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Space-Time Discontinuous Galerkin Finite Element Methods

Motivation:

• In many applications one encounters moving and deforming flow domains:

I Aerodynamics: helicopters, manoeuvering aircraft, wing control surfaces

I Fluid structure interaction

I Two-phase and chemically reacting flows with free surfaces

I Water waves, including wetting and drying of beaches and sand banks

• A key requirement for these applications is to obtain an accurate and conservative

discretization on moving and deforming meshes
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Motivation of Research

Other requirements

• Improved capturing of vortical structures and flow discontinuities, such as shocks

and interfaces, using hp-adaptation.

• Capability to deal with complex geometries.

• Excellent computational efficiency for unsteady flow simulations.

These requirements have been the main motivation to develop a space-time

discontinuous Galerkin method.
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Overview of Lecture

• Space-time discontinuous Galerkin finite element discretization for compressible

Navier-Stokes equations

I main aspects of discretization

I efficient quadrature

I choice of variables

• Applications in aerodynamics
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Geometry of Space-Time Domain for Three-Dimensional

Time-Dependent Problems

• Consider an open domain: E ⊂ R
4.

• The flow domain Ω(t) at time t is defined as:

Ω(t) := {x ∈ E | x0 = t, t0 < t < T}

• The space-time domain boundary ∂E consists of the hypersurfaces:

Ω(t0) :={x ∈ ∂E | x0 = t0},

Ω(T ) :={x ∈ ∂E | x0 = T},

Q :={x ∈ ∂E | t0 < x0 < T}.
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Space-Time Slab
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Definition of Space-Time Slab

• Consider a partitioning of the time interval (t0, T ): {tn}
N
n=0, and set

In = (tn, tn+1).

• Define a space-time slab as: In := {x ∈ E | x0 ∈ In}

• Split the space-time slab into non-overlapping elements: Kn
j .

• We will also use the notation: Kn
j = Kn

j ∩ {tn} and Kn+1
j = Kn

j ∩ {tn+1}
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Compressible Navier-Stokes Equations

• Compressible Navier-Stokes equations in the space-time domain E :

∂Ui

∂x0

+
∂F e

k(U)

∂xk

−
∂F v

k (U,∇U)

∂xk

= 0

• Conservative variables U ∈ R
5 and inviscid fluxes F e ∈ R

5×3

U =




ρ

ρuj

ρE



 , F e
k =




ρuk

ρujuk + pδjk

ρhuk




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Compressible Navier-Stokes Equations

• Viscous flux F v ∈ R
5×3

F
v
k =




0

τjk

τkjuj − qk





with the total stress tensor τ defined as:

τjk = λ
∂ui

∂xi

δjk + µ(
∂uj

∂xk

+
∂uk

∂xj

)

and the heat flux vector ~q as:

qk = −κ
∂T

∂xk
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Compressible Navier-Stokes Equations

• The viscous flux F v is homogeneous with respect to the gradient of the

conservative variables ∇U :

F
v
ik(U,∇U) = Aikrs(U)

∂Ur

∂xs

with the homogeneity tensor A ∈ R
5×3×5×3 defined as:

Aikrs(U) :=
∂F v

ik(U,∇U)

∂(∇U)
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• The system is closed using the equations of state for an ideal gas

p = (γ − 1)(ρE −
1

2
ρuiui)

T =
1

cv

(E −
1

2
uiui)

with γ = cp/cv the ratio of specific heats.
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Geometry of Space-Time Element
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Space-Time Element Definition

• Definition of the mapping Gn
K which the connects the space-time element Kn to

the reference element K̂ = [−1, 1]4:

Gn
K : [−1, 1]4 → Kn : ξ 7−→ x,

with:

(x0, x̄) =
(

1
2(1 − ξ0)F

n
K(ξ̄) + 1

2(1 + ξ0)F
n+1
K (ξ̄),

1
2(tn + tn+1) −

1
2(tn − tn+1)ξ0

)
,

and F n
K : [−1, 1]3 → Kn, F n+1

K : [−1, 1]3 → Kn+1 the mappings for the

space elements.

• The space-time tessellation is now defined as:

T
n

h := {K = G
n
k(K̂) |K ∈ T̄

n
h }.



University of Twente - Chair Numerical Analysis and Computational Mechanics 13

Approximation Spaces

• The finite element space associated with the tessellation Th is given by:

Wh :=
{

W ∈ (L
2
(Eh))

5
: W |K ◦ GK ∈ (P

k
(K̂))

5
, ∀K ∈ Th

}

• We will also use the space:

Vh :=
{

V ∈ (L
2
(Eh))

5×3
: V |K ◦ GK ∈ (P

k
(K̂))

5×3
, ∀K ∈ Th

}
.

• Note the fact that ∇hWh ⊂ Vh is essential for the discretization.
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Trace Operators

• The jump of f in the Cartesian coordinate direction k is defined at internal faces

as:

[[f ]]k = fLnL
k + fRnR

k .

• The average of f is defined at internal faces as:

{{f}} = 1
2(f

L + fR).

• The jump operator satisfies the following product rule at internal faces:

[[gifik]]k = {{gi}}[[fik]]k + [[gi]]k{{fik}},
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First Order System

• Rewrite the compressible Navier-Stokes equations as a first-order system using the

auxiliary variable Θ:

∂Ui

∂x0

+
∂F e

ik(U)

∂xk

−
∂Θik(U)

∂xk

= 0,

Θik(U) − Aikrs(U)
∂Ur

∂xs

= 0.
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Weak Formulation

• Weak formulation for the compressible Navier-Stokes equations

Find a U ∈ Wh, Θ ∈ Vh, such that for all W ∈ Wh and V ∈ Vh, the following

holds:

−
∑

K∈Th

∫

K

(∂Wi

∂x0

Ui +
∂Wi

∂xk

(F e
ik − Θik)

)
dK

+
∑

K∈Th

∫

∂K

W
L
i (Ûi + F̂

e
ik − Θ̂ik)n

L
k d(∂K) = 0,

∑

K∈T n
h

∫

K

VikΘik dK =
∑

K∈T n
h

∫

K

VikAikrs

∂Ur

∂xs

dK

+
∑

K∈T n
h

∫

Q

V L
ikAL

ikrs(Ûr − UL
r )n̄L

s dQ
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Transformation to Arbitrary Lagrangian Eulerian form

• The space-time normal vector on a grid moving with velocity ~v is:

n =






(1, 0, 0, 0)T at K(t−n+1),

(−1, 0, 0, 0)T at K(t+
n ),

(−vkn̄k, n̄)T at Qn.

• The boundary integral then transforms into:

∑

K∈Th

∫

∂K

W
L
i (Ûi + F̂

e
ik − Θ̂ik)n

L
k d(∂K)

=
∑

K∈Th

( ∫

K(t−n+1)

W L
i Ûi dK +

∫

K(t+n )

W L
i Ûi dK

)

+
∑

K∈Th

∫

Q

W
L
i (F̂

e
ik − Ûivk − Θ̂ik)n̄

L
k dQ
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Numerical Fluxes

• The numerical flux Û at K(t−n+1) and K(t+
n ) is defined as an upwind flux to

ensure causality in time:

Û =

{
UL at K(t−n+1),

UR at K(t+
n ),

• At the space-time faces Q we introduce the HLLC approximate Riemann solver as

numerical flux:

n̄k(F̂
e
ik − Ûivk)(U

L, UR) = HHLLC
i (UL, UR, v, n̄)
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Wave Pattern in HLLC-Flux
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HLLC Flux

• The HLLC flux, introduced by Toro et al., is used as a numerical flux because it

provides an accurate and efficient approximation to the Riemann problem.

• The HLLC flux at a moving interface is defined as:

HHLLC(U−
h , U+

R , v, n) = 1
2

(
F̂ (UL) + F̂ (UR) − (|SL − v| − |SM − v|)U∗

L

+ (|SR − v| − |SM − v|)U
∗
R + |SL − v|UL

− |SR − v|UR − v(UL + UR))
)

.

with F̂ = n̄T
KF̄ . In order to completely define the HLLC flux we still need to

define the star states U∗
L and U∗

R, and the wave speeds SL, SR and SM .
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ALE Weak Formulation

• The ALE flux formulation of the compressible Navier-Stokes equations transforms

now into:

Find a U ∈ Wh, such that for all W ∈ Wh, the following holds:

−
∑

K∈T n
h

∫

K

(∂Wi

∂x0

Ui +
∂Wi

∂xk

(F
e
ik − Θik)

)
dK

+
∑

K∈T n
h

( ∫

K(t−n+1)

W
L
i U

L
i dK −

∫

K(t+n )

W
L
i U

R
i dK

)

+
∑

K∈T n
h

∫

Q

W L
i (HHLLC

i (UL, UR, v, n̄) − Θ̂ikn̄
L
k ) dQ = 0.
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Auxiliary Equation for Θ

• Recall the auxiliary equation for Θ:

Find a Θ ∈ Vh, such that for all V ∈ Vh the following holds:

∑

K∈T n
h

∫

K

VikΘik dK =
∑

K∈T n
h

∫

K

VikAikrs

∂Ur

∂xs

dK

+
∑

K∈T n
h

∫

Q

V L
ikAL

ikrs(Ûr − UL
r )n̄L

s dQ
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• The following relation holds for the element boundary integrals:

∑

K∈T n
h

∫

Q

g
L
i f

L
ikn̄

L
k dQ =

∑

S∈Sn
I

∫

S

[[gifik]]k dS +
∑

S∈Sn
B

∫

S

g
L
i f

L
ikn̄

L
k dS.

• Transform the element boundary integrals into face integrals in the auxiliary

equation:

∑

K∈T n
h

∫

Q

V L
ikAL

ikrs(Ûr − UL
r )n̄L

s dQ =
∑

S∈Sn
I

∫

S

[[VikAikrs(Ûr − Ur)]]s dS

+
∑

S∈Sn
B

∫

S

V
L

ikA
L
ikrs(Ûr − U

L
r )n̄

L
s dS.
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Numerical Fluxes in Auxiliary Equation

• Introduce the numerical flux proposed by Bassi and Rebay:

Û =

{
{{U}} at internal faces,

Ub at boundary faces.

• Use the relation [[VikAikrs(Ûr − Ur)]]s = −{{VikAikrs}}[[Ur]]s, then the weak

formulation for the auxiliary variable Θ is:

∑

K∈T n
h

∫

K

VikΘik dK =
∑

K∈T n
h

∫

K

VikAikrs

∂Ur

∂xs

dK −
∑

S∈Sn
I

∫

S

{{VikAikrs}}[[Ur]]s dS

−
∑

S∈Sn
B

∫

S

V
L

ikA
L
ikrs(U

L
r − U

b
r)n̄

L
s dS.
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Lifting Operator

• Introduce the global lifting operator R ∈ R
5×3, defined in a weak sense as:

Find an R ∈ Vh, such that for all V ∈ Vh:

∑

K∈T n
h

∫

K

VikRik dK =
∑

S∈Sn
I

∫

S

{{VikAikrs}}[[Ur]]s dS

+
∑

S∈Sn
B

∫

S

V
L

ikA
L
ikrs(U

L
r − U

b
r)n̄

L
s dS.

• The weak formulation for the auxiliary variable is now transformed into

∑

K∈T n
h

∫

K

VikΘik dK =
∑

K∈T n
h

∫

K

Vik(Aikrs

∂Ur

∂xs

− Rik) dK, ∀V ∈ Vh.
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Θ Equation

• The primal formulation can be obtained by eliminating the auxiliary variable Θ

using

Θik = Aikrs

∂Ur

∂xs

− Rik, a.e. in En
h

• Note, this is possible since ∇hWh ⊂ Vh
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ALE Weak Formulation for Primal Variables

• Recall the ALE flux formulation of the compressible Navier-Stokes equations:

Find a U ∈ Wh, such that for all W ∈ Wh, the following holds:

−
∑

K∈T n
h

∫

K

(∂Wi

∂x0

Ui +
∂Wi

∂xk

(F
e
ik − Θik)

)
dK

+
∑

K∈T n
h

( ∫

K(t−n+1)

W L
i UL

i dK −

∫

K(t+n )

W L
i UR

i dK
)

+
∑

K∈T n
h

∫

Q

W L
i (HHLLC

i (UL, UR, v, n̄) − Θ̂ikn̄
L
k ) dQ = 0.
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Numerical Fluxes for Θ

• The numerical flux Θ̂ in the primary equation is defined following Brezzi as a

central flux Θ̂ = {{Θ}}:

Θ̂ik(U
L, UR) =

{
{{Aikrs

∂Ur
∂xs

− ηRS
ik}} for internal faces,

Ab
ikrs

∂Ub
r

∂xs
− ηRS

ik for boundary faces,

• The local lifting operator RS ∈ R
5×3 is defined as follows:

Find an RS ∈ Vh, such that for all V ∈ Vh:

∑

K∈T n
h

∫

K

VikR
S
ik dK =






∫

S

{{VikAikrs}}[[Ur]]s dS for internal faces,

∫

S

V L
ikAL

ikrs(U
L
r − Ub

r)n̄s dS for external faces.
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Space-Time Formulation for NS

Find a U ∈ Wh, such that for all W ∈ Wh:

−
∑

K∈T n
h

∫

K

(
Wi,0Ui + Wi,k(F

e
ik − AikrsUr,s + Rik)

)
dK

+
∑

K∈T n
h

( ∫

K(t−n+1)

WiU
L
i dK −

∫

K(t+n )

WiU
R
i dK

)

+
∑

S∈Sn
IB

∫

S

(W
L
i − W

R
i )Hi(U

L
, U

R
, n̄

L
) dS

−
∑

S∈Sn
I

∫

S

[[Wi]]k{{AikrsUr,s − ηR
S
ik}} dS

−
∑

S∈Sn
B

∫

S

W
L
i

(
A

b
ikrsU

b
r,s − ηR

S
ik

)
n̄

L
k dS = 0,
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Ensuring Monotonicity of Second and Higher Order DG

Discretizations

Second and higher-order DG discretizations do not preserve the monotonicity of the

solution.

• Using a slope limiter in DG discretizations results in an inconsistent discretization

with limit cycle behavior, which hampers implicit time integration methods and

prevents convergence to steady state.

• The use of a slope limiter also seriously degrades the accuracy of a DG

discretization.
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Stabilization Operator

• Stabilization operator for flow discontinuities added to the weak formulation

Nn∑

j=1

∫

Kn
j

(∇ Wh)
T
· D(Uh) : ∇Uh dK

The dyadic product is defined as A : B = AijBij for A, B ∈ Rn×m.

• A stabilization operator results in a numerical scheme which can converge to

steady state and has improved accuracy, but requires additional research to ensure

monotonicity.
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Stabilization Operator

• The effectiveness of the stabilization operator D strongly depends on the artificial

viscosity matrix D ∈ R
4×4. The definition of the artificial viscosity matrix is more

straightforward if the stabilization operator acts independently in all computational

coordinate directions. This is achieved by introducing the artificial viscosity matrix

D̃ ∈ R
4×4 in computational space using the relation:

D(Uh|Kn, U∗
h|Kn) = RT

D̃(Uh|Kn, U∗
h|Kn) R,

where the matrix R ∈ R
4×4 is defined as:

R = 2 H−1 grad GK.

• The matrix H ∈ R
4×4 is used introduced to ensure that both D and D̃ have the

same mesh dependence, and is defined as:

H = diag (h0, h1, h2, h3).
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Artificial Viscosity Model

• Artificial viscosity model proposed and analyzed by Jaffre, Johnson and Szepessy,

Math. Models and Meth. in Appl. Sci, 158, pp. 81-116 (1998), is used. In this

model both the jumps at the element faces and the element residual are used to

define the artificial viscosity:

D̃qq(Uh|Kn, U
∗
h|Kn) = max

(
C2h

2−β
K Rq(Uh|Kn, U

∗
h|Kn) , C1h

3
2
K

)
, q = 1, 2, 3,

= 0, otherwise,

with

R(Uh|Kn, U
∗
h|Kn) =

∣∣∣
3∑

k=0

∂F(Uh)

∂Uh,i

∂Uh,i(GK(0))

∂xk

∣∣∣ +
C0

hK

∣∣U+
h (x(7)) − U

−
h (x(7))

∣∣+

6∑

m=1

1

hK

∣∣n̄T
KF(U+

h (x(m))) − n̄T
KF(U−

h (x(m)))
∣∣.
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Choice of Variables

• Conservative variables are not suitable for (nearly) incompressible flows since the

density is not an independent variable.

• In the incompressible limit the flux Jacobians
∂F̂

e
(U)

∂U
contains indefinite (0/0) and

infinitely large terms.

• Better alternative variables are:

I Pressure primitive variables

Y = (p, v, T )
T

I Entropy variables

V =
1

T
(µ −

1

2
v · v, v,−1)

T

with v the velocity, T temperature and µ the chemical potential
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• The Navier-Stokes equations have a proper incompressible limit in these variables

and they are also suitable for general equations of state.

• The solution is then expanded in terms of these variables

U = U(Y) or U = U(V)

but the conservative formulation is maintained.

• A benefit of using the Y or V variables is also that residual based stabilization

operators remain well defined.
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• The entropy variables symmetrize the Navier-Stokes equations.

The resulting Friedrichs system has a direct relation with the second law of

thermodynamics and satisfies the Clausius-Duhem inequality.

• The pressure primitive variables are computationally less expensive, whereas the

entropy variables require quite some complicated thermodynamic transformations

but have a more solid mathematical foundation.
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Flux Quadrature

• In the discontinuous Galerkin discretization the integration of the (approximate)

Riemann solver flux is by far the computationally most expensive part.

• The standard Gauss (product) quadrature rules require too many flux evaluations

to be practical. In particular for discretizations in three-dimensions or in space-time

(4D).

• A more efficient alternative is provided by the Taylor quadrature rule which also

uses the gradient information available in a DG discretization.
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Taylor Flux Quadrature Rule

Main Features:

• In order to improve the computational efficiency the flux function in the integrand

is replaced with a second or higher order Taylor series expansion evaluated at the

face or element center.

• This approximation improves the computational efficiency significantly:

I since only one flux evaluation per element face is necessary, instead of 2n or 3n

for a product Gauss quadrature rule;

I the locality of the required flow data improves the cache performance.

• The approximate flux integration does not result in a loss of accuracy in the DG

discretization when a sufficient number of terms in the Taylor series expansion are

used.
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Taylor Quadrature Rule for Space-Time DG

• The integrals of the flux tensor Fik(U) over a space-time face Sm ⊂ ∂K can be

approximated as:

∫

Sm

φmFik(U)nkdx ∼=Fik(U(ξ̄m))

∫

Ŝ

ξmdŜm
k

+
∑

l∈I(Sm)

∂Fik

∂U j
(U(ξ̄m))

∂U j

∂ξl

(ξ̄m)

∫

Ŝ

ξlξmdŜ
m
k

+ higher-order terms,

with ξ̄m the computational face center of face Sm, defined by ξm,i = ±δim.
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Benefits of Taylor Quadrature Rule

The flow derivatives necessary for the Taylor approximation can be easily computed:

• In computational coordinates the solution vector Uh in cell K, restricted to the

face Sm1
, can be written as:

U|Sm1
=Ū(ξm1

) + ξm2Ûm2(K) + ξm3Ûm3(K) + ξ4Û4(K)

+ higher-order terms,

hence, the flow derivatives DαU|Sm1
can be computed directly using the series

representation of U .

• The integrals
∫
Sm

φ̂(ξ)ξ
k1
i1

ξ
k2
i2

· · · ξ
kd
id

dŜm
k can be easily computed analytically.

• For multi-dimensional integrals the number of flux evaluations in the Taylor

quadrature rule is nearly independent of the dimension n of the integration

domain. A product Gauss quadrature rule would require 2n or 3n flux evaluations.
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Taylor Quadrature Rule for Space-Time DG

Remarks

• The gradient contribution is necessary to obtain second order accuracy for the

element face flux integrals.

• For the stability of a DG discretization with linear basis functions it is also essential

to incorporate the gradient contributions in the approximation of the integral.

• For an upwind flux:

F̂(UL, UR) := 1
2(F(UL) + F(UR))n − D(UL, UR),

it is essential to not just expand the central part of the flux, but also the dissipative

part D(UL, UR).

• It is important to incorporate the dissipative part of the upwind flux in the Taylor

approximation which has been one of the reasons to apply the HLLC-flux.
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Theoretical Analysis of Taylor Quadrature

• An extensive theoretical analysis showing that for linear basis functions the Taylor

and Gauss quadrature rules provide the same order of accuracy can be found in:

H. van der Ven and J.J.W. van der Vegt, Space-time discontinuous Galerkin finite

element method with dynamic grid motion for inviscid compressible flows. II.

Efficient flux quadrature, Comput. Meth. Appl. Mech. Engrg. 191, pp.

4747-4780 (2002).
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Comparison of Taylor and Gauss Quadrature Rules

X
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Taylor quadrature

Pressure distribution for transonic flow over a NACA0012 airfoil computed with Taylor

and Gauss quadrature rules for the element and face fluxes (M∞ = 0.8, α = 2◦).
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Total pressure loss at the wall for the flow around a circular cylinder (M∞ = 0.38)

using Gauss and Taylor flux quadrature rules on coarse (32 × 48 elements) and fine

mesh (64 × 96).
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Conclusions

The space-time discontinuous Galerkin method has the following interesting properties:

• Accurate, unconditionally stable scheme for the compressible Navier-Stokes

equations.

• Conservative discretization on moving and deforming meshes which satisfies the

geometric conservation law.

• Local, element based discretization suitable for h-(p) mesh adaptation.
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Conclusions

• The Taylor quadrature significantly improves the efficiency of the flux integrals

without a reduction in accuracy.

• The use of a stabilization operator instead of a slope limiter makes it possible to

converge to machine accuracy for steady state problems, whereas a limiter prevents

convergence to steady state and reduces accuracy in a large part of the domain.

• Optimal accuracy and stability of space-time DG discretization for

advection-diffusion equation proven in.

J.J. Sudirham, J.J.W. van der Vegt, R.M.J. van Damme, Space-time discontinuous

Galerkin method for advection-diffusion problems on time-dependent domains,

Applied Numerical Mathematics, 56 (2006) 1491-1518.

For more information on space-time (DG) methods:

wwwhome.math.utwente.nl/~vegtjjw/


