Space-Time Discontinuous Galerkin Methods for Compressible Flows

Part I Conservation Laws

Jaap van der Vegt
Numerical Analysis and Computational Mechanics Group
Department of Applied Mathematics
University of Twente
The Netherlands

Montreal Scientific Computing Days
April 30 - May 2, 2008

Introduction

Challenges for Compressible Flow Simulations

- Efficient capturing of local flow phenomena
- Shocks
- Interior and boundary layers
- Vortical structures
- Time dependent boundaries
- Fluid-structure interaction
- Robustness and computational efficiency
- Complex geometries

Improving CFD Algorithms

Options to improve CFD algorithms

- Higher order accuracy on unstructured meshes
- $h p$-Adaptive methods to capture (non smooth) local structures.
- Space-time approach to account for time-dependent boundaries
- Efficient algorithms for massively parallel computers

These requirements have motivated the development of

Space-Time Discontinuous Galerkin Finite Element Methods

Key Features of Space-Time Discontinuous Galerkin Methods

- Simultaneous discretization in space and time: time is considered as a fourth dimension.
- Discontinuous basis functions, both in space and time, with only a weak coupling across element faces resulting in an extremely local, element based discretization.
- The space-time DG method is closely related to the Arbitrary Lagrangian Eulerian (ALE) method.

Continuous and Discontinuous Galerkin Approximations

Continuous and discontinuous Galerkin approximation.

Benefits of Discontinuous Galerkin Methods

- Due to the extremely local discretization DG methods provide optimal flexibility for
- achieving higher order accuracy on unstructured meshes
- hp-mesh adaptation
- unstructured meshes containing different types of elements, such as tetrahedra, hexahedra and prisms
- parallel computing

Benefits of Space-Time Discontinuous Galerkin Methods

- A conservative discretization is obtained on moving and deforming meshes.
- No data interpolation or extrapolation is necessary on dynamic meshes, at free boundaries and after mesh adaptation.

Disadvantages of Space-(Time) Discontinuous Galerkin Methods

- Algorithms are generally rather complicated, in particular for elliptic and parabolic partial differential equations
- On structured meshes DG methods are computationally more expensive than finite difference and finite volume methods.

Overview of Lectures

- Lecture 1
- One dimensional example
- DG discretization for conservation laws
- Extension to space-time DG discretizations
- Lecture 2
- Space-time DG discretization of the Euler and Navier-Stokes equations
- Examples of applications
- Lecture 3
- Pseudo-time and multigrid techniques to solve nonlinear algebraic equations
- Examples of applications

One-Dimensional Example

Advection equation

$$
\begin{array}{ll}
\frac{\partial u(x, t)}{\partial t}+a \frac{\partial u(x, t)}{\partial x}=0 & \text { in }(0,1) \times(0, T), \\
u(x, 0)=u_{0}(x) & \forall x \in(0,1), \\
\text { periodic boundary conditions } &
\end{array}
$$

with $a \in \mathbb{R}$ a given constant.

DG Discretization for Advection Equation

Basic steps in the derivation of a 1D DG discretization

- Introduce a partition $\left\{x_{j+\frac{1}{2}}\right\}_{j=0}^{N}$ of the interval $(0,1)$.
- Define elements $K_{j}:=\left(x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}\right)$, with $j=1, \cdots, N$.
- Introduce the finite element space

$$
V_{h}^{k}:=\left\{v \in L^{2}(\Omega)|v|_{K_{j}} \in P^{k}\left(K_{j}\right), j=1, \cdots, N\right\}
$$

with $P^{k}\left(K_{j}\right)$ polynomials of degree at most k on element K_{j}.

- Note, the basis functions are discontinuous at element boundaries.
- Define the Galerkin approximation:

Find a $u_{h}(t) \in V_{h}^{k}$, such that for all $v \in V_{h}^{k}$,

$$
\sum_{j=1}^{N} \int_{K_{j}} v(x)\left(\frac{\partial u_{h}(x, t)}{\partial t}+a \frac{\partial u_{h}(x, t)}{\partial x}\right) d x=0
$$

- Integrate by parts

$$
\begin{aligned}
& \sum_{j=1}^{N} \frac{d}{d t} \int_{K_{j}} v(x) u_{h}(x, t) d x-\int_{K_{j}} a u_{h}(x, t) \frac{\partial v(x)}{\partial x} d x \\
&+v\left(x_{j+\frac{1}{2}}^{-}\right) a u_{h}\left(x_{j+\frac{1}{2}}, t\right)-v\left(x_{j-\frac{1}{2}}^{+}\right) a u_{h}\left(x_{j-\frac{1}{2}}, t\right)=0
\end{aligned}
$$

- Note, the trace $u_{h}\left(x_{j+\frac{1}{2}}, t\right)$ at element boundaries is multivalued due to the discontinuous basis functions.
- Introduce a numerical flux to account for the multivalued trace

$$
H\left(u_{h}\right)_{j+\frac{1}{2}}(t):=H\left(u_{h}\left(x_{j+\frac{1}{2}}^{-}, t\right), u_{h}\left(x_{j+\frac{1}{2}}^{+}, t\right)\right)
$$

- The numerical flux is related to the solution of a Riemann problem with left state $u_{h}\left(x_{j+\frac{1}{2}}^{-}, t\right)$ and right state $u_{h}\left(x_{j+\frac{1}{2}}^{+}, t\right)$.
- The Riemann problem introduces upwinding into the DG formulation.
- Numerical flux

$$
H\left(u_{h}\right)_{j+\frac{1}{2}}(t)=\frac{1}{2}\left(a u_{h}^{-}+a u_{h}^{+}-|a|\left(u_{h}^{+}-u_{h}^{-}\right)\right)
$$

with $u_{h}^{ \pm}:=u_{h}\left(x_{j+\frac{1}{2}}^{ \pm}, t\right)$.

- Weak formulation: Find a $u_{h}(t) \in V_{h}^{k}$, such that for all $v \in V_{h}^{k}$,

$$
\begin{aligned}
\sum_{j=1}^{N} \frac{d}{d t} \int_{K_{j}} v(x) u_{h}(& x, t) d x-\int_{K_{j}} a u_{h}(x, t) \frac{\partial v(x)}{\partial x} d x \\
& +v\left(x_{j+\frac{1}{2}}^{-}\right) H\left(u_{h}\right)_{j+\frac{1}{2}}(t)-v\left(x_{j-\frac{1}{2}}^{+}\right) H\left(u_{h}\right)_{j-\frac{1}{2}}(t)=0
\end{aligned}
$$

- Introduce the polynomial expansions for u_{h} and v

$$
\begin{aligned}
\left.u_{h}(t, x)\right|_{K_{j}} & =\sum_{m=0}^{k} \hat{U}_{m}(t) \phi_{m}(x) \\
\left.v(x)\right|_{K_{j}} & =\phi_{i}(x), \quad \text { and zero elsewhere }
\end{aligned}
$$

with basis functions $\phi_{i} \in P^{k}\left(K_{j}\right)$ into the weak formulation.

- Then we obtain for each element K_{j} a system of ordinary differential equations

$$
\begin{aligned}
\sum_{m=0}^{k} \frac{d \hat{U}_{m}}{d t} \int_{K_{j}} \phi_{i}(x) \phi_{m}(x) d x & =\int_{K_{j}} a u_{h}(x, t) \frac{\partial \phi_{i}(x)}{\partial x} d x \\
& -\phi_{i}\left(x_{j+\frac{1}{2}}^{-}\right) H\left(u_{h}\right)_{j+\frac{1}{2}}(t)+\phi_{i}\left(x_{j-\frac{1}{2}}^{+}\right) H\left(u_{h}\right)_{j-\frac{1}{2}}(t) \\
j & =1, \cdots, N ; i=0, \cdots, k
\end{aligned}
$$

- or symbolically

$$
M \frac{d \hat{\mathbf{U}}}{d t}=\mathbf{R}_{h}(\hat{\mathbf{U}})
$$

- Integrate in time using the third order Runge-Kutta scheme of Shu and Osher

$$
\begin{aligned}
\hat{\mathbf{U}}^{(1)} & =\hat{\mathbf{U}}^{n}+\triangle t M^{-1} \mathbf{R}_{h}\left(\hat{\mathbf{U}}^{n}\right) \\
\hat{\mathbf{U}}^{(2)} & =\frac{1}{4}\left[3 \hat{\mathbf{U}}^{n}+\hat{\mathbf{U}}^{(1)}+\triangle t M^{-1} \mathbf{R}_{h}\left(\hat{\mathbf{U}}^{(1)}\right)\right] \\
\hat{\mathbf{U}}^{n+1} & =\frac{1}{3}\left[\hat{\mathbf{U}}^{n}+2 \hat{\mathbf{U}}^{(2)}+2 \triangle t M^{-1} \mathbf{R}_{h}\left(\hat{\mathbf{U}}^{(2)}\right)\right]
\end{aligned}
$$

- The time integration is stable for the CFL condition $C F L \leq 1$ with

$$
C F L=\frac{|a| \triangle t}{\min _{j}\left|K_{j}\right|}
$$

- For non-smooth initial data the solution will be oscillatory.
- To reduce numerical oscillations a slope limiter is used.
- The basic idea is to replace the original polynomial approximation u_{h} with a less oscillatory polynomial \tilde{u}_{h} using a reconstruction from data at the midpoints of the element and its neighbors.

Construction of a slope limiter

- For $u_{h} \in V_{h}^{1}$, construct two linear polynomials P_{1} and P_{2} :

$$
P_{1}=\frac{u_{j}\left(x-x_{j-1}\right)-u_{j-1}\left(x-x_{j}\right)}{x_{j}-x_{j-1}}, \quad P_{2}=\frac{u_{j}\left(x-x_{j+1}\right)-u_{j+1}\left(x-x_{j}\right)}{x_{j}-x_{j+1}}
$$

- Project the polynomials $P_{i}, i=0,1,2$, with $P_{0}=u_{h}$, onto the DG-space V_{h}^{1} and solve for $\left(\hat{U}_{0}\right)_{i}$ and $\left(\hat{U}_{1}\right)_{i}$:

$$
\left[\begin{array}{ll}
\int_{K_{j}} \phi_{0} \phi_{0} d K & \int_{K_{j}} \phi_{0} \phi_{1} d K \\
\int_{K_{j}} \phi_{1} \phi_{0} d K & \int_{K_{j}} \phi_{1} \phi_{1} d K
\end{array}\right]\left[\begin{array}{l}
\left(\hat{U}_{0}\right)_{i} \\
\left(\hat{U}_{1}\right)_{i}
\end{array}\right]=\left[\begin{array}{l}
\int_{K_{j}} \phi_{0} P_{i} d K \\
\int_{K_{j}} \phi_{1} P_{i} d K
\end{array}\right]
$$

- Use an oscillation indicator $o_{i}=\partial P_{i} / \partial x, i=0,1,2$, to assess the smoothness of the polynomials.
- The polynomial coefficients \tilde{U}_{m} of the limited solution \tilde{u}_{h} are constructed as a weighted sum of all polynomials

$$
\tilde{U}_{m}=\sum_{i=0}^{2} w_{i}\left(\hat{U}_{m}\right)_{i}, \quad m=0,1
$$

- The weights are

$$
w_{i}=\frac{\left(\epsilon+o_{i}\left(P_{i}\right)\right)^{-\gamma}}{\sum_{j=0}^{2}\left(\epsilon+o_{i}\left(P_{j}\right)\right)^{-\gamma}}
$$

- Take $\gamma=1$ and $\epsilon \ll 1$. For more smoothing increase γ.
- The limited solution then is equal to

$$
\tilde{u}_{h}=\sum_{m=0}^{1} \tilde{U}_{m}(t) \phi_{m}(x)
$$

- A serious problem with limiters is that the limited solution does not satisfy the DG discretization. This prevents convergence to steady state.
- An alternative for limiters are stabilization operators.

General Conservation Laws

- Consider the general conservation law on $\Omega \subset \mathbb{R}^{d}$

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}+\operatorname{div} f(u)=0 & \forall(x, t) \in \Omega \times(0, T) \\
u(0, x)=u_{0}(x) & \forall x \in \Omega \\
u(t, x)=\mathcal{B}\left(u, u_{w}\right) & \forall(x, t) \in \partial \Omega \times(0, T)
\end{array}
$$

with $u: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}$ the conserved variable and $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ the flux vector.

Computational Mesh and Basis Functions

- Introduce a tessellation \mathcal{T}_{h} of Ω

$$
\mathcal{T}_{h}:=\left\{K \mid \cup \bar{K}=\bar{\Omega} \text { and } K \cap K^{\prime}=\emptyset \text { if } K \neq K^{\prime}\right\}
$$

- Define reference element(s), e.g. a reference cube $\hat{K}=[-1,1]^{d}$.
- Define polynomial basis functions $P^{k}(\hat{K})$ of maximum (or total) degree k on the reference element.
- The element K is related to the reference element \hat{K} using an isoparametric mapping

$$
F_{K}: \hat{K} \rightarrow K ; \xi \mapsto x=\sum_{i=1}^{m} x_{i}(K) \hat{\phi}_{i}(\xi)
$$

with $x_{i}(K)$ the nodal points of element K and $\hat{\phi}_{i} \in P^{k}(\hat{K})$ the basis functions.

- Use the element mapping $F_{K}: \hat{K} \rightarrow K$ to define the basis functions on element K

$$
\phi_{m}(x)=\hat{\phi}_{m} \circ F_{K}^{-1}(x)
$$

- Define the finite element space

$$
V_{h}^{k}:=\left\{v \in L^{2}(\Omega)|v|_{K} \circ F_{K} \in P^{k}(\hat{K}) \forall K \in \mathcal{T}_{h}\right\}
$$

- Note, the basis functions are discontinuous at the element faces.

Weak Formulation

- Multiply the conservation law with arbitrary test functions $v \in V_{h}^{k}$, replace u with u_{h}, integrate over K and sum over all elements

$$
\sum_{K \in \mathcal{T}_{h}} \int_{K} v \frac{\partial u_{h}}{\partial t} d K+\int_{K} v \operatorname{div} f\left(u_{h}\right) d K=0 \quad \forall v \in V_{h}^{k}
$$

- Integrate by parts

$$
\sum_{K \in \mathcal{T}_{h}} \frac{d}{d t} \int_{K} v u_{h} d K-\int_{K} \operatorname{grad} v \cdot f\left(u_{h}\right) d K+\int_{\partial K} v^{-} n^{-} \cdot f\left(u_{h}^{-}\right) d S=0 \quad \forall v \in V_{h}^{k}
$$

with the traces defined as $u_{h}^{ \pm}=\lim _{\epsilon \downarrow 0} u_{h}(x \pm n)$ and n the unit outward normal vector at ∂K.

Flux Integrals

- Since the basis functions are discontinuous at the element faces we have to account for the multivalued traces.
- We can transform the boundary integrals into:

$$
\begin{aligned}
\sum_{K \in \mathcal{T}_{h}} \int_{\partial K} v^{-} n^{-} \cdot f\left(u_{h}^{-}\right) d S & =\sum_{S} \int_{S} \frac{1}{2}\left(v^{-} n^{-}+v^{+} n^{+}\right) \cdot\left(f\left(u_{h}^{-}\right)+f\left(u_{h}^{+}\right)\right) \\
& +\frac{1}{2}\left(v^{-}+v^{+}\right)\left(n^{-} \cdot f\left(u_{h}^{-}\right)+n^{+} \cdot f\left(u_{h}^{+}\right)\right) d S
\end{aligned}
$$

with n^{-}, n^{+}the normal vectors at each side of face $S, n^{+}=-n^{-}$.

- The formulation must be conservative, which imposes the condition:

$$
\int_{S} v n^{-} \cdot f\left(u_{h}^{-}\right) d S=-\int_{S} v n^{+} \cdot f\left(u_{h}^{+}\right) d S, \quad \forall v \in V_{h}^{k}
$$

hence the contribution

$$
\sum_{S} \int_{S} \frac{1}{2}\left(v^{-}+v^{+}\right)\left(n^{-} \cdot f\left(u_{h}^{-}\right)+n^{+} \cdot f\left(u_{h}^{+}\right)\right) d S=0
$$

- Using the relation $n^{+}=-n^{-}$, the boundary integrals then are equal to:

$$
\sum_{K \in \mathcal{T}_{h}} \int_{\partial K} v^{-} n^{-} \cdot f\left(u_{h}^{-}\right) d S=\sum_{S} \int_{S}\left(v^{-}-v^{+}\right) \frac{1}{2} n^{-} \cdot\left(f\left(u_{h}^{-}\right)+f\left(u_{h}^{+}\right)\right) d S
$$

Numerical Flux

- In order to stabilize the DG FEM formulation the multi-valued trace of the flux at S is replaced with a numerical flux function:

$$
\frac{1}{2} n \cdot\left(f\left(u_{h}^{-}\right)+f\left(u_{h}^{+}\right)\right) \cong H\left(u_{h}^{-}, u_{h}^{+}, n\right)
$$

- To ensure convergence the numerical flux must be
- consistent: $H(u, u, n)=n \cdot f(u)$;
- conservative: $H\left(u_{h}^{-}, u_{h}^{+}, n^{-}\right)=-H\left(u_{h}^{+}, u_{h}^{-}, n^{+}\right)$;
- locally Lipschitz continuous:

$$
\left|H\left(u_{h}^{-}, u_{h}^{+}, n\right)-H\left(v_{h}^{-}, v_{h}^{+}, n\right)\right| \leq C\left(\left|u_{h}^{-}-v_{h}^{-}\right|+\left|u_{h}^{+}-v_{h}^{+}\right|\right)
$$

- To ensure monotonicity the numerical flux must also be
- a nondecreasing function of its first argument, and
- a nonincreasing function of its second argument

Riemann Problem

- A monotone Lipschitz flux $H\left(u_{h}^{-}, u_{h}^{+}, n\right)$ is obtained by (approximately) solving the Riemann problem with initial states u_{h}^{-}and u_{h}^{+}at the element faces ∂K.
- This procedure introduces upwinding into the discontinuous Galerkin finite element method.

Riemann problem for Burgers Equation

Solutions of the Riemann problem for the Burgers equation $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{1}{2} u^{2}\right)=0$.

Upwind Fluxes

Consistent, monotone Lipschitz fluxes are:

- Godunov flux

$$
H^{G}\left(u_{h}^{-}, u_{h}^{+}, n\right)= \begin{cases}\min _{u \in\left[u_{h}^{-}, u_{h}^{+}\right]} \hat{f}(u), & \text { if } u_{h}^{-} \leq u_{h}^{+} \\ \max _{u \in\left[u_{h}^{+}, u_{h}^{-}\right]} \hat{f}(u), & \text { otherwise }\end{cases}
$$

with $\hat{f}(u)=f(u) \cdot n$.

Upwind Fluxes

- Local Lax-Friedrichs flux

$$
\begin{aligned}
H^{L L F}\left(u_{h}^{-}, u_{h}^{+}, n\right) & =\frac{1}{2}\left(\hat{f}\left(u_{h}^{-}\right)+\hat{f}\left(u_{h}^{+}\right)-C\left(u_{h}^{+}-u_{h}^{-}\right)\right) \\
C & =\max _{\min \left(u_{h}^{-}, u_{h}^{+}\right) \leq s \leq \max \left(u_{h}^{-}, u_{h}^{+}\right)}\left|\hat{f}^{\prime}(s)\right|
\end{aligned}
$$

- Roe flux with entropy fix

$$
H^{R o e}\left(u_{h}^{-}, u_{h}^{+}, n\right)= \begin{cases}\hat{f}\left(u_{h}^{-}\right), & \text {if } \hat{f}^{\prime}(u) \geq 0 \text { for } u \in \mathcal{U} \\ \hat{f}\left(u_{h}^{+}\right), & \text {if } \hat{f}^{\prime}(u) \leq 0 \text { for } u \in \mathcal{U} \\ H^{L L F}\left(u_{h}^{-}, u_{h}^{+}, n\right) & \text { otherwise }\end{cases}
$$

with $\mathcal{U}=\left[\min \left(u_{h}^{-}, u_{h}^{+}\right), \max \left(u_{h}^{-}, u_{h}^{+}\right]\right.$

- The choice which numerical flux should be used depends on many aspects, e.g. accuracy, robustness, computational complexity, and personal preference.

DG Discretization

- Introducing the numerical flux into the face integrals then results in

$$
\begin{aligned}
\sum_{K \in \mathcal{T}_{h}} \int_{\partial K} v^{-} n^{-} \cdot f\left(u_{h}^{-}\right) d S & =\sum_{S} \int_{S}\left(v^{-}-v^{+}\right) \frac{1}{2} n^{-} \cdot\left(f\left(u_{h}^{-}\right)+f\left(u_{h}^{+}\right)\right) d S \\
& \cong \sum_{S} \int_{S}\left(v^{-}-v^{+}\right) H\left(u_{h}^{-}, u_{h}^{+}, n^{-}\right) d \mathcal{S} \\
& =\sum_{K \in \mathcal{T}_{h}} \int_{\partial K} v^{-} H\left(u_{h}^{-}, u_{h}^{+}, n^{-}\right) d S
\end{aligned}
$$

using the relation $H\left(u_{h}^{-}, u_{h}^{+}, n^{-}\right)=-H\left(u_{h}^{+}, u_{h}^{-}, n^{+}\right)$.

- The weak formulation then is equal to:

$$
\begin{aligned}
\sum_{K \in \mathcal{T}_{h}} \frac{d}{d t} \int_{K} v u_{h} d K-\int_{K} \operatorname{grad} & v \cdot f\left(u_{h}\right) d K \\
& +\int_{\partial K} v^{-} H\left(u_{h}^{-}, u_{h}^{+}, n^{-}\right) d S=0 \quad \forall v \in V_{h}^{k}
\end{aligned}
$$

- The DG discretization is obtained after introducing the basis functions

$$
\begin{aligned}
\left.u_{h}(x, t)\right|_{K} & =\sum_{j=0}^{M} \hat{U}_{j}(t) \phi_{j}(x) \\
\left.v(x)\right|_{K} & =\phi_{i}(x) \quad \text { and zero elsewhere }
\end{aligned}
$$

- For each element $K \in \mathcal{T}_{h}$ the DG discretization becomes a system of ordinary differential equations:

$$
\begin{aligned}
\sum_{j=0}^{M} \frac{d \hat{U}_{j}(t)}{d t} \int_{K} \phi_{i} \phi_{j} d K & =\int_{K} \operatorname{grad} \phi_{i} \cdot f\left(u_{h}\right) d K \\
& -\int_{\partial K} \phi_{i} H\left(u_{h}^{-}, u_{h}^{+}, n^{-}\right) d S=0, \quad i=0, \cdots, M
\end{aligned}
$$

- Evaluate the integrals using quadrature rules. In particular Gaussian quadrature rules are very efficient.
- The resulting discretization can be summarized as

$$
M \frac{\partial \hat{\mathbf{U}}}{\partial t}=\mathbf{R}_{h}(\hat{\mathbf{U}})
$$

which can be integrated in time with e.g. a (TVD) Runge-Kutta method.

Time-Dependent Flow Domains

Example of a time dependent flow domain $\Omega(t)$.

Conservation Laws on Time Dependent Flow Domains

- Consider the scalar conservation law on a time dependent flow domain $\Omega(t) \subset \mathbb{R}^{d}$:

$$
\frac{\partial u}{\partial t}+\operatorname{div} f(u)=0, \quad \text { on } \Omega(t), t \in\left(t_{0}, T\right)
$$

with $u: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}$ the conserved variable and $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ the flux vector.

- The boundary and initial conditions are

$$
\begin{array}{ll}
u(x, t)=\mathcal{B}\left(u, u_{w}\right), & \text { at } \partial \Omega(t), t \in\left(t_{0}, T\right), \\
u(x, 0)=u_{0}(x), & \text { in } \Omega\left(t_{0}\right) .
\end{array}
$$

- We can also consider this problem in a space-time framework

Space-Time Domain

Example of a space-time domain \mathcal{E}.

Definition of Space-Time Domain

- Let $\mathcal{E} \subset \mathbb{R}^{d+1}$ be an open domain.
- A point $x \in \mathbb{R}^{d+1}$ has coordinates $\left(x_{0}, \bar{x}\right)$, where x_{0} represents time and $\bar{x}:=\left(x_{1}, \cdots, x_{d}\right)$ the spatial coordinates.
- Define the flow domain Ω at time t as:

$$
\Omega(t):=\{\bar{x} \in \mathbb{R} \mid(t, \bar{x}) \in \mathcal{E}\}
$$

- Define the boundary \mathcal{Q} as:

$$
\mathcal{Q}:=\left\{x \in \partial \mathcal{E} \mid t_{0}<x_{0}<T\right\}
$$

- Note : The space-time domain boundary $\partial \mathcal{E}$ is equal to:

$$
\partial \mathcal{E}=\Omega\left(t_{0}\right) \cup \mathcal{Q} \cup \Omega(T)
$$

Space-Time Formulation of Conservation Laws

- Define the space-time flux vector: $\mathcal{F}(u):=(u, f(u))^{T}$, then scalar conservation laws can be written as:

$$
\operatorname{div} \mathcal{F}(u(x))=0, \quad x \in \mathcal{E}
$$

with boundary conditions:

$$
u(x)=\mathcal{B}\left(u, u_{w}\right), \quad x \in \mathcal{Q}
$$

and initial condition:

$$
u(x)=u_{0}(x), \quad x \in \Omega\left(t_{0}\right)
$$

- The div operator is defined as: $\operatorname{div} \mathcal{F}=\frac{\partial \mathcal{F}_{i}}{\partial x_{i}}$.

Space-Time Slab

Space-time slab in space-time domain \mathcal{E}.

Definition of a Space-Time Slab

- Consider a partitioning of the time interval $\left(t_{0}, T\right):\left\{t_{n}\right\}_{n=0}^{N}$, and set $I_{n}=\left(t_{n}, t_{n+1}\right)$.
- Define a space-time slab as: $\mathcal{I}_{n}:=\left\{x \in \mathcal{E} \mid x_{0} \in I_{n}\right\}$
- Split the space-time slab into non-overlapping elements: \mathcal{K}_{j}^{n}.
- We will also use the notation: $K_{j}^{n}=\mathcal{K}_{j}^{n} \cap\left\{t_{n}\right\}$ and $K_{j}^{n+1}=\mathcal{K}_{j}^{n} \cap\left\{t_{n+1}\right\}$

Geometry of Space-Time Element

Geometry of 2D space-time element in both computational and physical space.

Element Mappings

Definition of the mapping $G_{\mathcal{K}}^{n}$ which the connects the space-time element \mathcal{K}^{n} to the reference element $\hat{\mathcal{K}}=(-1,1)^{d}$:

- Define a smooth, orientation preserving and invertible mapping Φ_{t}^{n} in the interval I_{n} as:

$$
\Phi_{t}^{n}: \Omega\left(t_{n}\right) \rightarrow \Omega(t): \bar{x} \mapsto \Phi_{t}^{n}(\bar{x}), \quad t \in I_{n}
$$

- Split $\Omega\left(t_{n}\right)$ into the tessellation $\overline{\mathcal{T}}_{h}^{n}$ with non-overlapping spatial elements K_{j}.
- Define $\phi_{i}(\bar{\xi}), \bar{\xi} \in(-1,1)^{d}$ as the standard Lagrangian finite element shape functions.

Element Mappings

- The mapping F_{K}^{n} is defined as:

$$
F_{K}^{n}:(-1,1)^{d} \rightarrow K^{n}: \bar{\xi} \longmapsto \sum_{i=1}^{N_{n}} x_{i}\left(K^{n}\right) \phi_{i}(\bar{\xi})
$$

with $x_{i}\left(K^{n}\right)$ the spatial coordinates of the nodal points of the space-time element at time $t=t_{n}$.

- Similarly we define the mapping F_{K}^{n+1} :

$$
F_{K}^{n+1}:(-1,1)^{d} \rightarrow K^{n+1}: \bar{\xi} \longmapsto \sum_{i=1}^{N_{n}} \Phi_{t_{n+1}}^{n}\left(x_{i}\left(K^{n}\right)\right) \phi_{i}(\bar{\xi})
$$

Element Mappings

- The space-time element is defined by linear interpolation in time:

$$
G_{\mathcal{K}}^{n}:(-1,1)^{d} \rightarrow \mathcal{K}^{n}:\left(\xi_{0}, \bar{\xi}\right) \longmapsto\left(x_{0}, \bar{x}\right)
$$

with:

$$
\begin{aligned}
\left(x_{0}, \bar{x}\right)= & \left(\frac{1}{2}\left(t_{n}+t_{n+1}\right)-\frac{1}{2}\left(t_{n}-t_{n+1}\right) \xi_{0}\right. \\
& \left.\frac{1}{2}\left(1-\xi_{0}\right) F_{K}^{n}(\bar{\xi})+\frac{1}{2}\left(1+\xi_{0}\right) F_{K}^{n+1}(\bar{\xi})\right)
\end{aligned}
$$

- The space-time tessellation is now defined as:

$$
\mathcal{T}_{h}^{n}:=\left\{\mathcal{K}=G_{\mathcal{K}}^{n}(\hat{\mathcal{K}}) \mid K \in \overline{\mathcal{T}}_{h}^{n}\right\}
$$

Basis Functions

- Define the basis functions ϕ_{m} in a space-time element \mathcal{K} as:

$$
\phi_{m}(x)=\hat{\phi}_{m} \circ\left(G_{\mathcal{K}}^{n}(x)\right)^{-1}
$$

with $\hat{\phi}_{m} \in P^{k}(\hat{\mathcal{K}})$ polynomial basis functions of maximum (or total) degree k on the reference element.

- Introduce the basis functions $\psi_{m}: \mathcal{K} \rightarrow \mathbb{R}$ and split the test and trial functions into an element mean at time t_{n+1} and a fluctuating part:

$$
\begin{array}{rlrl}
\psi_{m}(x) & =1, & & m=0 \\
& =\phi_{m}(x)-\frac{1}{\left|K\left(t_{n+1}\right)\right|} \int_{K\left(t_{n+1}\right)} \phi_{m}(x) d K, & m \geq 1
\end{array}
$$

- The splitting is beneficial for the definition of the stabilization operator and multigrid convergence acceleration.

Finite Element Space

- Define the finite element space $V_{h}^{k}\left(\mathcal{T}_{h}^{n}\right)$ as:

$$
V_{h}^{k}\left(\mathcal{T}_{h}^{n}\right):=\left\{v_{h}\left|v_{h}\right|_{\mathcal{K}} \circ G_{\mathcal{K}}^{n} \in P^{k}(\hat{\mathcal{K}}), \forall \mathcal{K} \in \mathcal{T}_{h}^{n}\right\}
$$

- The trial functions $u_{h}: \mathcal{E} \rightarrow \mathbb{R}$ are defined in each element $\mathcal{K} \in \mathcal{T}_{h}^{n}$ as:

$$
u_{h}(x)=\sum_{m=0}^{M} \hat{U}_{m}(\mathcal{K}) \psi_{m}(x), \quad x \in \mathcal{K}
$$

with \hat{U}_{m} the expansion coefficients.

Finite Element Space

- Note : Since $\int_{K\left(t_{n+1}\right)} \psi_{m}(x) d K=0$ for $m \geq 1$, we have the relation:

$$
\bar{u}_{h}\left(K\left(t_{n+1}\right)\right):=\frac{1}{\left|K\left(t_{n+1}\right)\right|} \int_{K\left(t_{n+1}\right)} u_{h} d K=\hat{U}_{0}
$$

and we can write:

$$
u_{h}(x)=\bar{u}_{h}\left(K\left(t_{n+1}\right)\right)+\tilde{u}_{h}(x),
$$

with $\int_{K\left(t_{n+1}\right)} \tilde{u}_{h}(x) d K=0$.

- One of the main benefits of this splitting is that the equation for \hat{U}_{0} is very similar to a first order finite volume discretization and is only weakly coupled to the equations for \tilde{u}_{h}.

Weak Formulation for STDG Method

The scalar conservation law can now be transformed into a weak formulation:

- Find a $u_{h} \in V_{h}^{k}\left(\mathcal{T}_{h}^{n}\right)$, such that for all $w_{h} \in V_{h}^{k}\left(\mathcal{T}_{h}^{n}\right)$, we have:

$$
\sum_{n=0}^{N_{T}} \sum_{j=1}^{N_{e}}\left(\int_{\mathcal{K}_{j}^{n}} w_{h} \operatorname{div} \mathcal{F}\left(u_{h}\right) d \mathcal{K}+\int_{\mathcal{K}_{j}^{n}}\left(\operatorname{grad} w_{h}\right)^{T} \mathfrak{D}\left(u_{h}\right) \operatorname{grad} u_{h} d \mathcal{K}\right)=0
$$

- The second integral with $\mathfrak{D}\left(u_{h}\right) \in \mathbb{R}^{d+1}$ is the stabilization operator necessary to obtain monotone solutions near discontinuities.

Weak Formulation

After integration by parts we obtain the following weak formulation:

- Find a $u_{h} \in V_{h}^{k}\left(\mathcal{T}_{h}^{n}\right)$, such that for all $w_{h} \in V_{h}^{k}\left(\mathcal{T}_{h}^{n}\right)$, we have:

$$
\begin{aligned}
\sum_{n=0}^{N_{T}} \sum_{j=1}^{N_{e}}(& -\int_{\mathcal{K}_{j}^{n}} \operatorname{grad} w_{h} \cdot \mathcal{F}\left(u_{h}\right) d \mathcal{K}+\int_{\partial \mathcal{K}_{j}^{n}} w_{h}^{-} n^{-} \cdot \mathcal{F}\left(u_{h}^{-}\right) d \mathcal{S} \\
& \left.+\int_{\mathcal{K}_{j}^{n}}\left(\operatorname{grad} w_{h}\right)^{T} \mathfrak{D}\left(u_{h}\right) \operatorname{grad} u_{h} d \mathcal{K}\right)=0 .
\end{aligned}
$$

Flux Integrals

- Due to the summation over all space-time slabs and elements, the boundary integrals can be transformed into:

$$
\sum_{\mathcal{K}} \int_{\partial \mathcal{K}} w_{h}^{-} n^{-} \cdot \mathcal{F}\left(u_{h}^{-}\right) d \mathcal{S}=\sum_{\mathcal{S}} \int_{\mathcal{S}} \frac{1}{2}\left(w_{h}^{-}-w_{h}^{+}\right) n^{-} \cdot\left(\mathcal{F}\left(u_{h}^{-}\right)+\mathcal{F}\left(u_{h}^{+}\right)\right) d \mathcal{S}
$$

- Before we can introduce a numerical flux on the right hand side we first need to consider the space-time normal vector.

Arbitrary Lagrangian Eulerian Formulation

- At faces $\mathcal{S} \subseteq \Omega\left(t_{n+1}\right)$ the space-time normal vector is equal to

$$
n=(1,0, \cdots, 0)
$$

and at faces $\mathcal{S} \subseteq \Omega\left(t_{n}\right)$ we have

$$
n=(-1,0, \cdots, 0)
$$

- At faces $\mathcal{S} \subseteq \mathcal{Q}$ the space-time normal vector can be expressed as:

$$
n=\left(-v_{g} \cdot \bar{n}, \bar{n}\right)
$$

with v_{g} the mesh velocity.

- If we introduce this relation into the flux then we obtain at faces $\mathcal{S} \subseteq \mathcal{Q}$

$$
\mathcal{F}(u) \cdot n=f(u) \cdot \bar{n}-v_{g} \cdot \bar{n} u,
$$

which is exactly the flux in an Arbitrary Lagrangian Eulerian (ALE) formulation.

Numerical Fluxes

- The numerical flux at the boundary faces $K\left(t_{n}\right)$ and $K\left(t_{n+1}\right)$, which have as normal vectors $n^{-}=(\mp 1,0, \cdots, 0)^{T}$, respectively, is defined as:

$$
\begin{aligned}
H_{\Omega}\left(u_{h}^{-}, u_{h}^{+}, n^{-}\right) & =u_{h}^{+} \\
& =u_{h}^{-}
\end{aligned} \quad \text { at } K\left(t_{n}\right) \text { at } K\left(t_{n+1}\right)
$$

which ensures causality in time.

- The numerical flux at the boundary faces \mathcal{Q}^{n} is a monotone Lipschitz $H\left(u_{h}^{-}, u_{h}^{+}, \bar{n} ; v_{g}\right)$, which is consistent:

$$
H\left(u, u, \bar{n} ; v_{g}\right)=n \cdot \mathcal{F}(u)=f(u) \cdot \bar{n}-v_{g} \cdot \bar{n} u
$$

and conservative:

$$
H\left(u_{h}^{-}, u_{h}^{+}, n^{-} ; v_{g}\right)=-H\left(u_{h}^{+}, u_{h}^{-}, n^{+} ; v_{g}\right)
$$

Weak Formulation for DG Discretization

After introducing the numerical fluxes we can transform the weak formulation into:

- Find a $u_{h} \in V_{h}^{k}$, such that for all $w_{h} \in V_{h}^{k}$, the following variational equation is satisfied:

$$
\begin{aligned}
\sum_{j=1}^{N_{n}}(& -\int_{\mathcal{K}_{j}^{n}}\left(\operatorname{grad} w_{h}\right) \cdot \mathcal{F}\left(u_{h}\right) d \mathcal{K}+\int_{K_{j}\left(t_{n+1}\right)} w_{h}^{-} u_{h}^{-} d K \\
& -\int_{K_{j}\left(t_{n}\right)} w_{h}^{-} u_{h}^{+} d K+\int_{\mathcal{Q}_{j}^{n}} w_{h}^{-} H\left(u_{h}^{-}, u_{h}^{+}, n^{-} ; v_{g}\right) d \mathcal{S} \\
& \left.+\int_{\mathcal{K}_{j}^{n}}\left(\operatorname{grad} w_{h}\right)^{T} \mathfrak{D}\left(u_{h}\right) \operatorname{grad} u_{h} d \mathcal{K}\right)=0
\end{aligned}
$$

- Note: Due to the causality of the time-flux the solution in a space-time slab only depends explicitly on the data u_{h}^{+}from the previous space-time slab.

DG-Expansion Coefficient Equations for Element Mean

- Introduce the polynomial expansions for u_{h} and w_{h} into the weak formulation then the following set of equations for the element mean $\bar{u}_{h}\left(K_{j}\left(t_{n+1}\right)\right)$ is obtained:

$$
\left|K_{j}\left(t_{n+1}\right)\right| \bar{u}_{h}\left(K_{j}\left(t_{n+1}\right)\right)-\left|K_{j}\left(t_{n}\right)\right| \bar{u}_{h}\left(K_{j}\left(t_{n}\right)\right)+\int_{\mathcal{Q}_{j}^{n}} H\left(u_{h}^{-}, u_{h}^{+}, \bar{n}^{-} ; v_{g}\right) d \mathcal{Q}=0
$$

- These equations are equivalent to a first order accurate finite volume formulation, except that more accurate data are used at the element faces.

DG-Expansion Coefficient Equations for Element Fluctuations

- The equations for the coefficients $\hat{U}_{m}\left(\mathcal{K}_{j}^{n}\right),(m \geq 1)$ for the fluctuating part of the flow field \tilde{u}_{h} in each space-time element \mathcal{K}_{j}^{n} satisfy the algebraic system

$$
\begin{aligned}
& \sum_{m=1}^{M} \hat{U}_{m}\left(\mathcal{K}_{j}^{n}\right)(-\int_{\mathcal{K}_{j}^{n}} \frac{\partial \psi_{l}}{\partial t} \psi_{m} d \mathcal{K}+\int_{K_{j}^{n+1}} \psi_{l}\left(t_{n+1}^{-}, \bar{x}\right) \psi_{m}\left(t_{n+1}^{-}, \bar{x}\right) d K \\
&\left.+\int_{\mathcal{K}_{j}^{n}} \frac{\partial \psi_{l}}{\partial x_{k}} \mathfrak{D}_{k p}\left(u_{h}\right) \frac{\partial \psi_{m}}{\partial x_{p}} d \mathcal{K}\right) \\
&-\int_{K_{j}^{n}} u_{h}\left(t_{n}^{-}, \bar{x}\right) \psi_{l}\left(t_{n}^{+}, \bar{x}\right) d K-\bar{u}_{h}\left(K_{j}^{n+1}\right) \int_{\mathcal{K}_{j}^{n}} \frac{\partial \psi_{l}}{\partial t} d \mathcal{K} \\
&+\int_{\mathcal{Q}_{j}^{n}} \psi_{l} H\left(u_{h}^{-}, u_{h}^{+}, \bar{n}^{-} ; v_{g}\right) d \mathcal{S}-\int_{\mathcal{K}_{j}^{n}} \frac{\partial \psi_{l}}{\partial \bar{x}_{i}} f_{i}\left(u_{h}\right) d \mathcal{K}=0, \quad l=1, \cdots, M
\end{aligned}
$$

Solution of DG Expansion Coefficient Equations

- The space-time DG formulation results in an implicit time-integration scheme.
- The equations for the DG expansion coefficients are represented as:

$$
\mathcal{L}\left(\hat{U}^{n} ; \hat{U}^{n-1}\right)=0
$$

- The non-linear equations for the expansion coefficients \hat{U}^{n} are solved by introducing a pseudo-time τ and marching the solution with a Runge-Kutta method to a steady state:

$$
\frac{\partial \hat{U}\left(\mathcal{K}^{*}\right)}{\partial \tau}=\frac{1}{\triangle t} \mathcal{L}\left(\hat{U}^{*} ; \hat{U}^{n-1}\right)
$$

- Convergence to steady state in pseudo-time can be accelerated using a FAS multigrid procedure.

