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Introduction

Challenges for Compressible Flow Simulations

e Efficient capturing of local flow phenomena

- Shocks
- Interior and boundary layers

- Vortical structures
e Time dependent boundaries
- Fluid-structure interaction
e Robustness and computational efficiency

e Complex geometries
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Improving CFD Algorithms

Options to improve CFD algorithms

e Higher order accuracy on unstructured meshes
e hp-Adaptive methods to capture (non smooth) local structures.
e Space-time approach to account for time-dependent boundaries

e Efficient algorithms for massively parallel computers

These requirements have motivated the development of

Space-Time Discontinuous Galerkin Finite Element Methods
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Key Features of Space-Time Discontinuous Galerkin Methods

e Simultaneous discretization in space and time: time is considered as a fourth
dimension.

e Discontinuous basis functions, both in space and time, with only a weak coupling
across element faces resulting in an extremely local, element based discretization.

e The space-time DG method is closely related to the Arbitrary Lagrangian Eulerian
(ALE) method.
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Continuous and Discontinuous Galerkin Approximations

element
k k+1

Continuous and discontinuous Galerkin approximation.
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Benefits of Discontinuous Galerkin Methods

e Due to the extremely local discretization DG methods provide optimal flexibility for

» achieving higher order accuracy on unstructured meshes

» hp-mesh adaptation

» unstructured meshes containing different types of elements, such as tetrahedra,
hexahedra and prisms

» parallel computing
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Benefits of Space-Time Discontinuous Galerkin Methods

e A conservative discretization is obtained on moving and deforming meshes.

e No data interpolation or extrapolation is necessary on dynamic meshes, at free
boundaries and after mesh adaptation.
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Disadvantages of Space-(Time) Discontinuous Galerkin Methods

e Algorithms are generally rather complicated, in particular for elliptic and parabolic
partial differential equations

e On structured meshes DG methods are computationally more expensive than finite
difference and finite volume methods.
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Overview of Lectures

o Lecturel
» One dimensional example
» DG discretization for conservation laws
» Extension to space-time DG discretizations
e Lecture 2
» Space-time DG discretization of the Euler and Navier-Stokes equations

» Examples of applications
e Lecture 3

» Pseudo-time and multigrid techniques to solve nonlinear algebraic equations

» Examples of applications
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One-Dimensional Example

Advection equation

ou(x,t) ou(x,t)
R S AT ek ek B A
ot ox

u(xz,0) = ug(x) Ve € (0,1),

0 in(0,1) x (0,T),

periodic boundary conditions

with a € R a given constant.
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DG Discretization for Advection Equation

Basic steps in the derivation of a 1D DG discretization

.. N .
e Introduce a partition {a:jJr%}j:O of the interval (0, 1).
e Define elements K; := (:cj_%,a:ﬁ%), with j =1,---, N.

e Introduce the finite element space
k 2 k .
Vh :{UGL(Q)|U|KJGP(K])7.]:177N}

with P*(K) polynomials of degree at most k on element K.

e Note, the basis functions are discontinuous at element boundaries.
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e Define the Galerkin approximation:

Find a up(t) € V/¥, such that for all v € V}¥,

N Oup(x,t) Oup(x,t) B
; /Kj v(x)( i + a 57 )Ydx = 0

e Integrate by parts

jzzl %/K‘7 v(z)un(z, t)de — /K aup(x, t)ag(;)d:c

J

— . + .
+v(:cj+%)auh(a:j+%,t) v(a:j_%)auh(:cj_%,t) =0

11
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e Note, the trace Uh(fchrla t) at element boundaries is multivalued due to the
2

discontinuous basis functions.

e Introduce a numerical flux to account for the multivalued trace

H(uh)jJr%(t) = H(uh(ac;r%, t), uh(a:;r%, t))

e The numerical flux is related to the solution of a Riemann problem with left state

t) and right state uh(a::l ).

Uh(ajj J+5

1
)

e The Riemann problem introduces upwinding into the DG formulation.

12



‘*' University of Twente - Chair Numerical Analysis and Computational Mechanics

e Numerical flux

(auy + awf — la|(w) — w,)) -

H (), ) () =

ith ut = + 1),
with u; uh(achr%, )

e Weak formulation: Find a u,(t) € V¥ such that for all v € V}¥,

ov(x)

T

dx

é%/}{.v(x)uh(azt)dw _ /K.auh(:c,t)

J

(e, H (), () = v(@) ) H (), (6) = 0

13
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e Introduce the polynomial expansions for u; and v

k
Uh(t,CU)lKj — Z ﬁm(t)¢m(x)
m=0
v(z)|k,; = ¢i(x), and zero elsewhere

with basis functions ¢; € P*(K) into the weak formulation.

e Then we obtain for each element K; a system of ordinary differential equations

b dU,, B O¢i(x)
;07/1% di(x)Pm(x)dr = /K aup(x,t) 5 dx

— ¢ulm, JH ) 1 () + qﬁi(a?j_%)H(Uh)j_%(t),

j:l,...7N; 7/:07’]{
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e or symbolically

A

MdU—R(fJ)
e

e Integrate in time using the third order Runge-Kutta scheme of Shu and Osher

oW = 0" + AtM TR, (T™)

N 1r . N N

0 = L1307+ oW AtM‘th(U“))}
N 1. N N
L 20 2AtM—1Rh(U<2>)}

e The time integration is stable for the CFL condition CF'L < 1 with

la| ANt

miny | K|

CFL =

15
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e For non-smooth initial data the solution will be oscillatory.
e To reduce numerical oscillations a slope limiter is used.

e The basic idea is to replace the original polynomial approximation uy with a less
oscillatory polynomial uj, using a reconstruction from data at the midpoints of the

element and its neighbors.

16
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Lj+1

Kj

Construction of a slope limiter

17
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e For u; € V.1 construct two linear polynomials P; and Px:

uj(r — 1) — uj_1(x — x5)

uj(r — xj41) — ujpi(x — x5)

P = , Py=

Tj — Lj-1 Tj — Lj+1

e Project the polynomials P;, « = 0, 1, 2, with Py = wup, onto the DG-space Vh1

and solve for (Up); and (U1);:

ij¢0¢odK ij¢0¢1dK [((Afo)z‘]_ ij¢0P7;dK
i, 100dK [ drgndK | [(O)i] | [x, $1PdK

18
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e Use an oscillation indicator o;, = OP;/0x, i = 0,1, 2, to assess the smoothness
of the polynomials.

e The polynomial coefficients ﬁm of the limited solution u;, are constructed as a
weighted sum of all polynomials

2
ﬁm = Z wi(Um)Z-, m = O, 1
1=0

e The weights are

(e + 0i(F5))"
Yo o(e+ 0i(Py)

w,; =

e Take v =1 and € < 1. For more smoothing increase .

19
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e The limited solution then is equal to

up = Z Um(t)Qbm(w)

e A serious problem with limiters is that the limited solution does not satisfy
the DG discretization. This prevents convergence to steady state.

e An alternative for limiters are stabilization operators.

20
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General Conservation Laws

e Consider the general conservation law on 2 C R?

G,
8_1‘ +divf(u) =0  V(z,t) € Qx(0,T),

w(0, x) = ugp(x) Ve € Q,
u(t, ) = B(u, ty) V(z,t) € 02 x (0,T).

with u : R? x R — R the conserved variable and f : R — R the flux vector.

21
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Computational Mesh and Basis Functions

e Introduce a tessellation 73, of 2

T, ={K|UK=Qand KNK =0ifK #K'} .

o Define reference element(s), e.g. a reference cube K = [—1, 1]%

e Define polynomial basis functions P*(K) of maximum (or total) degree k on the
reference element.

22



University of Twente - Chair Numerical Analysis and Computational Mechanics

The element K is related to the reference element K using an isoparametric
mapping

F:K > Ktz =) z(K)pi(&).
i=1
with z;(K) the nodal points of element K and ¢; € P*(K) the basis functions.

Use the element mapping F'x : K — K to define the basis functions on element
K

bm(x) = ggm © ngl(x)
Define the finite element space
VF = {v € L*(Q) |v|x o Fx € P*(K) VK ¢ Th} .

Note, the basis functions are discontinuous at the element faces.

23
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Weak Formulation

e Multiply the conservation law with arbitrary test functions v € V¥, replace u with
up, integrate over K and sum over all elements

8uh
Z / dK—I—/ vdivf(up)dK =0 ‘V’UGV

KeTy,

e Integrate by parts

Z / vupdK — / gradv- f(uh)dK—i— v_n_-f(ug)dS =0 Vv € th.

KeTy,

with the traces defined as uf = lim.|p up(x & n) and n the unit outward
normal vector at O K.
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Flux Integrals

e Since the basis functions are discontinuous at the element faces we have to
account for the multivalued traces.

e We can transform the boundary integrals into:

n " = L v n” +ovnt) - (. uy
thaKv w fas =3 [ ST et () + 1)

KeT;
b v flu) + 0 f()dS

with n~, n™ the normal vectors at each side of face S, n™ = —n
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e The formulation must be conservative, which imposes the condition:

/ vn” - f(u, )dS = —/ ont - f(u;:)dS, Yv € th
S S

hence the contribution
1 _ _
2. / S F v flu) + 07 f(uy))dS =0
S Js

e Using the relation n™ = —n ", the boundary integrals then are equal to:

S [ v fwnds =3 [ 07 = ohgnT - (Fe) + Fi))ds
h K S

KeT,

26
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Numerical Flux

e In order to stabilize the DG FEM formulation the multi-valued trace of the flux at
S is replaced with a numerical flux function:

Sn () + F () 2 H(uyuf )

27
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e To ensure convergence the numerical flux must be

» consistent: H(u,u,n) =n - f(u);

+

» conservative: H(u, ,u,n")=—H(u/,u,,n");

» locally Lipschitz continuous:

- + — + - - +
|H(uh7uh7n)_H(vh7vhan)| Sc(luh _vh|+|uh

+
— v, |)

28
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e To ensure monotonicity the numerical flux must also be

» a nondecreasing function of its first argument, and

» a nonincreasing function of its second argument

29
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Riemann Problem

e A monotone Lipschitz flux H(u, , u;{, n) is obtained by (approximately) solving
the Riemann problem with initial states u, and u;; at the element faces O K.

e This procedure introduces upwinding into the discontinuous Galerkin finite element
method.

30



University of Twente - Chair Numerical Analysis and Computational Mechanics 31

Riemann problem for Burgers Equation

t’ :
right
left . ~ shock
shock™,
u_ U+ - S U
- X - X

left rarefacttl’on - right rarefactior

e X

Solutions of the Riemann problem for the Burgers equation 2% 4+ -2 (1u?) = 0.



‘*' University of Twente - Chair Numerical Analysis and Computational Mechanics

Upwind Fluxes

Consistent, monotone Lipschitz fluxes are:

e Godunov flux

HG(“E:“Z)”) = 9

with f(u) = f(u) - n.

min  f(u),
uE[u}:,uh

max f(u),
uE[uh ,uf:]

if u, < uy

otherwise,

32
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Upwind Fluxes

e Local Lax-Friedrichs flux

1 - ~
H" " (uy, ,ult,n) = S (f(wy) + Flup) — Cluf —uy)),

. r!
¢ = max RO

min(u}: ,u;t)gsgmax(u}: Uy )

33
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e Roe flux with entropy fix

( f(u}), if f'(u) >0foruecld
H™ (uy ,ut,m) =4 Fu)), if f'(uw) <0 forueU
\ HLLF(u,:, ul,n) otherwise
with U = [min(u; , u; ), max(u, , u]

e The choice which numerical flux should be used depends on many aspects, e.g.

accuracy, robustness, computational complexity, and personal preference.

34
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DG Discretization

e Introducing the numerical flux into the face integrals then results in

KeT,

n " = v — v’ 1fn,_- (. uy
Zh/aK’” wfas =3 [ @7 - uhgeT () + S

112

Z /S(v — v+)H(ug,uZ,n_)d8
S

= Z/ ’U_H(u;,u;,n_)dS,
0K

KETh

using the relation H (u, , uZ, n-) = —H(u;{, U, , nt).

35
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e The weak formulation then is equal to:

Z / vupdK — / gradv - f(up)dK

KeTy,

-+ v H(u; ,u,n )dS =0 ‘v’vEV
oK

e The DG discretization is obtained after introducing the basis functions

up(z,t)|x = Z U;(t)o;(x)

v(x)|g = ¢i(x) and zero elsewhere

36
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e For each element K € 7, the DG discretization becomes a system of ordinary
differential equations:

= dU;(t)
Z —/ Pipjd K :/ grade; - f(up)dK
—  dt «
- ¢7;H(u;,u,f,n_)d5:0, i=20,---,M.
oK

e Evaluate the integrals using quadrature rules. In particular Gaussian quadrature
rules are very efficient.

37
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e The resulting discretization can be summarized as

M-— =R, (U
ot r(U)

which can be integrated in time with e.g. a (TVD) Runge-Kutta method.

38
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Time-Dependent Flow Domains

t «H Q ()

Q(t)

>

Xl(t) X1

Example of a time dependent flow domain Q(¢).
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Conservation Laws on Time Dependent Flow Domains

o Consider the scalar conservation law on a time dependent flow domain Q(t) C R%

0
8_,:/ + lef(U) p— O7 on Q(t), t € (t07T)7

with u : RY x R — R the conserved variable and f : R — R the flux vector.

e The boundary and initial conditions are

u(x,t) = B(u, uy), at 0Q(t), t € (to, T),
u(x,0) = up(x), in Q(tp).

e We can also consider this problem in a space-time framework

40
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Space-Time Domain

%o Q(T)

Q (1)

Q(to)

Example of a space-time domain &.

41
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Definition of Space-Time Domain

e Let £ C R be an open domain.

e A point z € R*"! has coordinates (xg, Z), where x( represents time and
Z := (x1,:-- ,xq) the spatial coordinates.

e Define the flow domain €2 at time ¢ as:

Q) :={z eR|(t,x) € &}

e Define the boundary Q as:

Q:={x €|ty <xzog <T}

e Note : The space-time domain boundary O€ is equal to:

0 = Q(ty) U QU QT).

42
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Space-Time Formulation of Conservation Laws

o Define the space-time flux vector: F(u) := (u, f(u))?, then scalar conservation
laws can be written as:

div F(u(xz)) = 0, x €&
with boundary conditions:

u(z) = B(u, uw), =€ Q,
and initial condition:

u(x) = ug(x), x € Q(to).

e The div operator is defined as: div F = gf?.
1
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Space-Time Slab

Xq
T
T Q(T)
E K n+1
L n+1- J
I
" Qj % Q]
t, < T

Space-time slab in space-time domain £.

44
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Definition of a Space-Time Slab

e Consider a partitioning of the time interval (to, T): {t,}._,, and set

In — (tn, tn_|_1).
e Define a space-timeslabas: Z,, := {x € £ |xp € I,,}

e Split the space-time slab into non-overlapping elements: IC;L.

e We will also use the notation: K7 = K7 N {t,,} and K;.LH = K7 N {tn1}

45
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Geometry of Space-Time Element

Geometry of 2D space-time element in both computational and physical space.

46
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Element Mappings

Definition of the mapping G’ which the connects the space-time element " to the
reference element K = (—1,1)%

e Define a smooth, orientation preserving and invertible mapping ®;" in the interval
I, as:

O Qty) — Q) : T — D/ (T), tE L.

e Split Q(t,) into the tessellation 7," with non-overlapping spatial elements K.

o Define ¢;(€),& € (—1,1)% as the standard Lagrangian finite element shape
functions.

47
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Element Mappings

e The mapping F'}; is defined as:
Nn
Fi: (-1, 1) = K" : £ — > 2:(K")i(§),
i=1

with x;(K™) the spatial coordinates of the nodal points of the space-time element
at time t = ¢,,.

e Similarly we define the mapping F}}H:

Nn
Fls (LD = K fe= 0o (2i(K")$i(8):
1=1

48
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Element Mappings

e The space-time element is defined by linear interpolation in time:
GT]& : (_17 1)d - }Cn : (507g) = (33073_3),
with:

(0, T) = (%(tn + tny1) — 5(tn — tnt1)€o,

J1— &) FR(D + 31+ &) FED).

e The space-time tessellation is now defined as:

T = {K = GL(R) | K € T,'}.

49
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Basis Functions

e Define the basis functions ¢,, in a space-time element K as:

Gm(x) = dm o (Gy(x)) .

with ¢,,, € P*(K) polynomial basis functions of maximum (or total) degree k on
the reference element.

e Introduce the basis functions v, : K — R and split the test and trial functions
into an element mean at time ¢,,1.1 and a fluctuating part:

wm(x) — 17 m = O,

Pm () .
— Om\T) —
| K (tnt1)| K (typ0)

Gm(z)dK, m > 1.

50
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e The splitting is beneficial for the definition of the stabilization operator and
multigrid convergence acceleration.

51
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Finite Element Space

o Define the finite element space V,*(7;") as:

VAT o= {on| wnle o Gy € PH(K), vK € T}

e The trial functions up : £ — R are defined in each element IC € 7," as:

Uh(x) — Z Um(lc)wm(x)a x € IC,

with U,, the expansion coefficients.

52
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Finite Element Space

e Note : Since fK(t ) Ym(x)dK = 0 for m > 1, we have the relation:

1

’U,th = (A]o,
| K (tnt1)| J K(tyi1)

un(K (tny1)) =

and we can write:
up(x) = up(K(tns1)) + an(z),
with fK(th) up(x)dK = 0.

e One of the main benefits of this splitting is that the equation for Uy is very similar
to a first order finite volume discretization and is only weakly coupled to the
equations for .

53
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Weak Formulation for STDG Method

The scalar conservation law can now be transformed into a weak formulation:

e Find a uj, € V;F(Z,"), such that for all w;, € V,*(Z,"), we have:

NT Ne

Z Z ( / wyp, divF (up)dIC + / (grad wh)T’D(uh) grad uhdlC> = 0.
K cn
j ]

n=0 j=1

e The second integral with ®(u;) € R*™! is the stabilization operator necessary to
obtain monotone solutions near discontinuities.

54
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Weak Formulation

After integration by parts we obtain the following weak formulation:

e Find a uj, € V;F(Z,"), such that for all w;, € V,*(Z,"), we have:

NT Ne

Z Z / grad wy, - F(up)dKC + w,n - F(u,)dS
IC?’L

n=0 j=1 8IC§L

+ (grad wh)T D (up) grad uhdIC> =
Kcr
j

55
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Flux Integrals

® Due to the summation over all space-time slabs and elements, the boundary
integrals can be transformed into:

S [ winm Fuids = 3 [ S = wihn” - (F) + Fui)ds
K S

e Before we can introduce a numerical flux on the right hand side we first need to
consider the space-time normal vector.

56



‘*' University of Twente - Chair Numerical Analysis and Computational Mechanics

Arbitrary Lagrangian Eulerian Formulation

o At faces S C Q(t,11) the space-time normal vector is equal to
n=(1,0,---,0)
and at faces S C Q(t,,) we have
n=(=1,0,---,0).
o At faces S C O the space-time normal vector can be expressed as:

n=(—v,-n,n),

with v, the mesh velocity.

57
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e If we introduce this relation into the flux then we obtain at faces S C O
F(u) -n=f(u) n—ov,-nu,

which is exactly the flux in an Arbitrary Lagrangian Eulerian (ALE) formulation.

58
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Numerical Fluxes

e The numerical flux at the boundary faces K (t,) and K (t,11), which have as

normal vectors n~ = (F1,0,---,0)’, respectively, is defined as:
Ho(u, ,u),n") =u, at K(t,)

= ’U,f: at K(tn+1)

which ensures causality in time.
e The numerical flux at the boundary faces Q" is a monotone Lipschitz

H(u,, u;[, n; vg), which is consistent:

H(u,u,n;vy) =n-F(u) = f(u) -n—v, - nu

and conservative:

H(u, , u;{, n ;v = —H(u;:, Uy, , n+; vg).
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Weak Formulation for DG Discretization

After introducing the numerical fluxes we can transform the weak formulation into:

e Find a up € V¥, such that for all wj, € V¥, the following variational equation is
satisfied:

Nn
Z (— / (grad wp) - F(up)dIC + w, u, dK
j=1 K Kj(tp+1)

_/ ( )w;uZdK—k w;H(ug,uZ,n_;vg)dS

+ [ (grad wp) D (us) grad up dIC> — 0.
cn

e Note: Due to the causality of the time-flux the solution in a space-time slab only
depends explicitly on the data u;t from the previous space-time slab.

60
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DG-Expansion Coefficient Equations for Element Mean

e Introduce the polynomial expansions for u; and wy, into the weak formulation then
the following set of equations for the element mean @ (K ;(t,+1)) is obtained:

K (o) | 0 (B (t1)) — | K () (K (8)) + /Qn H(uy , uf, 775 0,)dQ = 0.

e These equations are equivalent to a first order accurate finite volume formulation,
except that more accurate data are used at the element faces.
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DG-Expansion Coefficient Equations for Element Fluctuations

e The equations for the coefficients Um(IC;L) (m > 1) for the fluctuating part of
the flow field @y in each space-time element IC? satisfy the algebraic system

M
3 On(k)( / L+ /Knﬂ ity D)ty 8)AK

=1

0 OYm,
n wl@kp(uh) (s
IC" &ck .CUp

dK )

9
—/ un(ty, 2)(t), DK — an(KY) [ Zax
K" IC? ot

O

+/ le(’UJ}:,’U,Z,’FL_;’Ug)dS— (’U,h)d}C:O, [ = ]., ,M.
on
J
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Solution of DG Expansion Coefficient Equations

e The space-time DG formulation results in an implicit time-integration scheme.

e The equations for the DG expansion coefficients are represented as:
cU™ 0" =o.

e The non-linear equations for the expansion coefficients U™ are solved by
introducing a pseudo-time 7 and marching the solution with a Runge-Kutta
method to a steady state:
oU (KC* 1 oy oa
OUKT) _ —L(U 0.
oT At
e Convergence to steady state in pseudo-time can be accelerated using a FAS
multigrid procedure.



