
Space-Time Discontinuous Galerkin Methods for

Compressible Flows

Part III Efficient Solution Techniques

Jaap van der Vegt

Numerical Analysis and Computational Mechanics Group

Department of Applied Mathematics

University of Twente

The Netherlands

Montreal Scientific Computing Days

April 30 - May 2, 2008



University of Twente - Chair Numerical Analysis and Computational Mechanics 1

Introduction

• The space-time discretization of the Navier-Stokes equations results in very large

systems of coupled algebraic equations which need to be solved each time step.

• Efficient solution techniques should preserve the locality of the DG discretization,

which is accomplished using

I optimized Runge-Kutta pseudo-time integration methods

I multigrid techniques
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Overview of Lecture

• Space-time discretization of advection-diffusion equation

• Pseudo-time integration methods for space-time discontinuous Galerkin

discretizations

• Multigrid techniques

• Applications

• Concluding remarks
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Efficient Solution of Nonlinear Algebraic System

• The space-time DG discretization results in a large system of nonlinear algebraic

equations:

L(Ûn; Ûn−1) = 0

• This system is solved by marching to steady state using pseudo-time integration

and multigrid techniques:

∂Û

∂τ
= − 1

∆t
L(Û ; Û

n−1
)



University of Twente - Chair Numerical Analysis and Computational Mechanics 4

Benefits of Coupled Pseudo-Time and Multigrid Approach

• The locality of the DG discretization is preserved, which is beneficial for parallel

computing and hp-adaptation.

• In comparison with a Newton method the memory overhead is considerably smaller

• The algorithm has good stability and convergence properties and is not sensitive to

initial conditions
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EXI Runge-Kutta Scheme

• Explicit Runge-Kutta method for inviscid flow with Melson correction.

1. Initialize V̂ 0 = Û .

2. For all stages s = 1 to 5 compute V̂ s as:

(
I + αsλI

)
V̂
s
= V̂

0
+ αsλ

(
V̂
s−1 − L(V̂

s−1
; Û

n−1
)
)
.

3. Return Û = V̂ 5.

• Runge-Kutta coefficients: α1 = 0.0791451, α2 = 0.163551, α3 = 0.283663,

α4 = 0.5 and α5 = 1.0.

• The factor λ is the ratio between the pseudo- and physical-time step:

λ = ∆τ/∆t.
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EXV Runge-Kutta Scheme

• Explicit Runge-Kutta method for viscous flows.

1. Initialize V̂ 0 = Û .

2. For all stages s = 1 to 4 compute V̂ s as:

V̂
s
= V̂

0 − αsλL(V̂
s−1

; Û
n−1

).

3. Return Û = V̂ 4.

• Runge-Kutta coefficients: α1 = 0.0178571, α2 = 0.0568106, α3 = 0.174513

and α4 = 1.0.
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EXI-EXV Runge-Kutta Scheme

• Time accuracy is not important in pseudo-time, we apply therefore local

pseudo-time stepping and deploy whichever scheme gives the mildest stability

constraint.

• The exi scheme has the mildest stability constraint for relatively high cell Reynolds

numbers and the exv scheme for relatively low cell Reynolds numbers.

• The pseudo-time Runge-Kutta schemes act as smoother in a multigrid algorithm.
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Advection-Diffusion Equation

• Consider the time-dependent scalar advection-diffusion equation:






ut + aux − duxx = 0,

u(x, 0) = u0,

periodic boundary conditions

• The flow domain Eh = R× R
+, restricted to the time interval (tn, tn+1), has a

tessellation T nh consisting of uniform elements K = (xj, xj+1)× (tn, tn+1) with

j ∈ Z and n ∈ N.

• The corresponding function space is:

V k
h ≡

{
w ∈ L2(Eh) : w|K ◦GK ∈ Pm(K̂), ∀K ∈ T nh

}
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Space-time Discretization

• The weak formulation is equal to: Find a uh ∈ V k
h , such that for all w ∈ V k

h :

−
∑

K∈T n
h

∫

K

(∂w
∂t
uh +

∂w

∂x
(au− d(∂uh

∂x
−R))

)
dK

+
∑

K∈T n
h

( ∫

K(t−n+1)

w
L
u
L
h dK −

∫

K(t+n )

w
L
u
R
h dK

)

+
∑

S∈Sn
I

∫

S
[[w]](aûh − d{{

∂uh

∂x
− ηRS}}) dS = 0,

where standard upwinding is used for the numerical flux aûh.
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Lifting Operator

• The local lifting operator RS ∈ R is defined as:

∑

K∈T n
h

∫

K
wRS dK =

∫

S
{{w}}[[uh]] dS for S ∈ SnI ,

with global lifting operator R =
∑
S∈Sn

I
RS.

• For stability of the discretization we take η = 2.



University of Twente - Chair Numerical Analysis and Computational Mechanics 11

• More details on the derivation and analysis of the space-time discretization for the

advection=diffusion equation, including a full hp-error analysis can be found in:

J.J. Sudirham, J.J.W. van der Vegt, R.M.J. van Damme, Space-time discontinuous

Galerkin method for advection-diffusion problems on time-dependent domains,

Applied Numerical Mathematics, 56 (2006) 1491-1518.
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Discrete System

• Using the linear polynomial expansion of uh and w yields a discrete system the

expansion coefficients û of uh at time level n:

Lh(ûn; ûn−1) ≡ (Lah + Ldh)û
n + Lthû

n−1 = 0

• This 3Z× 3Z system has a block Toeplitz structure with 3× 3 blocks and its

stencil has the form:

Lh ∼=
[
Lh

∣∣ Dh

∣∣ Uh
]
,

where Lh represents the left block, Dh the diagonal block and Uh the right block.
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Advective Part

• The advective part Lah of the discretization depends on the Courant number

σ =
a∆t

h
,

and gives the following block tridiagonal contribution to the system:

Lah ∼=




−σ −σ σ

σ σ −σ
σ σ −4

3σ

∣∣∣∣∣∣

1 + σ σ −σ
−σ 1

3 + σ σ

−2− σ −σ 2 + 4
3σ

∣∣∣∣∣∣

0 0 0

0 0 0

0 0 0



 .

• The right block is zero because the advective numerical flux is upwind (a > 0).
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Diffusive Part

• The diffusive part Ldh depends on the Courant number, the stabilization constant η

and the cell Reynolds number:

Reh =
ah

d
,

and gives a block tridiagonal contribution to the system:

Ldh ∼=
σ

Reh

[ −2η 1− 2η 2η

−1 + 2η −2 + 2η 1− 2η

2η −1 + 2η −13
6 η

∣∣∣∣∣

4η 0 −4η

0 4η 0

−4η 0 13
3 η

∣∣∣∣∣

∣∣∣∣∣

−2η −1 + 2η 2η

1− 2η −2 + 2η −1 + 2η

2η 1− 2η −13
6 η

]
,

with the Von Neumann number defined as δ = σ
Reh

.
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Coupling Term

• The contribution Lth related to the previous space-time slab is block diagonal:

Lth ∼=




0 0 0

0 0 0

0 0 0

∣∣∣∣∣∣

−1 0 0

0 −1
3 0

2 0 0

∣∣∣∣∣∣

0 0 0

0 0 0

0 0 0



 .
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Pseudo-Time Algorithm

• The pseudo-time algorithm for the advection-diffusion equation is then equal to

∂ûn

∂τ
= − 1

∆t
((La + Ld)ûn + Ltûn−1).

• In the stability analysis, however, we only need to consider the transients

∂ûn

∂τ
= − 1

∆t
(La + Ld)ûn
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Stability of the EXI and EXV method

• The stability analysis of the EXI and EXV method is similar and therefore treated

simultaneously.

• The vector of expansion coefficients in element j is assumed to be a Fourier mode:

û
n
j = û

F
exp(ıθj)

with ûF the amplitude of the mode, ı =
√
−1 and θ ∈ (−π, π].

• With this assumption, the Fourier transform of the discrete system becomes:

L̂(θ) = L exp(−ıθ) +D + U exp(ıθ),

with L the block-lower, D the block-diagonal and U the block-upper part of the

matrix.
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• The matrix L̂(θ) is non-singular and can be diagonalized as

L̂(θ) = QMQ
−1

with Q the matrix of right eigenvectors and M the diagonal matrix with (complex)

eigenvalues µi(θ) with i = 1, 2, 3.

• Introducing w = Q−1ûn, reduces the pseudo-time equation to

∂wi

∂τ
= −µi(θ)

∆t
wi, for i = 1, 2, 3.
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• Consider the generic scalar model problem of the form:

∂w

∂τ
= − µ

∆t
w,

where w and µ can be any of the three components of the corresponding vectors.

• Applying the EXI method to this model equation, the Runge-Kutta stages ws are

computed as

(1 + α
i
sλ)w

s
= w

0
+ α

i
sλ(1− µ)w

s−1
,

with λ = ∆τ/∆t

• The EXV method gives

ws = w0 − αvsλµw
s−1.
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• The relation between two consecutive pseudo-time steps can be written in generic

form as

w
n

= G(−λµ)w
n−1

,

with G the algorithm dependent amplification factor.

• Starting with an initial condition winit, we obtain after n steps

w
n

= G(−λµ)
n
w

init
.

• In stability analysis, we are interested in the behavior of a perturbation of the initial

condition.
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• Due to linearity, the amplification of the perturbation is the same as the

amplification of w.

• Clearly, the perturbation is bounded if ‖Gn‖ is bounded, where ‖ · ‖ denotes the

Euclidian (or discrete l2) norm.

• A sufficient condition for stability is that the values −λµi(θ) for i = 1, 2, 3 and

θ ∈ (−π, π] all lie inside the stability domain S given by

S = {z ∈ C : |G(z)| ≤ 1}.
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• The discretization of the advection-diffusion equation only depends on the Courant

number σ, the Von Neumann number δ and the constant η.

• For given values of these numbers, the factor λ of the Runge-Kutta algorithm

should be chosen such that −λµi(θ) lies inside the stability domain S.

• Once a suitable λ is found, it is convenient to express the stability in terms of the

pseudo-time Courant and Von Neumann numbers

σ∆τ = λσ and δ∆τ = λδ
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• Hence, for stability, the pseudo-time step ∆τ must satisfy the

Courant-Friedrichs-Levy (CFL) condition and the Von Neumann condition

∆τ ≤ ∆τ
a ≡ σ∆τ∆x

a
and ∆τ ≤ ∆τ

d ≡ δ∆τ(∆x)
2

d
.

We distinguish between flow regimes by introducing the cell Reynolds number,

defined as:

Re∆x ≡
a∆x

d
.
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Stability Analysis
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Stability domain and values −λµ (dots) for the EXI method (L) and EXV method

(R) in the steady-state inviscid flow regime with λ = 1.8 · 10−2. Pseudo-time CFL

number is 1.8 and for this constraint only the EXI method is stable.



University of Twente - Chair Numerical Analysis and Computational Mechanics 25

Stability Analysis
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Stability domain and values −λµ (dots) for the EXI method (L) and EXV method (R)

in the steady-state viscous flow regime with λ = 8 · 10−5. The pseudo-time diffusion

number is 0.8 and for this constraint only the EXV method is stable.
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Stability Analysis
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Stability domain and values −λµ (dots) for the EXI method (L) and EXV method

(R) in the time-dependent inviscid flow regime with λ = 1.6. The pseudo-time CFL

number is 1.6 and for this constraint only the EXI method is stable.
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Stability Analysis
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Stability domain and values −λµ (dots) for the EXI method (L) and EXV method

(R) in the time-dependent viscous flow regime with λ = 8 · 10−3. The pseudo-time

diffusion number is 0.8 and for this constraint only the EXV method is stable.
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Stability Analysis for Euler Equations

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

−6

−4

−2

0

2

4

6

Re

Im

0.2

0.4

0.6

0.8

1

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

−6

−4

−2

0

2

4

6

Re

Im

0.2
0.4

0.
6

0.
8

1

Stability domain of RK scheme and eigenvalues of linearized Euler equations.

σ4t = 1, σ4τ = 1.9 (left), σ4t = 100, σ4τ = 1.3 (right).
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Performance of Time Integration Schemes
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Performance of Time Integration Schemes
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work units (bottom).
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Two-level h-multigrid algorithm

• At the core of any multigrid method is the two-level algorithm.

• Subscripts (·)h and (·)H denote a quantity (·) on the fine and coarse grid.

• Define:

I Û an approximation of the solution Ûn

I R the restriction operator for the solution

I R̄ the restriction operator for the residuals

I P the prolongation operator

• The h-multigrid algorithm is applied only in space, hence the time-step is equal on

both levels; but multi-time multi-space multigrid is also feasible.
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Two-level h-multigrid algorithm

Two-level algorithm.

1. Take one pseudo-time step on the fine grid with the combined exi and exv

methods, this gives the approximation Ûh.

2. Restrict this approximation to the coarse grid: ÛH = R(Ûh).

3. Compute the forcing:

FH ≡ L(ÛH; Û
n−1
H )− R̄

(
L(Ûh; Û

n−1
h )

)
.

4. Solve the coarse grid problem for the unknown Û∗H :

L(Û
∗
H; Û

n−1
H )− FH = 0,

5. Compute the coarse grid error EH = Û∗H − ÛH and correct the fine grid

approximation: Ûh ← Ûh + P (EH).
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Two-level h-multigrid algorithm

• Solving the coarse grid problem at stage four of the multigrid algorithm can again

be done with the two-level algorithm.

• This recursively defines the V-cycle multi-level algorithm in terms of the two-level

algorithm.

• It is common practice to take ν1 pseudo-time pre-relaxation steps at stage one and

another ν2 post-relaxation pseudo-time steps after stage five.

• The exact solution of the problem on the coarsest grid is not always feasible;

instead one simply takes ν1 + ν2 relaxation steps.
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Inter-grid transfer operators

• The inter-grid transfer operators stem from the L2-projection of the coarse grid

solution UH in an element KH on the corresponding set of fine elements {Kh}.

• The solution Uh in element Kh can be found by solving:

∫

Kh
WiU

h
i dK =

∫

Kh
WiU

H
i dK, ∀W ∈ Wh.

• This relation supposes the embedding of spaces, i.e. WH ⊂Wh, to ensure that

UH is defined on Kh.
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Prolongation algorithm

• Introducing the polynomial expansions of the test and trial functions, we obtain the

prolongation operator P : UH → Uh:

Ûh
im = (M−1

h )ml
( ∫

Kh
ψhl ψ

H
n dK

)
ÛH
in.

with the mass matrix Mh of element Kh

• The restriction operator for the residuals is defined as the transpose of the

prolongation operator: R̄ = RT .

• The restriction operator R for the solution is defined as R = P−1, such that the

property UH = R(P (UH)) holds, meaning that the inter-grid transfer does not

modify the solution.
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Two-level Fourier analysis for a scalar advection-diffusion equation

• Consider the time-dependent scalar advection-diffusion equation:






ut + aux − duxx = 0,

u(x, 0) = u0,

periodic boundary conditions

• The discrete system for the expansion coefficients û of u at time level n in the

space-time discretization can be expressed as

Lh(ûn; ûn−1
) ≡ (Lah + Ldh)û

n
+ Lthû

n−1
= 0
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• This 3Z× 3Z system has a block Toeplitz structure with 3× 3 blocks and its

stencil has the form:

Lh ∼=
[
Lh

∣∣ Dh

∣∣ Uh
]
,

where Lh represents the left block, Dh the diagonal block and Uh the right block.
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Error amplification operator

• The error amplification operator of the two-level algorithm MTLA
h , is given by:

M
TLA
h = M

CGC
h M

REL
h ,

with MREL
h the error amplification operator associated with either the exi or the

exv scheme.

• The coarse grid correction (CGC) of the multigrid algorithm is given by:

MCGC = I − PL−1
H R̄Lh.
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Error amplification operator of RK-schemes

• The amplification factor for the EXI Runge-Kutta-scheme is:

MEXI
h =

I

1 + α5λ
+

α5λ(I − Lh)
(1 + α4λ)(1 + α5λ)

+ · · ·

+
α2α3 · · ·α5(λ(I − Lh))4

(1 + α1λ)(· · · )(1 + α5λ)
+
α1α2 · · ·α5(λ(I − Lh))5

(1 + α1λ)(· · · )(1 + α5λ)

• The amplification factor for the EXV Runge-Kutta-scheme is:

MEXV
h = I − α4λLh + α3α4(λLh)2 − · · ·+ α1α2α3α4(λLh)4
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Coarse grid correction

• On a uniform grid, the prolongation operator defined becomes:

P ∼=




1 1

2 0

0 1
2 0

0 0 1

∣∣∣∣∣∣

1 −1
2 0

0 1
2 0

0 0 1

∣∣∣∣∣∣

0 0 0

0 0 0

0 0 0





• The right block is zero because the coarse grid element

KnH = (xj−1, xj+1)× (tn, tn+1) corresponds to the fine elements

(Knh)L = (xj−1, xj)× (tn, tn+1) and (Knh)D = (xj, xj+1)× (tn, tn+1).

• Note the block Toeplitz structure with 3× 3 blocks; since R̄ = P T the restriction

operator for the residuals is also block Toeplitz.
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Stabilization term

• The parameter η has a significant effect on the stability of the Runge-Kutta

methods: as η increases, the permissible pseudo-timestep decreases proportionally.

• Therefore η should be taken as small as allowed in the discontinuous Galerkin

discretization, in general equal to the number of faces of an element.

• The convergence behaviour of the two-level algorithm for the space-time dg

discretization is given by the spectral radius of the error amplification

operatorρ(MTLA
h ).
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Fourier analysis of the two-level algorithm

• The eigenvalue spectra of the two-level algorithm and the eigenvalues of the

Fourier transform M̂TLA
h for ω ∈ [−π/H, π/H) are identical.

• The Fourier transform L̂h of the block Toeplitz operator Lh is:

L̂h(ω) = Lhe
−ıωh

+Dh + Uhe
+ıωh

,

with ı =
√
−1.

• Since the operators MREL
h , P and R̄ are also block Toeplitz, their Fourier

transforms P̂ and ̂̄R are computed similarly.
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Stability parameters

• The space-time DG discretization is implicit in time and unconditionally stable.

• The Runge-Kutta methods are explicit in pseudo time and their stability depends

on the ratio λ between the pseudo timestep and the physical timestep

λ = ∆τ/∆t.

• The stability condition is expressed in terms of the pseudo-time cfl number σ∆τ

and the pseudo-time diffusive Von Neumann condition δ∆τ :

∆τ ≤ ∆τ
a ≡ σ∆τh

a
and ∆τ ≤ ∆τ

d ≡ δ∆τh
2

d
.

The pseudo-time cfl number is given by σ∆τ = λσ and the pseudo-time diffusive

Von Neumann number by δ∆τ = λσ/Reh
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Eigenvalue Spectra Two-Level Algorithm with EXI Smoother
(Steady Case)
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(b) tla with exi

Eigenvalue spectra of the exi smoother and two-level algorithm in the steady

advection dominated case (σ = 100 and Reh = 100).
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Eigenvalue Spectra Two-Level Algorithm with EXV Smoother
(Steady Case)
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Eigenvalue spectra of the exv smoother and two-level algorithm in the steady

diffusion dominated case (σ = 100 and Reh = 0.01).
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Eigenvalue Spectra Two-Level Algorithm with EXI Smoother
(unsteady case)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

low
high

(e) exi

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

(f) tla with exi

Eigenvalue spectra of the exi smoother and two-level algorithm in the unsteady

advection dominated case (σ = 1 and Reh = 100).
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Eigenvalue Spectra Two-Level Algorithm with EXV Smoother
(unsteady case)
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Eigenvalue spectra of the exv smoother and two-level algorithm in the unsteady

diffusion dominated case (σ = 1 and Reh = 0.01).
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Spectral Radii of Two-Level Algorithm for Steady Problems
(σ = 100)

EXI smoother

Reh ∆τ/∆t ρ
(
MEXI

h

)
ρ

(
MTLA

h

)

100 1.8e-02 0.991 0.622

10 8.0e-03 0.996 0.716

1 1.4e-03 0.999 0.906

EXV smoother

Reh ∆τ/∆t ρ
(
MEXV

h

)
ρ

(
MTLA

h

)

100 2.0e-03 0.999 0.914

10 3.0e-03 0.998 0.871

1 7.0e-03 0.996 0.697
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Spectral Radii of Two-Level Algorithm for Unsteady Problems
(σ = 1)

EXI smoother

Reh ∆τ/∆t ρ
(
MEXI

h

)
ρ

(
MTLA

h

)

100 1.6e-00 0.796 0.479

10 8.0e-01 0.918 0.599

1 1.4e-01 0.904 0.837

EXV smoother

Reh ∆τ/∆t ρ
(
MEXV

h

)
ρ

(
MTLA

h

)

100 1.0e-00 0.924 0.660

10 7.0e-01 0.812 0.704

1 7.0e-01 0.805 0.719
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First order discretization on the coarse grids

• For the space-time discontinuous Galerkin discretization of the Euler equations,

constant basis functions were used on the coarse grids.

• This approach, however, is inadequate for the Navier-Stokes equations.
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Spectral radii with first order discretization on coarse grids

physics stability convergence

σ Reh ∆τ/∆t ρ
(
MEXI

h

)
ρ

(
MTLA

h

)

100 100 1.8e-02 0.991 0.979

1 100 1.6e-00 0.796 0.794

Spectral radii in the advection dominated cases.

physics stability convergence

σ Reh ∆τ/∆t ρ
(
MEXV

h

)
ρ

(
MTLA

h

)

100 0.01 8.0e-05 0.999 0.998

1 0.01 8.0e-03 0.993 0.985

Spectral radii in the diffusion dominated cases.
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Numerical simulations

• Definition of work units:

I One work unit corresponds to one Runge-Kutta step on the fine grid.

I The work on a one times coarsened mesh is 1
8 of the work on the fine grid

(1
4 in 2D).



University of Twente - Chair Numerical Analysis and Computational Mechanics 53

Convergence Rate for Flow about a Circular Cylinder
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Convergence Rate for Unsteady Flow about Circular Cylinder

iterations

m
ax

m
ea

n

3500 3520 3540 3560 3580 3600
10-9

10-8

10-7

10-6

10-5

10-4

10-3

M∞ = 0.3, Re∞ = 1000 on a 128× 128 mesh

Multigrid: 3 level V-cycle, 4 relaxation steps on each level.
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Flow about ONERA M6 Wing

• Steady laminar flow about the ONERA M6 wing at M∞ = 0.4, Re∞ = 104 and

angle of attack α = 1◦.

• Fine grid consists of 125 000 hexahedral elements.

• Multigrid iteration consisting of 3 level V- or W-cycles.

• The V-cycle has a total of 4 relaxations on each grid level, while the W-cycle has 4

relaxations on the fine grid and 8 on the medium and coarse grid.
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Convergence Rate for ONERA M6 Wing
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Convergence in pseudo-time for the ONERA M6 wing

M∞ = 0.4, Re∞ = 104, α = 1◦.
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Summary of Computational Effort for Different Cases

Case
Single-grid Multigrid Cost

performance performance reduction

cylinder (steady)
2 orders 3 orders

9.4
in 12 500 WU in 2000 WU

cylinder (unsteady)
3 orders 3 orders

5.0
in 150 WU in 30 WU

ONERA M6
2 orders 3 orders

3.7
in 5000 WU in 2000 WU

Summary of computational effort for cylinder and ONERA M6 wing.
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Conclusions

The space-time discontinuous Galerkin method has the following interesting properties:

• Accurate, unconditionally stable scheme for the compressible Navier-Stokes

equations.

• Conservative discretization on moving and deforming meshes which satisfies the

geometric conservation law.

• Local, element based discretization suitable for h-(p) mesh adaptation.

• Optimal accuracy proven for advection-diffusion equation.
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Conclusions

• The Taylor quadrature significantly improves the efficiency of the flux integrals

without a reduction in accuracy.

• The use of a stabilization operator instead of a slope limiter makes it possible to

converge to machine accuracy for steady state problems, whereas a limiter prevents

convergence to steady state and reduces accuracy in a large part of the domain.

• Runge-Kutta pseudo-time integration methods in combination with multigrid are

an efficient method to solve the nonlinear algebraic equations originating from the

space-time DG method.
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Conclusions

• Two-level Fourier analysis to the space-time dg discretization of the scalar

advection-diffusion equation shows convergence factors between 0.62 and 0.74,

which is quite good for a fully explicit multigrid algorithm.

• The construction of intergrid transfer operators is based on the L2 projection of

the coarse grid solution on the fine grid and assumes embedding of spaces.

• In practical computations the embedding of spaces is not very critical and no

serious performance degradation is observed.

• Contrary to the Euler equations using a first order accurate discretization on the

coarse meshes does not result in reasonable convergence rate.

More information on: wwwhome.math.utwente.nl/~vegtjjw/
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