Space-Time Discontinuous Galerkin Methods for Compressible Flows

Part I Conservation Laws

Jaap van der Vegt

Numerical Analysis and Computational Mechanics Group Department of Applied Mathematics University of Twente The Netherlands

> Montreal Scientific Computing Days April 30 - May 2, 2008

Introduction

Challenges for Compressible Flow Simulations

- Efficient capturing of local flow phenomena
 - Shocks
 - Interior and boundary layers
 - Vortical structures
- Time dependent boundaries
 - Fluid-structure interaction
- Robustness and computational efficiency
- Complex geometries

Improving CFD Algorithms

Options to improve CFD algorithms

- Higher order accuracy on unstructured meshes
- *hp*-Adaptive methods to capture (non smooth) local structures.
- Space-time approach to account for time-dependent boundaries
- Efficient algorithms for massively parallel computers

These requirements have motivated the development of

Space-Time Discontinuous Galerkin Finite Element Methods

Key Features of Space-Time Discontinuous Galerkin Methods

- Simultaneous discretization in space and time: time is considered as a fourth dimension.
- Discontinuous basis functions, both in space and time, with only a weak coupling across element faces resulting in an extremely local, element based discretization.
- The space-time DG method is closely related to the Arbitrary Lagrangian Eulerian (ALE) method.

Continuous and Discontinuous Galerkin Approximations

Continuous and discontinuous Galerkin approximation.

Benefits of Discontinuous Galerkin Methods

- Due to the extremely local discretization DG methods provide optimal flexibility for
 - achieving higher order accuracy on unstructured meshes
 - ► *hp*-mesh adaptation
 - unstructured meshes containing different types of elements, such as tetrahedra, hexahedra and prisms
 - parallel computing

Benefits of Space-Time Discontinuous Galerkin Methods

- A conservative discretization is obtained on moving and deforming meshes.
- No data interpolation or extrapolation is necessary on dynamic meshes, at free boundaries and after mesh adaptation.

Disadvantages of Space-(Time) Discontinuous Galerkin Methods

- Algorithms are generally rather complicated, in particular for elliptic and parabolic partial differential equations
- On structured meshes DG methods are computationally more expensive than finite difference and finite volume methods.

Overview of Lectures

• Lecture 1

- One dimensional example
- DG discretization for conservation laws
- Extension to space-time DG discretizations
- Lecture 2
 - Space-time DG discretization of the Euler and Navier-Stokes equations
 - Examples of applications
- Lecture 3
 - Pseudo-time and multigrid techniques to solve nonlinear algebraic equations
 - Examples of applications

One-Dimensional Example

Advection equation

$$\frac{\partial u(x,t)}{\partial t} + a \frac{\partial u(x,t)}{\partial x} = 0 \qquad \text{in } (0,1) \times (0,T),$$
$$u(x,0) = u_0(x) \qquad \quad \forall x \in (0,1),$$

periodic boundary conditions

with $a \in \mathbb{R}$ a given constant.

DG Discretization for Advection Equation

Basic steps in the derivation of a 1D DG discretization

- Introduce a partition $\{x_{j+\frac{1}{2}}\}_{j=0}^N$ of the interval (0, 1).
- Define elements $K_j := (x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}})$, with $j = 1, \cdots, N$.
- Introduce the finite element space

$$V_{h}^{k} := \left\{ v \in L^{2}(\Omega) \mid v \mid_{K_{j}} \in P^{k}(K_{j}), j = 1, \cdots, N \right\}$$

with $P^k(K_j)$ polynomials of degree at most k on element K_j .

• Note, the basis functions are discontinuous at element boundaries.

• Define the Galerkin approximation:

Find a $u_h(t) \in V_h^k$, such that for all $v \in V_h^k$,

$$\sum_{j=1}^{N} \int_{K_j} v(x) \left(\frac{\partial u_h(x,t)}{\partial t} + a \frac{\partial u_h(x,t)}{\partial x}\right) dx = 0$$

• Integrate by parts

$$\sum_{j=1}^{N} \frac{d}{dt} \int_{K_{j}} v(x) u_{h}(x,t) dx - \int_{K_{j}} a u_{h}(x,t) \frac{\partial v(x)}{\partial x} dx + v(x_{j+\frac{1}{2}}^{-}) a u_{h}(x_{j+\frac{1}{2}},t) - v(x_{j-\frac{1}{2}}^{+}) a u_{h}(x_{j-\frac{1}{2}},t) = 0$$

- Note, the trace $u_h(x_{j+\frac{1}{2}},t)$ at element boundaries is multivalued due to the discontinuous basis functions.
- Introduce a numerical flux to account for the multivalued trace

$$H(u_h)_{j+\frac{1}{2}}(t) := H(u_h(x_{j+\frac{1}{2}}^-, t), u_h(x_{j+\frac{1}{2}}^+, t))$$

- The numerical flux is related to the solution of a Riemann problem with left state $u_h(x_{j+\frac{1}{2}}^-, t)$ and right state $u_h(x_{j+\frac{1}{2}}^+, t)$.
- The Riemann problem introduces upwinding into the DG formulation.

• Numerical flux

$$H(u_h)_{j+\frac{1}{2}}(t) = \frac{1}{2} \left(au_h^- + au_h^+ - |a|(u_h^+ - u_h^-) \right) \,.$$

with $u_h^\pm:=u_h(x_{j+rac{1}{2}}^\pm,t).$

• Weak formulation: Find a $u_h(t) \in V_h^k$, such that for all $v \in V_h^k$,

$$\sum_{j=1}^{N} \frac{d}{dt} \int_{K_j} v(x) u_h(x,t) dx - \int_{K_j} a u_h(x,t) \frac{\partial v(x)}{\partial x} dx + v(x_{j+\frac{1}{2}}^-) H(u_h)_{j+\frac{1}{2}}(t) - v(x_{j-\frac{1}{2}}^+) H(u_h)_{j-\frac{1}{2}}(t) = 0$$

• Introduce the polynomial expansions for u_h and v

$$egin{aligned} u_h(t,x)|_{K_j} &= \sum_{m=0}^k \hat{U}_m(t)\phi_m(x) \ &v(x)|_{K_j} &= \phi_i(x), \quad ext{and zero elsewhere} \end{aligned}$$

with basis functions $\phi_i \in P^k(K_j)$ into the weak formulation.

• Then we obtain for each element K_j a system of ordinary differential equations

$$\sum_{m=0}^{k} \frac{d\hat{U}_{m}}{dt} \int_{K_{j}} \phi_{i}(x)\phi_{m}(x)dx = \int_{K_{j}} au_{h}(x,t) \frac{\partial \phi_{i}(x)}{\partial x}dx$$
$$-\phi_{i}(x_{j+\frac{1}{2}}^{-})H(u_{h})_{j+\frac{1}{2}}(t) + \phi_{i}(x_{j-\frac{1}{2}}^{+})H(u_{h})_{j-\frac{1}{2}}(t),$$
$$j = 1, \cdots, N; \ i = 0, \cdots, k$$

• or symbolically

$$M\frac{d\hat{\mathbf{U}}}{dt} = \mathbf{R}_h(\hat{\mathbf{U}}).$$

• Integrate in time using the third order Runge-Kutta scheme of Shu and Osher

$$\hat{\mathbf{U}}^{(1)} = \hat{\mathbf{U}}^n + \Delta t M^{-1} \mathbf{R}_h(\hat{\mathbf{U}}^n)$$
$$\hat{\mathbf{U}}^{(2)} = \frac{1}{4} \left[3\hat{\mathbf{U}}^n + \hat{\mathbf{U}}^{(1)} + \Delta t M^{-1} \mathbf{R}_h(\hat{\mathbf{U}}^{(1)}) \right]$$
$$\hat{\mathbf{U}}^{n+1} = \frac{1}{3} \left[\hat{\mathbf{U}}^n + 2\hat{\mathbf{U}}^{(2)} + 2\Delta t M^{-1} \mathbf{R}_h(\hat{\mathbf{U}}^{(2)}) \right]$$

• The time integration is stable for the CFL condition $CFL \leq 1$ with

$$CFL = \frac{|a| \triangle t}{\min_j |K_j|}$$

- For non-smooth initial data the solution will be oscillatory.
- To reduce numerical oscillations a slope limiter is used.
- The basic idea is to replace the original polynomial approximation u_h with a less oscillatory polynomial \tilde{u}_h using a reconstruction from data at the midpoints of the element and its neighbors.

Construction of a slope limiter

• For $u_h \in V_h^1$, construct two linear polynomials P_1 and P_2 :

$$P_1 = \frac{u_j(x - x_{j-1}) - u_{j-1}(x - x_j)}{x_j - x_{j-1}}, \quad P_2 = \frac{u_j(x - x_{j+1}) - u_{j+1}(x - x_j)}{x_j - x_{j+1}}$$

• Project the polynomials P_i , i = 0, 1, 2, with $P_0 = u_h$, onto the DG-space V_h^1 and solve for $(\hat{U}_0)_i$ and $(\hat{U}_1)_i$:

$$\begin{bmatrix} \int_{K_j} \phi_0 \phi_0 \, dK & \int_{K_j} \phi_0 \phi_1 \, dK \\ \int_{K_j} \phi_1 \phi_0 \, dK & \int_{K_j} \phi_1 \phi_1 \, dK \end{bmatrix} \begin{bmatrix} (\hat{U}_0)_i \\ (\hat{U}_1)_i \end{bmatrix} = \begin{bmatrix} \int_{K_j} \phi_0 P_i \, dK \\ \int_{K_j} \phi_1 P_i \, dK \end{bmatrix}$$

- Use an oscillation indicator $o_i = \partial P_i / \partial x$, i = 0, 1, 2, to assess the smoothness of the polynomials.
- The polynomial coefficients \tilde{U}_m of the limited solution \tilde{u}_h are constructed as a weighted sum of all polynomials

$$\tilde{U}_m = \sum_{i=0}^2 w_i (\hat{U}_m)_i, \qquad m = 0, 1$$

• The weights are

$$w_i = \frac{(\epsilon + o_i(P_i))^{-\gamma}}{\sum_{j=0}^2 (\epsilon + o_i(P_j))^{-\gamma}}$$

• Take $\gamma = 1$ and $\epsilon \ll 1$. For more smoothing increase γ .

• The limited solution then is equal to

$$ilde{u}_h = \sum_{m=0}^1 ilde{U}_m(t) \phi_m(x)$$

- A serious problem with limiters is that the limited solution does not satisfy the DG discretization. This prevents convergence to steady state.
- An alternative for limiters are stabilization operators.

General Conservation Laws

• Consider the general conservation law on $\Omega \subset \mathbb{R}^d$

$$\begin{aligned} \frac{\partial u}{\partial t} + \operatorname{div} f(u) &= 0 \qquad \forall (x, t) \in \Omega \times (0, T), \\ u(0, x) &= u_0(x) \qquad \forall x \in \Omega, \\ u(t, x) &= \mathcal{B}(u, u_w) \qquad \forall (x, t) \in \partial\Omega \times (0, T). \end{aligned}$$

with $u: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$ the conserved variable and $f: \mathbb{R} \to \mathbb{R}^d$ the flux vector.

Computational Mesh and Basis Functions

• Introduce a tessellation \mathcal{T}_h of Ω

$$\mathcal{T}_h := \left\{ K \mid \cup \bar{K} = \bar{\Omega} \text{ and } K \cap K' = \emptyset \text{ if } K \neq K'
ight\}.$$

- Define reference element(s), e.g. a reference cube $\hat{K} = [-1, 1]^d$.
- Define polynomial basis functions $P^k(\hat{K})$ of maximum (or total) degree k on the reference element.

• The element K is related to the reference element \hat{K} using an isoparametric mapping \$m\$

$$F_K: \hat{K} \to K; \xi \mapsto x = \sum_{i=1}^m x_i(K)\hat{\phi}_i(\xi).$$

with $x_i(K)$ the nodal points of element K and $\hat{\phi}_i \in P^k(\hat{K})$ the basis functions.

• Use the element mapping $F_K: \hat{K} \to K$ to define the basis functions on element K

$$\phi_m(x) = \hat{\phi}_m \circ F_K^{-1}(x).$$

Define the finite element space

$$V_h^k := \left\{ v \in L^2(\Omega) \, | \, v|_K \circ F_K \in P^k(\hat{K}) \, \forall K \in \mathcal{T}_h \right\}$$

• Note, the basis functions are **discontinuous** at the element faces.

Weak Formulation

• Multiply the conservation law with arbitrary test functions $v \in V_h^k$, replace u with u_h , integrate over K and sum over all elements

$$\sum_{K \in \mathcal{T}_h} \int_K v \frac{\partial u_h}{\partial t} dK + \int_K v \operatorname{div} f(u_h) dK = 0 \qquad \forall v \in V_h^k.$$

• Integrate by parts

$$\sum_{K \in \mathcal{T}_h} \frac{d}{dt} \int_K v u_h dK - \int_K \operatorname{grad} v \cdot f(u_h) dK + \int_{\partial K} v^- n^- \cdot f(u_h^-) dS = 0 \quad \forall v \in V_h^k.$$

with the traces defined as $u_h^{\pm} = \lim_{\epsilon \downarrow 0} u_h(x \pm n)$ and n the unit outward normal vector at ∂K .

Flux Integrals

- Since the basis functions are discontinuous at the element faces we have to account for the multivalued traces.
- We can transform the boundary integrals into:

$$\sum_{K \in \mathcal{T}_h} \int_{\partial K} v^- n^- \cdot f(u_h^-) dS = \sum_S \int_S \frac{1}{2} (v^- n^- + v^+ n^+) \cdot (f(u_h^-) + f(u_h^+)) + \frac{1}{2} (v^- + v^+) (n^- \cdot f(u_h^-) + n^+ \cdot f(u_h^+)) dS$$

with n^- , n^+ the normal vectors at each side of face S, $n^+ = -n^-$.

• The formulation must be conservative, which imposes the condition:

$$\int_{S} vn^{-} \cdot f(u_{h}^{-}) dS = -\int_{S} vn^{+} \cdot f(u_{h}^{+}) dS, \qquad \forall v \in V_{h}^{k}$$

hence the contribution

$$\sum_{S} \int_{S} \frac{1}{2} (v^{-} + v^{+}) (n^{-} \cdot f(u_{h}^{-}) + n^{+} \cdot f(u_{h}^{+})) dS = 0$$

• Using the relation $n^+ = -n^-$, the boundary integrals then are equal to:

$$\sum_{K \in \mathcal{T}_h} \int_{\partial K} v^- n^- \cdot f(u_h^-) dS = \sum_S \int_S (v^- - v^+) \frac{1}{2} n^- \cdot (f(u_h^-) + f(u_h^+)) dS,$$

Numerical Flux

• In order to stabilize the DG FEM formulation the multi-valued trace of the flux at S is replaced with a numerical flux function:

$$\frac{1}{2}n \cdot (f(u_h^-) + f(u_h^+)) \cong H(u_h^-, u_h^+, n)$$

- To ensure convergence the numerical flux must be
 - ► consistent: $H(u, u, n) = n \cdot f(u)$;
 - conservative: $H(u_h^-, u_h^+, n^-) = -H(u_h^+, u_h^-, n^+);$
 - Iocally Lipschitz continuous:

$$|H(u_h^-, u_h^+, n) - H(v_h^-, v_h^+, n)| \le C(|u_h^- - v_h^-| + |u_h^+ - v_h^+|)$$

- To ensure monotonicity the numerical flux must also be
 - ▶ a nondecreasing function of its first argument, and
 - a nonincreasing function of its second argument

Riemann Problem

- A monotone Lipschitz flux $H(u_h^-, u_h^+, n)$ is obtained by (approximately) solving the Riemann problem with initial states u_h^- and u_h^+ at the element faces ∂K .
- This procedure introduces upwinding into the discontinuous Galerkin finite element method.

Riemann problem for Burgers Equation

Solutions of the Riemann problem for the Burgers equation $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}(\frac{1}{2}u^2) = 0.$

Upwind Fluxes

Consistent, monotone Lipschitz fluxes are:

• Godunov flux

$$H^{G}(u_{h}^{-}, u_{h}^{+}, n) = \begin{cases} \min_{u \in [u_{h}^{-}, u_{h}^{+}]} \hat{f}(u), & \text{ if } u_{h}^{-} \le u_{h}^{+} \\ \max_{u \in [u_{h}^{+}, u_{h}^{-}]} \hat{f}(u), & \text{ otherwise,} \end{cases}$$

with $\hat{f}(u) = f(u) \cdot n$.

Upwind Fluxes

• Local Lax-Friedrichs flux

$$\begin{split} H^{LLF}(u_h^-, u_h^+, n) &= \frac{1}{2} (\hat{f}(u_h^-) + \hat{f}(u_h^+) - C(u_h^+ - u_h^-)), \\ C &= \max_{\min(u_h^-, u_h^+) \leq s \leq \max(u_h^-, u_h^+)} |\hat{f}'(s)|, \end{split}$$

• Roe flux with entropy fix

$$H^{Roe}(u_h^-, u_h^+, n) = \begin{cases} \hat{f}(u_h^-), & \text{if } \hat{f}'(u) \ge 0 \text{ for } u \in \mathcal{U} \\ \hat{f}(u_h^+), & \text{if } \hat{f}'(u) \le 0 \text{ for } u \in \mathcal{U} \\ H^{LLF}(u_h^-, u_h^+, n) & \text{otherwise} \end{cases}$$

with
$$\mathcal{U} = [\min(u_h^-, u_h^+), \max(u_h^-, u_h^+]$$

• The choice which numerical flux should be used depends on many aspects, e.g. accuracy, robustness, computational complexity, and personal preference.

DG Discretization

• Introducing the numerical flux into the face integrals then results in

$$\begin{split} \sum_{K \in \mathcal{T}_h} \int_{\partial K} v^- n^- \cdot f(u_h^-) dS &= \sum_S \int_S (v^- - v^+) \frac{1}{2} n^- \cdot (f(u_h^-) + f(u_h^+)) dS \\ &\cong \sum_S \int_S (v^- - v^+) H(u_h^-, u_h^+, n^-) dS \\ &= \sum_{K \in \mathcal{T}_h} \int_{\partial K} v^- H(u_h^-, u_h^+, n^-) dS, \end{split}$$

using the relation $H(u_h^-, u_h^+, n^-) = -H(u_h^+, u_h^-, n^+).$

• The weak formulation then is equal to:

$$\sum_{K \in \mathcal{T}_h} \frac{d}{dt} \int_K v u_h dK - \int_K \operatorname{grad} v \cdot f(u_h) dK + \int_{\partial K} v^- H(u_h^-, u_h^+, n^-) dS = 0 \quad \forall v \in V_h^k.$$

• The DG discretization is obtained after introducing the basis functions

$$egin{aligned} u_h(x,t)|_K &= \sum_{j=0}^M \hat{U}_j(t) \phi_j(x) \ v(x)|_K &= \phi_i(x) \end{aligned}$$
 and zero elsewhere

• For each element $K \in T_h$ the DG discretization becomes a system of ordinary differential equations:

$$\sum_{j=0}^{M} \frac{d\hat{U}_{j}(t)}{dt} \int_{K} \phi_{i} \phi_{j} dK = \int_{K} \operatorname{grad} \phi_{i} \cdot f(u_{h}) dK$$
$$- \int_{\partial K} \phi_{i} H(u_{h}^{-}, u_{h}^{+}, n^{-}) dS = 0, \quad i = 0, \cdots, M.$$

• Evaluate the integrals using quadrature rules. In particular Gaussian quadrature rules are very efficient.

• The resulting discretization can be summarized as

$$M\frac{\partial \hat{\mathbf{U}}}{\partial t} = \mathbf{R}_h(\hat{\mathbf{U}})$$

which can be integrated in time with e.g. a (TVD) Runge-Kutta method.

Time-Dependent Flow Domains

Conservation Laws on Time Dependent Flow Domains

• Consider the scalar conservation law on a time dependent flow domain $\Omega(t) \subset \mathbb{R}^d$:

$$\frac{\partial u}{\partial t} + \operatorname{div} f(u) = 0, \quad \text{on } \Omega(t), \ t \in (t_0, T),$$

with $u: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$ the conserved variable and $f: \mathbb{R} \to \mathbb{R}^d$ the flux vector.

• The boundary and initial conditions are

$$u(x,t) = \mathcal{B}(u,u_w), \quad ext{ at } \partial \Omega(t), \ t \in (t_0,T),$$

 $u(x,0) = u_0(x), \quad ext{ in } \Omega(t_0).$

• We can also consider this problem in a **space-time framework**

Space-Time Domain

Definition of Space-Time Domain

- Let $\mathcal{E} \subset \mathbb{R}^{d+1}$ be an open domain.
- A point $x \in \mathbb{R}^{d+1}$ has coordinates (x_0, \bar{x}) , where x_0 represents time and $\bar{x} := (x_1, \cdots, x_d)$ the spatial coordinates.
- Define the flow domain Ω at time t as:

$$\Omega(t) := \{ \bar{x} \in \mathbb{R} \, | \, (t, \bar{x}) \in \mathcal{E} \}$$

• Define the boundary $\mathcal Q$ as:

$$\mathcal{Q} := \{ x \in \partial \mathcal{E} \mid t_0 < x_0 < T \}$$

• Note : The space-time domain boundary $\partial \mathcal{E}$ is equal to:

$$\partial \mathcal{E} = \Omega(t_0) \cup \mathcal{Q} \cup \Omega(T).$$

Space-Time Formulation of Conservation Laws

• Define the space-time flux vector: $\mathcal{F}(u) := (u, f(u))^T$, then scalar conservation laws can be written as:

$$\operatorname{div} \mathcal{F}(u(x)) = 0, \qquad x \in \mathcal{E}$$

with boundary conditions:

$$u(x) = \mathcal{B}(u, u_w), \qquad x \in \mathcal{Q},$$

and initial condition:

$$u(x) = u_0(x), \qquad x \in \Omega(t_0).$$

• The div operator is defined as: div $\mathcal{F} = \frac{\partial \mathcal{F}_i}{\partial x_i}$.

Space-Time Slab

Space-time slab in space-time domain \mathcal{E} .

Definition of a Space-Time Slab

- Consider a partitioning of the time interval (t_0, T) : $\{t_n\}_{n=0}^N$, and set $I_n = (t_n, t_{n+1})$.
- Define a space-time slab as: $\mathcal{I}_n := \{x \in \mathcal{E} \mid x_0 \in I_n\}$
- Split the space-time slab into non-overlapping elements: \mathcal{K}_j^n .
- We will also use the notation: $K_j^n = \mathcal{K}_j^n \cap \{t_n\}$ and $K_j^{n+1} = \mathcal{K}_j^n \cap \{t_{n+1}\}$

Geometry of Space-Time Element

Geometry of 2D space-time element in both computational and physical space.

Element Mappings

Definition of the mapping $G_{\mathcal{K}}^n$ which the connects the space-time element \mathcal{K}^n to the reference element $\hat{\mathcal{K}} = (-1, 1)^d$:

• Define a smooth, orientation preserving and invertible mapping Φ_t^n in the interval I_n as:

$$\Phi_t^n: \Omega(t_n) \to \Omega(t): \bar{x} \mapsto \Phi_t^n(\bar{x}), \quad t \in I_n.$$

- Split $\Omega(t_n)$ into the tessellation $\overline{\mathcal{T}}_h^n$ with non-overlapping spatial elements K_j .
- Define $\phi_i(\bar{\xi}), \bar{\xi} \in (-1, 1)^d$ as the standard Lagrangian finite element shape functions.

Element Mappings

• The mapping F_K^n is defined as:

$$F_K^n: (-1,1)^d \to K^n: \bar{\xi} \longmapsto \sum_{i=1}^{N_n} x_i(K^n)\phi_i(\bar{\xi}),$$

with $x_i(K^n)$ the spatial coordinates of the nodal points of the space-time element at time $t = t_n$.

• Similarly we define the mapping F_K^{n+1} :

$$F_K^{n+1}: (-1,1)^d \to K^{n+1}: \bar{\xi} \longmapsto \sum_{i=1}^{N_n} \Phi_{t_{n+1}}^n(x_i(K^n))\phi_i(\bar{\xi}).$$

Element Mappings

• The space-time element is defined by linear interpolation in time:

$$G_{\mathcal{K}}^{n}: (-1,1)^{d} \to \mathcal{K}^{n}: (\xi_{0}, \bar{\xi}) \longmapsto (x_{0}, \bar{x}),$$

with:

$$(x_0, \bar{x}) = \left(\frac{1}{2}(t_n + t_{n+1}) - \frac{1}{2}(t_n - t_{n+1})\xi_0, \\ \frac{1}{2}(1 - \xi_0)F_K^n(\bar{\xi}) + \frac{1}{2}(1 + \xi_0)F_K^{n+1}(\bar{\xi})\right)$$

• The space-time tessellation is now defined as:

$$\mathcal{T}_h^n := \{ \mathcal{K} = G_{\mathcal{K}}^n(\hat{\mathcal{K}}) \mid K \in \bar{\mathcal{T}}_h^n \}.$$

Basis Functions

• Define the basis functions ϕ_m in a space-time element $\mathcal K$ as:

$$\phi_m(x) = \hat{\phi}_m \circ \left(G_{\mathcal{K}}^n(x)\right)^{-1}.$$

with $\hat{\phi}_m \in P^k(\hat{\mathcal{K}})$ polynomial basis functions of maximum (or total) degree k on the reference element.

• Introduce the basis functions $\psi_m : \mathcal{K} \to \mathbb{R}$ and split the test and trial functions into an element mean at time t_{n+1} and a fluctuating part:

$$\psi_m(x) = 1, \qquad m = 0,$$

= $\phi_m(x) - \frac{1}{|K(t_{n+1})|} \int_{K(t_{n+1})} \phi_m(x) dK, \quad m \ge 1.$

• The splitting is beneficial for the definition of the stabilization operator and multigrid convergence acceleration.

Finite Element Space

• Define the finite element space $V_h^k(\mathcal{T}_h^n)$ as:

$$V_h^k(\mathcal{T}_h^n) := \left\{ v_h \, \middle| \, v_h |_{\mathcal{K}} \circ G_{\mathcal{K}}^n \in P^k(\hat{\mathcal{K}}), \, \forall \mathcal{K} \in \mathcal{T}_h^n \right\}$$

• The trial functions $u_h : \mathcal{E} \to \mathbb{R}$ are defined in each element $\mathcal{K} \in \mathcal{T}_h^n$ as:

$$u_h(x) = \sum_{m=0}^M \hat{U}_m(\mathcal{K})\psi_m(x), \quad x \in \mathcal{K},$$

with \hat{U}_m the expansion coefficients.

Finite Element Space

• Note : Since $\int_{K(t_{n+1})} \psi_m(x) dK = 0$ for $m \ge 1$, we have the relation:

$$\bar{u}_h(K(t_{n+1})) := \frac{1}{|K(t_{n+1})|} \int_{K(t_{n+1})} u_h dK = \hat{U}_0,$$

and we can write:

with

$$u_h(x) = \bar{u}_h(K(t_{n+1})) + \tilde{u}_h(x),$$

 $\int_{K(t_{n+1})} \tilde{u}_h(x) dK = 0.$

• One of the main benefits of this splitting is that the equation for \hat{U}_0 is very similar to a first order finite volume discretization and is only weakly coupled to the equations for \tilde{u}_h .

- -

Weak Formulation for STDG Method

The scalar conservation law can now be transformed into a weak formulation:

• Find a $u_h \in V_h^k(\mathcal{T}_h^n)$, such that for all $w_h \in V_h^k(\mathcal{T}_h^n)$, we have:

$$\sum_{n=0}^{N_T} \sum_{j=1}^{N_e} \left(\int_{\mathcal{K}_j^n} w_h \operatorname{div} \mathcal{F}(u_h) d\mathcal{K} + \int_{\mathcal{K}_j^n} (\operatorname{grad} w_h)^T \mathfrak{D}(u_h) \operatorname{grad} u_h d\mathcal{K} \right) = 0.$$

• The second integral with $\mathfrak{D}(u_h) \in \mathbb{R}^{d+1}$ is the stabilization operator necessary to obtain monotone solutions near discontinuities.

Weak Formulation

After integration by parts we obtain the following weak formulation:

• Find a $u_h \in V_h^k(\mathcal{T}_h^n)$, such that for all $w_h \in V_h^k(\mathcal{T}_h^n)$, we have:

$$\sum_{n=0}^{N_T}\sum_{j=1}^{N_e} \left(-\int_{\mathcal{K}_j^n} \operatorname{grad} w_h \cdot \mathcal{F}(u_h) d\mathcal{K} + \int_{\partial \mathcal{K}_j^n} w_h^- n^- \cdot \mathcal{F}(u_h^-) d\mathcal{S}
ight.
onumber \ + \int_{\mathcal{K}_j^n} (\operatorname{grad} w_h)^T \mathfrak{D}(u_h) \operatorname{grad} u_h d\mathcal{K}
ight) = 0.$$

Flux Integrals

• Due to the summation over all space-time slabs and elements, the boundary integrals can be transformed into:

$$\sum_{\mathcal{K}} \int_{\partial \mathcal{K}} w_h^- n^- \cdot \mathcal{F}(u_h^-) d\mathcal{S} = \sum_{\mathcal{S}} \int_{\mathcal{S}} \frac{1}{2} (w_h^- - w_h^+) n^- \cdot (\mathcal{F}(u_h^-) + \mathcal{F}(u_h^+)) d\mathcal{S}$$

• Before we can introduce a numerical flux on the right hand side we first need to consider the space-time normal vector.

Arbitrary Lagrangian Eulerian Formulation

• At faces $\mathcal{S} \subseteq \Omega(t_{n+1})$ the space-time normal vector is equal to

 $n = (1, 0, \cdots, 0)$

and at faces $\mathcal{S} \subseteq \Omega(t_n)$ we have

 $n=(-1,0,\cdots,0).$

• At faces $\mathcal{S} \subseteq \mathcal{Q}$ the space-time normal vector can be expressed as:

$$n = (-v_g \cdot \bar{n}, \bar{n}),$$

with v_g the mesh velocity.

- If we introduce this relation into the flux then we obtain at faces $\mathcal{S}\subseteq\mathcal{Q}$

$$\mathcal{F}(u) \cdot n = f(u) \cdot \bar{n} - v_g \cdot \bar{n} \, u,$$

which is exactly the flux in an Arbitrary Lagrangian Eulerian (ALE) formulation.

Numerical Fluxes

• The numerical flux at the boundary faces $K(t_n)$ and $K(t_{n+1})$, which have as normal vectors $n^- = (\mp 1, 0, \cdots, 0)^T$, respectively, is defined as:

$$egin{aligned} H_\Omega(u_h^-,u_h^+,n^-) &= u_h^+ & ext{ at } K(t_n) \ &= u_h^- & ext{ at } K(t_{n+1}) \end{aligned}$$

which ensures causality in time.

• The numerical flux at the boundary faces Q^n is a monotone Lipschitz $H(u_h^-, u_h^+, \bar{n}; v_g)$, which is consistent:

$$H(u, u, \bar{n}; v_g) = n \cdot \mathcal{F}(u) = f(u) \cdot \bar{n} - v_g \cdot \bar{n} u$$

and conservative:

$$H(u_h^-, u_h^+, n^-; v_g) = -H(u_h^+, u_h^-, n^+; v_g).$$

Weak Formulation for DG Discretization

After introducing the numerical fluxes we can transform the weak formulation into:

• Find a $u_h \in V_h^k$, such that for all $w_h \in V_h^k$, the following variational equation is satisfied:

$$egin{aligned} &\sum_{j=1}^{N_n} \left(-\int_{\mathcal{K}_j^n} (ext{grad} \ w_h) \cdot \mathcal{F}(u_h) d\mathcal{K} + \int_{K_j(t_{n+1})} w_h^- u_h^- dK
ight. \ & -\int_{K_j(t_n)} w_h^- u_h^+ dK + \int_{\mathcal{Q}_j^n} w_h^- H(u_h^-, u_h^+, n^-; v_g) d\mathcal{S} \ & + \int_{\mathcal{K}_j^n} (ext{grad} \ w_h)^T \mathfrak{D}(u_h) ext{ grad} \ u_h \, d\mathcal{K}
ight) = 0. \end{aligned}$$

 Note: Due to the causality of the time-flux the solution in a space-time slab only depends explicitly on the data u⁺_h from the previous space-time slab.

DG-Expansion Coefficient Equations for Element Mean

• Introduce the polynomial expansions for u_h and w_h into the weak formulation then the following set of equations for the element mean $\bar{u}_h(K_j(t_{n+1}))$ is obtained:

$$|K_j(t_{n+1})|\bar{u}_h(K_j(t_{n+1})) - |K_j(t_n)|\bar{u}_h(K_j(t_n)) + \int_{\mathcal{Q}_j^n} H(u_h^-, u_h^+, \bar{n}^-; v_g) d\mathcal{Q} = 0.$$

• These equations are equivalent to a first order accurate finite volume formulation, except that more accurate data are used at the element faces.

DG-Expansion Coefficient Equations for Element Fluctuations

• The equations for the coefficients $\hat{U}_m(\mathcal{K}_j^n)$, $(m \ge 1)$ for the fluctuating part of the flow field \tilde{u}_h in each space-time element \mathcal{K}_j^n satisfy the algebraic system

$$\begin{split} \sum_{m=1}^{M} \hat{U}_{m}(\mathcal{K}_{j}^{n}) \Big(-\int_{\mathcal{K}_{j}^{n}} \frac{\partial \psi_{l}}{\partial t} \psi_{m} d\mathcal{K} + \int_{\mathcal{K}_{j}^{n+1}} \psi_{l}(t_{n+1}^{-}, \bar{x}) \psi_{m}(t_{n+1}^{-}, \bar{x}) dK \\ &+ \int_{\mathcal{K}_{j}^{n}} \frac{\partial \psi_{l}}{\partial x_{k}} \mathfrak{D}_{kp}(u_{h}) \frac{\partial \psi_{m}}{\partial x_{p}} d\mathcal{K} \Big) \\ &- \int_{\mathcal{K}_{j}^{n}} u_{h}(t_{n}^{-}, \bar{x}) \psi_{l}(t_{n}^{+}, \bar{x}) dK - \bar{u}_{h}(\mathcal{K}_{j}^{n+1}) \int_{\mathcal{K}_{j}^{n}} \frac{\partial \psi_{l}}{\partial t} d\mathcal{K} \\ &+ \int_{\mathcal{Q}_{j}^{n}} \psi_{l} H(u_{h}^{-}, u_{h}^{+}, \bar{n}^{-}; v_{g}) d\mathcal{S} - \int_{\mathcal{K}_{j}^{n}} \frac{\partial \psi_{l}}{\partial \bar{x}_{i}} f_{i}(u_{h}) d\mathcal{K} = 0, \qquad l = 1, \cdots, M. \end{split}$$

Solution of DG Expansion Coefficient Equations

- The space-time DG formulation results in an implicit time-integration scheme.
- The equations for the DG expansion coefficients are represented as:

$$\mathcal{L}(\hat{U}^n; \hat{U}^{n-1}) = 0.$$

• The non-linear equations for the expansion coefficients \hat{U}^n are solved by introducing a pseudo-time τ and marching the solution with a Runge-Kutta method to a steady state:

$$\frac{\partial \hat{U}(\mathcal{K}^*)}{\partial \tau} = \frac{1}{\Delta t} \mathcal{L}(\hat{U}^*; \hat{U}^{n-1}).$$

• Convergence to steady state in pseudo-time can be accelerated using a FAS multigrid procedure.