form

ad(·, ·) since on S ∈ Fbnd \ ∪nS
n
DM the matrix D is zero.

The space-time DG discretization for (26) can now be formulated as follows.

Find a uh ∈ V
(pt,ps)
h such that:

a(uh, v) = `(v), ∀v ∈ V
(pt,ps)
h . (58)

This formulation is the most straightforward for the theoretical analysis discussed
in [35], but for practical implementations, an arbitrary Lagrangian Eulerian (ALE) for-
mulation is preferable. Therefore, in these notes, we also present the ALE form of the
space-time weak formulation (58). The relation between the space-time and ALE formu-
lation discussed here follows the derivation in [42].

Using a result from [42], the space-time normal vector n can be split into two parts:
n = (nt, n̄), with nt the temporal part and n̄ the spatial part of the space-time normal
vector n. Next, we consider the normal vector n on the faces S ∈ Fint, which consist of two
sets: Fint = ∪n(Sn

I ∪ Sn
S). On S ∈ Sn

S , the space-time normal vector is n = (±1, 0, . . . , 0
︸ ︷︷ ︸

d ×

)

and is not affected by the mesh velocity. On the faces S ∈ Sn
I the space-time normal

vector depends on the mesh velocity ug:

n = (−ug · n̄, n̄), (59)

which also holds on the boundary faces S ∈ Fbnd \ (Ω0 ∪ ΩT).
If we recall the bilinear and linear forms in (55)-(57), then only aa(·, ·) and `(·) need

to be rewritten into the ALE formulation by splitting the normal vector n into a temporal
and spatial part. The bilinear form ad in (56) remains valid for the ALE formulation since
it does not depend on nt. We now consider the contribution {{F(uh)}} · [[v]] in (55). On
S ∈ ∪nS

n
I , this contribution can be written in the ALE formulation using (59) as:

{{F(uh)}} · [[v]] = {{f(uh) − uguh}} · 〈〈v〉〉,

28

while on S ∈ Sn
S this term does not change. Here, f(u) = (f1(u), · · · , fd(u))

T . Next,
consider the term [[uh]] · [[v]]. Since the normal vector n has length one, we immediately
obtain

[[uh]] · [[v]] = (u+
h − u−h)(v+ − v−),

and thus this contribution also does not depend on the mesh velocity ug.
The form aa(·, ·) and linear functional `(·) in the ALE formulation are now equal to:

aa(uh, v) = −

∫

E

F(uh)·∇hv dE +
∑

S∈∪nSn
I

∫

S

({{f(uh) − uguh}}·〈〈v〉〉+ CS[[uh]] · [[v]]) dS

+
∑

S∈∪nSn
S

∫

S

({{F(uh)}} + CS[[uh]]) · [[v]] dS

+
∑

S∈(∪nSn
MDSp

∪Γ+)

∫

S

(f(uh) − uguh) · n̄v dS, (60)

`(v) = −
∑

S∈∪nSn
D

∫

S

gDDn̄ · ∇hv dS

+
∑

S∈∪nSn
D

∑

K∈Th

ηK

∫

K

Dr̄S(PgDn) · r̄S([[v]]) dK +
∑

S∈∪nSn
M

∫

S

gMv dS

−
∑

S∈∪nSn
DBSm

∫

S

(f(gD) − gDug) · n̄v dS +

∫

Ω0

c0v dΩ, (61)

with ad(·, ·) is given by (56).

4 Extension to 3D compressible flow

4.1 Space-time formulation for compressible flows

The space-time discontinuous Galerkin method for parabolic partial differential equations
discussed in Section 3 provides the starting point for the extension to compressible flows.
In this section we will only give a brief overview of the space-time DG discretization for
the Euler equations of inviscid flow and the compressible Navier-Stokes equations. For
more detailed information we refer to [42; 44; 26; 27; 28].

We consider the compressible Navier-Stokes equations in a time-dependent flow do-
main Ω(t). Since the flow domain boundary ∂Ω(t) is moving and deforming in time
we do not make an explicit separation between the space and time variables and con-
sider the Navier-Stokes equations directly in R

4. Let E ⊂ R
4 be an open domain. Let

F e : R
5 → R

5×4 denote the inviscid flux tensor, which is defined as:

F e =

ρ ρu1 ρu2 ρu3

ρu1 ρu2
1 + p ρu1u2 ρu1u3

ρu2 ρu1u2 ρu2
2 + p ρu2u3

ρu3 ρu1u3 ρu2u3 ρu2
3 + p

ρE (ρE + p)u1 (ρE + p)u2 (ρE + p)u3

,

with ρ, p, and E the density, pressure, and specific total energy, respectively, and ui the
velocity components in the Cartesian coordinate directions xi, i ∈ {1, 2, 3} of the velocity

29

vector u : E → R
3. The vector U : E → R

5 denotes the conservative flow variables with
components Ui and is the first column in F e:

Ui = Fi0.

We also introduce the viscous flux tensor F v : R
5 → R

5×4, which is defined as:

F v =

0 0 0 0
0 τ11 τ12 τ13
0 τ21 τ22 τ23
0 τ31 τ32 τ33
0 τ1juj − q1 τ2juj − q2 τ3juj − q3

,

where the summation convention is used on repeated indices in this section. The total
stress tensor τ ∈ R

3×3 is defined as

τ = λ∇̄ · u+ µ(∇̄u+ (∇̄u)T),

with the dynamic viscosity coefficient µ given by Sutherlands’s law:

µ

µ∞

=
T∞ + TS

T + TS

(
T

T∞

) 3

2

,

where T is the temperature, TS a constant and (·)∞ refers to free stream values. For the
thermal diffusivity coefficient λ, we assume λ = −2

3
µ. The heat flux q ∈ R

3 is defined as

q = −κ∇̄T,

with κ the thermal conductivity coefficient.
The compressible Navier-Stokes equations can now be defined as

∇ ·
(
F e

(
U(x)

)
− F v

(
U(x),∇U

))
= 0, x ∈ E , (62)

together with the initial and boundary conditions:

U(x) = U0(x), x ∈ Ω(t0),

U(x) = B(U,Uw), x ∈ Q.

Here U0 : Ω(t0) → R
5 denotes the initial flow field, B : R

5 × R
5 → R

5 the boundary
operator and Uw : Q → R

5 the prescribed boundary flow field data. The divergence
of a second order tensor is defined as: ∇ · F =

∂Fij

∂xj
. The Navier-Stokes equations are

completed with equations of state for the pressure and temperature in a calorically perfect
gas: p = (γ− 1)ρ(E− 1

2
uiui) and T = 1

cv
(E− 1

2
uiui), with cv the specific heat at constant

volume and γ the ratio of specific heats at constant pressure and volume. The Euler
equations for inviscid compressible flow are obtained by neglecting the viscous flux tensor
F v.

The space-time discontinuous Galerkin discretization for the compressible Navier-
Stokes equations is now obtained by transforming (62) into a first order system in the
same way as done in Section 3.4 for the parabolic scalar conservation law. For this purpose
we introduce a homogeneity tensor A ∈ R

5×4×5×4 defined as

Aikrs(U) :=
∂F v

ik(U,∇U)

∂(Ur,s)
,

30

with i, r = 1, · · ·5 and k, s = 1, · · · , 4, and where a comma denotes partial differentiation
with respect to the indicated coordinate direction. Note, the homogeneity tensor A is not
symmetric nor positive definite for given indices r, s. This is a significant complication
compared to the parabolic scalar conservation law discussed in Section 3. The viscous
flux then satisfies the relation

F v
ik(U,∇U) = Aikrs(U)Ur,s.

Introducing the auxiliary variable Θ ∈ R
5×4, the compressible Navier-Stokes equations

can now be written as

∇ · (F e(U) − Θ(U)) = 0, (63)

Θ(U) −A(U)∇U = 0. (64)

For the space-time discontinuous Galerkin discretization we introduce the following finite
element spaces on the finite element tessellation Th:

Wh = {W ∈ (L2(E))5 : W |K ◦GK ∈ P k(K̂)5, ∀K ∈ Th},

with L2(E) the space of square integrable functions on E , P k the space of polynomials of
total degree k on the reference element K̂, and GK : K̂ → K the mapping connecting the
reference element to the space-time element. Similarly, we define the space

Vh = {V ∈ (L2(E))5×4 : V |K ◦GK ∈ P k(K̂)5×4, ∀K ∈ Th}.

The space-time weak formulation can now be obtained by multiplying (63-64) with arbi-
trary test functions W ∈Wh and V ∈ Vh, respectively, and integration by parts over each
space-time element (twice for (64)) and summation over all elements in the tessellation
Th. The weak formulation then is equal to:

Find a U ∈ Wh and a Θ ∈ Vh, such that for all W ∈ Wh and V ∈ Vh the following
relation is satisfied

−
∑

K∈Th

∫

K

(

Wi,k(F
e
ik(U) − Θik(U)

)

dK +
∑

K∈Th

∫

∂K

W−
i nk

(
F̂ e

ik(U) − Θ̂ik(U)
)
d(∂K) = 0,

(65)
∑

K∈Th

∫

K

VikΘik(U)dK −
∑

K∈Th

∫

K

VikAikrsUr,sdK −
∑

K∈Th

∫

Q

V −
ikA

−
ikrs(Ûr − U−

r)nsdQ = 0.

(66)

Just as in the case of the scalar conservation laws we can obtain the discontinuous Galerkin
finite element discretization by representing the flow variables U , auxiliary variables Θ
and test functions V and W as polynomials in each element, which are discontinuous
across element faces. This discontinuity at the element faces requires the introduction of
numerical fluxes which are indicated with a hat in (65-66) and form an essential ingredient
in the DG discretization. After the definition of the numerical fluxes, it is possible to
eliminate the auxiliary variables Θ using similar lifting operators as defined in Section
3.3.3 and we obtain the so-called primal formulation. The details of this derivation are
beyond the scope of these notes and we refer to Klaij, van der Vegt and van der Ven [26;
27; 28].

The space-time DG finite element discretization for the Euler equations is less involved
since it does not require the use of the auxiliary variables Θ. A detailed description of
this algorithm, which closely follows the lines discussed in Section 2, can be found in van
der Vegt and van der Ven [42; 44].

31

4.2 Some applications

In this section we present a few examples of results obtained with space-time discontinuous
Galerkin methods. This section serves to highlight some of the possibilities of computa-
tions which can be performed with these algorithms. For more extensive applications we
refer to the references cited in Section 1.

The first example is the inviscid flow about an oscillating NACA 0012 airfoil. The
freestream Mach number is 0.8, the pitching angle ranges between −0.5 and 4.5 degrees
and the oscillation period is T = 20 (normalized with L/a∞, where L is the chord length
and a∞ is the freestream speed of sound), which results in a circular frequency ω = π/10.
The flow field is computed both on a fine mesh with 32,768 elements and an adapted mesh,
which has approximately 9,400 elements during the simulation. During each time step the
coarse mesh is adapted, with first coarsening followed by refinement. Both simulations
used a time step of 1.0 for the interval [3.0, 13.0] of a period, and a time step of 0.5 in the
remaining part of the period. The smaller time steps during this part of the oscillation
period are necessary since the shock at the lower side of the airfoil has a greater velocity
than the shock at the upper side. If the shock moves through several cells during a time
step this will result in numerical oscillations, since no artificial dissipation or limiting
is applied in the time direction. The results on the fine and adapted mesh are nearly
identical, where the difference in the lift coefficient can be attributed to the improved
accuracy in the shock due to the mesh adaptation. This can be inferred from the pressure
coefficients Cp at the wing shown in Figure 9. The pressure coefficients for the fine and
adapted mesh are nearly identical, except in the shock, where the adapted mesh captures
the discontinuity better. Figure 9 also shows that the mesh adaptation does not negatively
influence the time accuracy and is very efficient in capturing the flow discontinuities, also
for the weak shock at the lower side of the wing which periodically disappears.

32

X

-C
p

0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1

medium grid with adaptation
fine grid

T=32.0
α=0.5

X

-C
p

0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1

medium grid with adaptation
fine grid

T=35.0
α=-0.5

Figure 9: Adapted mesh around oscillating NACA 0012 airfoil, contours of density, and
pressure coefficient Cp on the airfoil surface for α = 0.5◦ (pitching downward) and α =
−0.5◦ (M∞ = 0.8, ω = π/10)., (Taken from [42])

The second example is the steady viscous flow about a delta wing computed with
the space-time discontinuous Galerkin discretization of the compressible Navier-Stokes
equations. The Reynolds number is Re = 4 · 104, the Mach number M∞ = 0.3 and the
angle of attack α = 12.5◦. The finite element mesh contains 1.671.168 elements. The

33

VORTICITY

10
9
8
7
6
5
4
3
2

Re = 40 000
α = 12.5°
M = 0.3
nb of elements = 1 671 168

Figure 10: Viscous flow field about a delta wing with a sharp leading edge (Re = 4 · 104,
M∞ = 0.3, α = 12.5◦).

delta wing has a sharp leading edge, which creates a vortex sheet which rolls up into
the primary vortex above the wing. This vortex has a nearly conical shape and induces
a large velocity near the upper wing surface, which causes flow separation at the wing
surface and creates a secondary vortex. Further downstream, the induced velocity of the
secondary vortex is large enough to generate even a tertiary vortex near the leading edge.
The vortex structures roll up into a concentrated vortex further downstream in the wake.
The space-time DG algorithm is well capable of capturing these detailed flow structures
which can be further improved using local mesh refinement [26; 27].

The third example is the unsteady viscous flow about a NACA 0012 airfoil which un-
dergoes a rapid pitch up maneuver to large angles of attack. This will result in the gen-
eration of large unsteady vortical structures on the lee-side of the profile. The Reynolds
number in these simulations is Re = 104, the Mach number M∞ = 0.2 and the mesh
contains 4256 elements. During the pitch-up maneuver the mesh is deforming to accom-
modate for the boundary movement.

5 Acknowledgement

It is a pleasure to thank J.J. Sudirham and C.M. Klaij (University of Twente) and H. van
der Ven (National Aerospace Laboratory, NLR) for the collaboration in the development
of the space-time discontinuous Galerkin finite element methods discussed in these notes.

34

VORTICITY

10
9.5
9
8.5
8
7.5
7
6.5
6
5.5
5
4.5
4
3.5
3
2.5
2
1.5

Figure 11: Streamlines in flow about a NACA 0012 airfoil in pitch-up maneuver. (Re =
10000, M∞ = 0.2, α = 35◦.

The financial support of the Technology Foundation STW and NLR for the research on
space-time discontinuous Galerkin methods is gratefully acknowledged.

References

[1] V.R. Ambati and O. Bokhove, Space-time finite element shallow water flows. J.
Comp. Appl. Math., 204(2), 452-462 (2007).

[2] V.R. Ambati and O. Bokhove, Space-time discontinuous Galerkin discretization of
rotating shallow water equations. J. Comp. Phys., 225, 1233-1261 (2007).

[3] D.N. Arnold, An interior penalty finite element method with discontinuous elements,
SIAM J. Num. Anal., 19(4), 742-760 (1982).

[4] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discon-
tinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39(5),
1749-1779 (2002).

[5] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for
the numerical solution of the compressible Navier-Stokes equations, J. Comput.
Phys., 131, 267-279 (1997).

[6] F. Bassi and S. Rebay, Numerical evaluation of two discontinuous Galerkin methods
for the compressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids., 40,

35

197-207 (2002).

[7] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti and M. Savini, A high-order accurate dis-
continuous finite element method for inviscid and viscous turbomachinery flows,
in Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynam-
ics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 99-108,
1997.

[8] C.E. Baumann, An hp-adaptive discontinuous finite element method for computa-
tional fluid dynamics, Ph.D. dissertation, The University of Texas at Austin, Aug.
1997.

[9] C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for the Euler
and Navier-Stokes equations. Tenth international conference on finite elements in
fluids (Tucson, AZ, 1998). Intern. J. Numer. Methods Fluids 31(1), 79-95 (1999).

[10] E. Bernsen, O. Bokhove and J.J.W. an der Vegt, A (Dis)continuous finite element
model for generalized 2D vorticity dynamics, J. Comput. Phys., 211, 719-747
(2006).

[11] O.J. Boelens, H. van der Ven, B. Oskam and A.A. Hassan, The boundary conforming
discontinuous Galerkin finite element approach for rotorcraft simulations, J. of
Aircraft, 39(5), 776-785 (2002).

[12] O. Bokhove, Flooding and drying in finite-element Galerkin discretizations of shallow-
water equations. Part I: One dimension, J. Sci. Comput. 22, 47-82 (2005).

[13] F. Brezzi, G. Manzini, D. Marini, P. Pietra, A. Russo, Discontinuous finite elements
for diffusion problems, Atti del Convegno in Memoria di F. Brioschi, Milano,
Instituto Lombardo di Scienze e Lettere, 1997.

[14] F. Brezzi, G. Manzini, D. Marini, P. Pietra, A. Russo, Discontinuous Galerkin ap-
proximations for elliptic problems, Numer. Meth. Part. Diff. Eq., 16, 365-378
(2000).

[15] P. Castillo, B. Cockburn, I. Perugia and D. Schotzau, Local discontinuous Galerkin
methods for elliptic problems, Comm. Numer. Meth. Engng, 18, 69-75 (2002).

[16] B. Cockburn, Discontinuous Galerkin methods for convection-dominated problems,
in T.J. Barth and H. Deconinck (Eds.), Lect. Notes in Comp. Sci. and Eng., 9

(Springer Verlag, 1999).

[17] B. Cockburn and P.A. Gremaud, Error estimates for finite element methods for
nonlinear conservation laws, SIAM J. Numer. Anal., 33, 522-554 (1996).

[18] B. Cockburn, G. Kanschat, I. Perugia and D. Schotzau, Superconvergence of the local
discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J.
Numer. Anal., 39(1), 264-285 (2002).

[19] B. Cockburn, G.E. Karniadakis, C.-W. Shu, (Eds.), Discontinuous Galerkin methods.
Theory, computation and applications, Lect. Notes in Comp. Sci. and Eng., 11,
Springer Verlag, 2000.

[20] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-
dependent convection-diffusion systems, SIAM J. Numer. Anal., 35(6), 2440-2463
(1998).

[21] B. Cockburn and C.W. Shu, Runge-Kutta discontinuous Galerkin method for con-
vection dominated problems, J. Sci. Comput., 6(3), 173-261 (2001).

36

[22] J.Jr. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic
Galerkin methods, in Lecture Notes in Physics, 58, Springer-Verlag, 1976.

[23] A. Ern and J.-L. Guermond, Theory and practice of finite elements, Springer Verlag,
2004.

[24] A. Harten and J.M. Hyman, Self adjusting grid methods for one-dimensional hyper-
bolic conservation laws, J. of Comput. Phys., 50, 235-269 (1983).

[25] J. Jaffre, C. Johnson and A. Szepessy, Convergence of the discontinuous Galerkin
finite element method for hyperbolic conservation laws, Math. Models and Meth.
in Appl. Sci. 5, 367-386 (1995).

[26] C.M. Klaij, J.J.W. van der Vegt and H. van der Ven, Space-time discontinuous
Galerkin method for the compressible Navier-Stokes equations, J. Comput. Phys.,
217(2), 589-611 (2006).

[27] C.M. Klaij, J.J.W. van der Vegt and H. van der Ven, Pseudo-time stepping methods
for space-time discontinuous Galerkin discretizations of the compressible Navier-
Stokes equations, J. Comput. Phys., 219, 622-643 (2006).

[28] C.M. Klaij, M.H. van Raalte, H. van der Ven, and J.J.W. van der Vegt, h-Multigrid
for space-time discontinuous Galerkin discretizations of the compressible Navier-
Stokes equations, J. Comput. Phys., 227(2), 1024-1045 (2007).

[29] M. Lesoinne and C. Farhat, Geometric conservation laws for flow problems with
moving boundaries and deformable meshes, and their impact on aeroelastic com-
putations, Comput. Meth. Appl. Mech. Engrg., 134, 71-90 (1996).

[30] J.T. Oden, I. Babuska and C.E. Baumann, A discontinuous hp finite element method
for diffusion problems, J. Comput. Phys., 146, 491-519 (1998).

[31] L. Pesch, A. Bell, W.E.H. Sollie, V.R. Ambati, O. Bokhove and J.J.W. van der
Vegt, hpGEM- A software framework for Discontinuous Galerkin finite element
methods, ACM Trans. Math. Softw., 33(4) (2007).

[32] L. Pesch and J.J.W. van der Vegt, A discontinuous Galerkin finite element discretiza-
tion of the Euler equations for compressible and incompressible fluids, J. Comput.
Phys., 227(11), 5426-5446 (2008).

[33] S. Rhebergen, O. Bokhove and J.J.W. van der Vegt, Discontinuous Galerkin finite
element methods for hyperbolic nonconservative partial differential equations, J.
Comput. Phys., 227(3), 1887-1922, (2008).

[34] P. Solin, K. Segeth and I. Dolezel, Higher-order finite element methods, Chapman &
Hall/CRC, 2004.

[35] J.J. Sudirham, J.J.W. van der Vegt and R.M.J. van Damme, Space-time discontin-
uous Galerkin method for advection-diffusion problems on time-dependent do-
mains, Appl. Numer. Math., 56, 1491-1518 (2006).

[36] P. Tassi, O. Bokhove, and C. Vionnet, Space discontinuous Galerkin method for
shallow water flows -kinetic and HLLC flux, and potential vorticity-generation.
Advanc. Water Res., 30, 998-1015 (2007).

[37] P.A. Tassi, S. Rhebergen, C.A. Vionnet and O. Bokhove, A discontinuous Galerkin
finite element model for morphological evolution under shallow flows, Comput.
Meth. Appl. Mech. Engrg., in press (2008).

37

[38] S.K. Tomar and J.J.W. van der Vegt, A Runge-Kutta discontinuous Galerkin method
for linear free-surface gravity waves using high order velocity recovery, Comput.
Meth. Appl. Mech. Engrg., 196(13-16), 1984-1996 (2007).

[39] E.F. Toro, Riemann solvers and numerical methods for fluid dynamics. A practical
introduction 2nd edition, Springer Verlag, 1999.

[40] J.J.W. van der Vegt and S.K. Tomar, Discontinuous Galerkin method for linear free-
surface gravity waves, J. Sci. Comput., 22-23, 531-567 (2005).

[41] J.J.W. van der Vegt and J.J. Sudirham, A space-time discontinuous Galerkin method
for the Time-Dependent Oseen Equations, article in print Appl. Numer. Math.,
2008.

[42] J.J.W. van der Vegt and H. van der Ven, Space-time discontinuous Galerkin finite
element method with dynamic grid motion for inviscid compressible flows. Part
I. General formulation., J. Comput. Phys., 182, 546-585 (2002).

[43] J.J.W. van der Vegt and Y. Xu, Space-time discontinuous Galerkin method for non-
linear water waves, J. Comput. Phys., 224(1), 17-39 (2007).

[44] H. van der Ven and J.J.W. van der Vegt, Space-time discontinuous Galerkin finite
element method with dynamic grid motion for inviscid compressible flows. II.
Efficient flux quadrature, Comput. Meth. Appl. Mech. Engrg., 191, pp. 4747-4780
(2002).

[45] H. van der Ven and O.J. Boelens, A framework for aeroelastic simulations of trimmed
rotor systems in forward flight. In Proc. 30th European Rotorcraft Forum, Mar-
seiile, France, Sept. 14-16, 2004.

[46] H. van der Ven, J.J.W. van der Vegt and E.G. Bouwman, Space-time discontinuous
Galerkin finite element method for inviscid compressible flows. In Computational
fluid and solid mechanics 2003 (MIT) Boston), Vol. 1, 1181-1143, Elsevier Sci.,
Oxford, U.K., 2003.

[47] M.F. Wheeler, An elliptic collocation-finite element method with interior penalties,
SIAM J. Numer. Anal., 15, 152-161 (1978).

[48] Y. Xu, J.J.W. van der Vegt, and O. Bokhove, 2008: Discontinuous Hamiltonian
Finite Element Method for a Bilinear Poisson Bracket. article in print, J. Sci.
Comput., 2008.

38

