
Space-Time Discontinuous Galerkin Methods for

Compressible Flows

Part I Conservation Laws

Jaap van der Vegt

Numerical Analysis and Computational Mechanics Group

Department of Applied Mathematics

University of Twente

The Netherlands

Montreal Scientific Computing Days

April 30 - May 2, 2008

University of Twente - Chair Numerical Analysis and Computational Mechanics 1

Introduction

Challenges for Compressible Flow Simulations

• Efficient capturing of local flow phenomena

- Shocks

- Interior and boundary layers

- Vortical structures

• Time dependent boundaries

- Fluid-structure interaction

• Robustness and computational efficiency

• Complex geometries

University of Twente - Chair Numerical Analysis and Computational Mechanics 2

Improving CFD Algorithms

Options to improve CFD algorithms

• Higher order accuracy on unstructured meshes

• hp-Adaptive methods to capture (non smooth) local structures.

• Space-time approach to account for time-dependent boundaries

• Efficient algorithms for massively parallel computers

These requirements have motivated the development of

Space-Time Discontinuous Galerkin Finite Element Methods

University of Twente - Chair Numerical Analysis and Computational Mechanics 3

Key Features of Space-Time Discontinuous Galerkin Methods

• Simultaneous discretization in space and time: time is considered as a fourth

dimension.

• Discontinuous basis functions, both in space and time, with only a weak coupling

across element faces resulting in an extremely local, element based discretization.

• The space-time DG method is closely related to the Arbitrary Lagrangian Eulerian

(ALE) method.

University of Twente - Chair Numerical Analysis and Computational Mechanics 4

Continuous and Discontinuous Galerkin Approximations

x

u(x)

k k+1
element element

x

u(x)

k k+1
element element

Continuous and discontinuous Galerkin approximation.

University of Twente - Chair Numerical Analysis and Computational Mechanics 5

Benefits of Discontinuous Galerkin Methods

• Due to the extremely local discretization DG methods provide optimal flexibility for

I achieving higher order accuracy on unstructured meshes

I hp-mesh adaptation

I unstructured meshes containing different types of elements, such as tetrahedra,

hexahedra and prisms

I parallel computing

University of Twente - Chair Numerical Analysis and Computational Mechanics 6

Benefits of Space-Time Discontinuous Galerkin Methods

• A conservative discretization is obtained on moving and deforming meshes.

• No data interpolation or extrapolation is necessary on dynamic meshes, at free

boundaries and after mesh adaptation.

University of Twente - Chair Numerical Analysis and Computational Mechanics 7

Disadvantages of Space-(Time) Discontinuous Galerkin Methods

• Algorithms are generally rather complicated, in particular for elliptic and parabolic

partial differential equations

• On structured meshes DG methods are computationally more expensive than finite

difference and finite volume methods.

University of Twente - Chair Numerical Analysis and Computational Mechanics 8

Overview of Lectures

• Lecture 1

I One dimensional example

I DG discretization for conservation laws

I Extension to space-time DG discretizations

• Lecture 2

I Space-time DG discretization of the Euler and Navier-Stokes equations

I Examples of applications

• Lecture 3

I Pseudo-time and multigrid techniques to solve nonlinear algebraic equations

I Examples of applications

University of Twente - Chair Numerical Analysis and Computational Mechanics 9

One-Dimensional Example

Advection equation

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= 0 in (0, 1) × (0, T),

u(x, 0) = u0(x) ∀x ∈ (0, 1),

periodic boundary conditions

with a ∈ R a given constant.

University of Twente - Chair Numerical Analysis and Computational Mechanics 10

DG Discretization for Advection Equation

Basic steps in the derivation of a 1D DG discretization

• Introduce a partition {x
j+1

2
}Nj=0 of the interval (0, 1).

• Define elements Kj := (x
j−1

2
, x

j+1
2
), with j = 1, · · · , N .

• Introduce the finite element space

V
k
h :=

{

v ∈ L
2
(Ω) | v|Kj ∈ P

k
(Kj), j = 1, · · · , N

}

with P k(Kj) polynomials of degree at most k on element Kj.

• Note, the basis functions are discontinuous at element boundaries.

University of Twente - Chair Numerical Analysis and Computational Mechanics 11

• Define the Galerkin approximation:

Find a uh(t) ∈ V k
h , such that for all v ∈ V k

h ,

N
∑

j=1

∫

Kj

v(x)(
∂uh(x, t)

∂t
+ a

∂uh(x, t)

∂x
)dx = 0

• Integrate by parts

N
∑

j=1

d

dt

∫

Kj

v(x)uh(x, t)dx−

∫

Kj

auh(x, t)
∂v(x)

∂x
dx

+ v(x−

j+1
2
)auh(xj+1

2
, t) − v(x+

j−1
2
)auh(xj−1

2
, t) = 0

University of Twente - Chair Numerical Analysis and Computational Mechanics 12

• Note, the trace uh(xj+1
2
, t) at element boundaries is multivalued due to the

discontinuous basis functions.

• Introduce a numerical flux to account for the multivalued trace

H(uh)j+1
2
(t) := H(uh(x

−

j+1
2
, t), uh(x

+

j+1
2
, t))

• The numerical flux is related to the solution of a Riemann problem with left state

uh(x
−

j+1
2

, t) and right state uh(x
+

j+1
2

, t).

• The Riemann problem introduces upwinding into the DG formulation.

University of Twente - Chair Numerical Analysis and Computational Mechanics 13

• Numerical flux

H(uh)j+1
2
(t) =

1

2

(

au
−
h + au

+
h − |a|(u+

h − u
−
h)

)

.

with u±
h := uh(x

±

j+1
2

, t).

• Weak formulation: Find a uh(t) ∈ V k
h , such that for all v ∈ V k

h ,

N
∑

j=1

d

dt

∫

Kj

v(x)uh(x, t)dx−

∫

Kj

auh(x, t)
∂v(x)

∂x
dx

+ v(x−

j+1
2
)H(uh)j+1

2
(t) − v(x+

j−1
2
)H(uh)j−1

2
(t) = 0

University of Twente - Chair Numerical Analysis and Computational Mechanics 14

• Introduce the polynomial expansions for uh and v

uh(t, x)|Kj =

k
∑

m=0

Ûm(t)φm(x)

v(x)|Kj = φi(x), and zero elsewhere

with basis functions φi ∈ P k(Kj) into the weak formulation.

• Then we obtain for each element Kj a system of ordinary differential equations

k
∑

m=0

dÛm

dt

∫

Kj

φi(x)φm(x)dx =

∫

Kj

auh(x, t)
∂φi(x)

∂x
dx

− φi(x
−

j+1
2
)H(uh)j+1

2
(t) + φi(x

+

j−1
2
)H(uh)j−1

2
(t),

j = 1, · · · , N ; i = 0, · · · , k

University of Twente - Chair Numerical Analysis and Computational Mechanics 15

• or symbolically

M
dÛ

dt
= Rh(Û).

• Integrate in time using the third order Runge-Kutta scheme of Shu and Osher

Û
(1)

= Û
n

+ 4tM−1
Rh(Û

n
)

Û
(2)

=
1

4

[

3Û
n

+ Û
(1)

+ 4tM−1
Rh(Û

(1)
)
]

Û
n+1 =

1

3

[

Û
n + 2Û(2) + 24tM−1

Rh(Û
(2))

]

• The time integration is stable for the CFL condition CFL ≤ 1 with

CFL =
|a|4t

minj |Kj|

University of Twente - Chair Numerical Analysis and Computational Mechanics 16

• For non-smooth initial data the solution will be oscillatory.

• To reduce numerical oscillations a slope limiter is used.

• The basic idea is to replace the original polynomial approximation uh with a less

oscillatory polynomial ũh using a reconstruction from data at the midpoints of the

element and its neighbors.

University of Twente - Chair Numerical Analysis and Computational Mechanics 17

P1
P2P0

uj−1

uj
uj+1

xj−1 xj
xj+1

Kj−1 Kj Kj+1

Construction of a slope limiter

University of Twente - Chair Numerical Analysis and Computational Mechanics 18

• For uh ∈ V 1
h , construct two linear polynomials P1 and P2:

P1 =
uj(x− xj−1) − uj−1(x− xj)

xj − xj−1

, P2 =
uj(x− xj+1) − uj+1(x− xj)

xj − xj+1

• Project the polynomials Pi, i = 0, 1, 2, with P0 = uh, onto the DG-space V 1
h

and solve for (Û0)i and (Û1)i:

[
∫

Kj
φ0φ0 dK

∫

Kj
φ0φ1 dK

∫

Kj
φ1φ0 dK

∫

Kj
φ1φ1 dK

]

[

(Û0)i
(Û1)i

]

=

[
∫

Kj
φ0Pi dK

∫

Kj
φ1Pi dK

]

University of Twente - Chair Numerical Analysis and Computational Mechanics 19

• Use an oscillation indicator oi = ∂Pi/∂x, i = 0, 1, 2, to assess the smoothness

of the polynomials.

• The polynomial coefficients Ũm of the limited solution ũh are constructed as a

weighted sum of all polynomials

Ũm =
2

∑

i=0

wi(Ûm)i, m = 0, 1

• The weights are

wi =
(ε + oi(Pi))

−γ

∑ 2
j=0(ε+ oi(Pj))−γ

• Take γ = 1 and ε � 1. For more smoothing increase γ.

University of Twente - Chair Numerical Analysis and Computational Mechanics 20

• The limited solution then is equal to

ũh =
1

∑

m=0

Ũm(t)φm(x)

• A serious problem with limiters is that the limited solution does not satisfy

the DG discretization. This prevents convergence to steady state.

• An alternative for limiters are stabilization operators.

University of Twente - Chair Numerical Analysis and Computational Mechanics 21

General Conservation Laws

• Consider the general conservation law on Ω ⊂ R
d

∂u

∂t
+ divf(u) = 0 ∀(x, t) ∈ Ω × (0, T),

u(0, x) = u0(x) ∀x ∈ Ω,

u(t, x) = B(u, uw) ∀(x, t) ∈ ∂Ω × (0, T).

with u : R
d × R → R the conserved variable and f : R → R

d the flux vector.

University of Twente - Chair Numerical Analysis and Computational Mechanics 22

Computational Mesh and Basis Functions

• Introduce a tessellation Th of Ω

Th :=
{

K | ∪ K̄ = Ω̄ and K ∩K ′
= ∅ if K 6= K

′}
.

• Define reference element(s), e.g. a reference cube K̂ = [−1, 1]d.

• Define polynomial basis functions P k(K̂) of maximum (or total) degree k on the

reference element.

University of Twente - Chair Numerical Analysis and Computational Mechanics 23

• The element K is related to the reference element K̂ using an isoparametric

mapping

FK : K̂ → K; ξ 7→ x =
m

∑

i=1

xi(K)φ̂i(ξ).

with xi(K) the nodal points of element K and φ̂i ∈ P k(K̂) the basis functions.

• Use the element mapping FK : K̂ → K to define the basis functions on element

K

φm(x) = φ̂m ◦ F−1
K (x).

• Define the finite element space

V k
h :=

{

v ∈ L2(Ω) | v|K ◦ FK ∈ P k(K̂) ∀K ∈ Th
}

.

• Note, the basis functions are discontinuous at the element faces.

University of Twente - Chair Numerical Analysis and Computational Mechanics 24

Weak Formulation

• Multiply the conservation law with arbitrary test functions v ∈ V k
h , replace u with

uh, integrate over K and sum over all elements

∑

K∈Th

∫

K

v
∂uh

∂t
dK +

∫

K

v divf(uh)dK = 0 ∀v ∈ V
k
h .

• Integrate by parts

∑

K∈Th

d

dt

∫

K

vuhdK−

∫

K

gradv·f(uh)dK+

∫

∂K

v−n−·f(u−
h)dS = 0 ∀v ∈ V k

h .

with the traces defined as u±
h = limε↓0 uh(x± n) and n the unit outward

normal vector at ∂K.

University of Twente - Chair Numerical Analysis and Computational Mechanics 25

Flux Integrals

• Since the basis functions are discontinuous at the element faces we have to

account for the multivalued traces.

• We can transform the boundary integrals into:

∑

K∈Th

∫

∂K

v
−
n

− · f(u−
h)dS =

∑

S

∫

S

1

2
(v

−
n

−
+ v

+
n

+
) · (f(u−

h) + f(u
+
h))

+
1

2
(v

−
+ v

+
)(n

− · f(u−
h) + n

+ · f(u+
h))dS

with n−, n+ the normal vectors at each side of face S, n+ = −n−.

University of Twente - Chair Numerical Analysis and Computational Mechanics 26

• The formulation must be conservative, which imposes the condition:

∫

S

vn
− · f(u−

h)dS = −

∫

S

vn
+ · f(u+

h)dS, ∀v ∈ V
k
h

hence the contribution

∑

S

∫

S

1

2
(v− + v+)(n− · f(u−

h) + n+ · f(u+
h))dS = 0

• Using the relation n+ = −n−, the boundary integrals then are equal to:

∑

K∈Th

∫

∂K

v−n− · f(u−
h)dS =

∑

S

∫

S

(v− − v+)
1

2
n− · (f(u−

h) + f(u+
h))dS,

University of Twente - Chair Numerical Analysis and Computational Mechanics 27

Numerical Flux

• In order to stabilize the DG FEM formulation the multi-valued trace of the flux at

S is replaced with a numerical flux function:

1

2
n · (f(u−

h) + f(u+
h)) ∼= H(u−

h , u
+
h , n)

University of Twente - Chair Numerical Analysis and Computational Mechanics 28

• To ensure convergence the numerical flux must be

I consistent: H(u, u, n) = n · f(u);

I conservative: H(u−
h , u

+
h , n

−) = −H(u+
h , u

−
h , n

+);

I locally Lipschitz continuous:

|H(u−
h , u

+
h , n) −H(v−h , v

+
h , n)| ≤ C(|u−

h − v−h | + |u+
h − v+

h |)

University of Twente - Chair Numerical Analysis and Computational Mechanics 29

• To ensure monotonicity the numerical flux must also be

I a nondecreasing function of its first argument, and

I a nonincreasing function of its second argument

University of Twente - Chair Numerical Analysis and Computational Mechanics 30

Riemann Problem

• A monotone Lipschitz flux H(u−
h , u

+
h , n) is obtained by (approximately) solving

the Riemann problem with initial states u−
h and u+

h at the element faces ∂K.

• This procedure introduces upwinding into the discontinuous Galerkin finite element

method.

University of Twente - Chair Numerical Analysis and Computational Mechanics 31

Riemann problem for Burgers Equation

u

x’

u u uu

x’

right
shock

u

u

x’

uu

u

centered rarefaction
x’x’

left

right rarefaction

shock

left rarefaction

t’

t’ t’

t’t’

−
+ − +

− + − +

− +

Solutions of the Riemann problem for the Burgers equation ∂u
∂t + ∂

∂x(
1
2u

2) = 0.

University of Twente - Chair Numerical Analysis and Computational Mechanics 32

Upwind Fluxes

Consistent, monotone Lipschitz fluxes are:

• Godunov flux

HG(u−
h , u

+
h , n) =



















min
u∈[u−

h
,u+
h

]

f̂(u), if u
−
h ≤ u

+
h

max
u∈[u+

h
,u−
h

]

f̂(u), otherwise,

with f̂(u) = f(u) · n.

University of Twente - Chair Numerical Analysis and Computational Mechanics 33

Upwind Fluxes

• Local Lax-Friedrichs flux

H
LLF

(u
−
h , u

+
h , n) =

1

2
(f̂(u

−
h) + f̂(u

+
h) − C(u

+
h − u

−
h)),

C = max
min(u−

h
,u+
h

)≤s≤max(u−
h
,u+
h

)

|f̂ ′
(s)|,

University of Twente - Chair Numerical Analysis and Computational Mechanics 34

• Roe flux with entropy fix

HRoe(u−
h , u

+
h , n) =



















f̂(u−
h), if f̂ ′(u) ≥ 0 for u ∈ U

f̂(u+
h), if f̂ ′(u) ≤ 0 for u ∈ U

H
LLF

(u
−
h , u

+
h , n) otherwise

with U = [min(u−
h , u

+
h),max(u−

h , u
+
h]

• The choice which numerical flux should be used depends on many aspects, e.g.

accuracy, robustness, computational complexity, and personal preference.

University of Twente - Chair Numerical Analysis and Computational Mechanics 35

DG Discretization

• Introducing the numerical flux into the face integrals then results in

∑

K∈Th

∫

∂K

v
−
n

− · f(u−
h)dS =

∑

S

∫

S

(v
− − v

+
)
1

2
n

− · (f(u−
h) + f(u

+
h))dS

∼=
∑

S

∫

S

(v− − v+)H(u−
h , u

+
h , n

−)dS

=
∑

K∈Th

∫

∂K

v
−
H(u

−
h , u

+
h , n

−
)dS,

using the relation H(u−
h , u

+
h , n

−) = −H(u+
h , u

−
h , n

+).

University of Twente - Chair Numerical Analysis and Computational Mechanics 36

• The weak formulation then is equal to:

∑

K∈Th

d

dt

∫

K

vuhdK −

∫

K

gradv · f(uh)dK

+

∫

∂K

v
−
H(u

−
h , u

+
h , n

−
)dS = 0 ∀v ∈ V

k
h .

• The DG discretization is obtained after introducing the basis functions

uh(x, t)|K =
M

∑

j=0

Ûj(t)φj(x)

v(x)|K = φi(x) and zero elsewhere

University of Twente - Chair Numerical Analysis and Computational Mechanics 37

• For each element K ∈ Th the DG discretization becomes a system of ordinary

differential equations:

M
∑

j=0

dÛj(t)

dt

∫

K

φiφjdK =

∫

K

gradφi · f(uh)dK

−

∫

∂K

φiH(u
−
h , u

+
h , n

−
)dS = 0, i = 0, · · · ,M.

• Evaluate the integrals using quadrature rules. In particular Gaussian quadrature

rules are very efficient.

University of Twente - Chair Numerical Analysis and Computational Mechanics 38

• The resulting discretization can be summarized as

M
∂Û

∂t
= Rh(Û)

which can be integrated in time with e.g. a (TVD) Runge-Kutta method.

University of Twente - Chair Numerical Analysis and Computational Mechanics 39

Time-Dependent Flow Domains

x1(t)

t

1x

(t)Ω

Ω (t)

Example of a time dependent flow domain Ω(t).

University of Twente - Chair Numerical Analysis and Computational Mechanics 40

Conservation Laws on Time Dependent Flow Domains

• Consider the scalar conservation law on a time dependent flow domain Ω(t) ⊂ R
d:

∂u

∂t
+ divf(u) = 0, on Ω(t), t ∈ (t0, T),

with u : R
d × R → R the conserved variable and f : R → R

d the flux vector.

• The boundary and initial conditions are

u(x, t) = B(u, uw), at ∂Ω(t), t ∈ (t0, T),

u(x, 0) = u0(x), in Ω(t0).

• We can also consider this problem in a space-time framework

University of Twente - Chair Numerical Analysis and Computational Mechanics 41

Space-Time Domain

Q

x

1x

Q

)0(tΩ

Ω (t)

Ω(T)

E

0

Example of a space-time domain E .

University of Twente - Chair Numerical Analysis and Computational Mechanics 42

Definition of Space-Time Domain

• Let E ⊂ R
d+1 be an open domain.

• A point x ∈ R
d+1 has coordinates (x0, x̄), where x0 represents time and

x̄ := (x1, · · · , xd) the spatial coordinates.

• Define the flow domain Ω at time t as:

Ω(t) := {x̄ ∈ R | (t, x̄) ∈ E}

.
• Define the boundary Q as:

Q := {x ∈ ∂E | t0 < x0 < T}

.
• Note : The space-time domain boundary ∂E is equal to:

∂E = Ω(t0) ∪ Q ∪ Ω(T).

University of Twente - Chair Numerical Analysis and Computational Mechanics 43

Space-Time Formulation of Conservation Laws

• Define the space-time flux vector: F(u) := (u, f(u))T , then scalar conservation

laws can be written as:

divF(u(x)) = 0, x ∈ E

with boundary conditions:

u(x) = B(u, uw), x ∈ Q,

and initial condition:

u(x) = u0(x), x ∈ Ω(t0).

• The div operator is defined as: divF =
∂Fi
∂xi

.

University of Twente - Chair Numerical Analysis and Computational Mechanics 44

Space-Time Slab

x

T

1x

K

K

n

n

n+1t

nt

I

j

n+1
j

E

jK
n

QjQ
n

j
n

Ω(T)
0

Space-time slab in space-time domain E .

University of Twente - Chair Numerical Analysis and Computational Mechanics 45

Definition of a Space-Time Slab

• Consider a partitioning of the time interval (t0, T): {tn}
N
n=0, and set

In = (tn, tn+1).

• Define a space-time slab as: In := {x ∈ E | x0 ∈ In}

• Split the space-time slab into non-overlapping elements: Kn
j .

• We will also use the notation: Kn
j = Kn

j ∩ {tn} and Kn+1
j = Kn

j ∩ {tn+1}

University of Twente - Chair Numerical Analysis and Computational Mechanics 46

Geometry of Space-Time Element

t

x

∆

∆

t

x

∆
∆t−

Fn
K

GK
1

1
ξ

ξ

[−1,1]
2

S

n

S
2

t2

0

K
n+1

K

K
n

x
n=

n

Geometry of 2D space-time element in both computational and physical space.

University of Twente - Chair Numerical Analysis and Computational Mechanics 47

Element Mappings

Definition of the mapping Gn
K which the connects the space-time element Kn to the

reference element K̂ = (−1, 1)d:

• Define a smooth, orientation preserving and invertible mapping Φn
t in the interval

In as:

Φ
n
t : Ω(tn) → Ω(t) : x̄ 7→ Φ

n
t (x̄), t ∈ In.

• Split Ω(tn) into the tessellation T̄ n
h with non-overlapping spatial elements Kj.

• Define φi(ξ̄), ξ̄ ∈ (−1, 1)d as the standard Lagrangian finite element shape

functions.

University of Twente - Chair Numerical Analysis and Computational Mechanics 48

Element Mappings

• The mapping F n
K is defined as:

F
n
K : (−1, 1)

d → K
n

: ξ̄ 7−→
Nn
∑

i=1

xi(K
n
)φi(ξ̄),

with xi(K
n) the spatial coordinates of the nodal points of the space-time element

at time t = tn.

• Similarly we define the mapping F n+1
K :

F
n+1
K : (−1, 1)

d → K
n+1

: ξ̄ 7−→
Nn
∑

i=1

Φ
n
tn+1

(xi(K
n
))φi(ξ̄).

University of Twente - Chair Numerical Analysis and Computational Mechanics 49

Element Mappings

• The space-time element is defined by linear interpolation in time:

Gn
K : (−1, 1)d → Kn : (ξ0, ξ̄) 7−→ (x0, x̄),

with:

(x0, x̄) =
(

1
2(tn + tn+1) −

1
2(tn − tn+1)ξ0,

1
2(1 − ξ0)F

n
K(ξ̄) + 1

2(1 + ξ0)F
n+1
K (ξ̄)

)

.

• The space-time tessellation is now defined as:

T n
h := {K = Gn

K(K̂) |K ∈ T̄ n
h }.

University of Twente - Chair Numerical Analysis and Computational Mechanics 50

Basis Functions

• Define the basis functions φm in a space-time element K as:

φm(x) = φ̂m ◦ (Gn
K(x))−1.

with φ̂m ∈ P k(K̂) polynomial basis functions of maximum (or total) degree k on

the reference element.

• Introduce the basis functions ψm : K → R and split the test and trial functions

into an element mean at time tn+1 and a fluctuating part:

ψm(x) = 1, m = 0,

= φm(x) −
1

|K(tn+1)|

∫

K(tn+1)

φm(x)dK, m ≥ 1.

University of Twente - Chair Numerical Analysis and Computational Mechanics 51

• The splitting is beneficial for the definition of the stabilization operator and

multigrid convergence acceleration.

University of Twente - Chair Numerical Analysis and Computational Mechanics 52

Finite Element Space

• Define the finite element space V k
h (T n

h) as:

V k
h (T n

h) :=
{

vh

∣

∣

∣
vh|K ◦Gn

K ∈ P k(K̂), ∀K ∈ T n
h

}

• The trial functions uh : E → R are defined in each element K ∈ T n
h as:

uh(x) =

M
∑

m=0

Ûm(K)ψm(x), x ∈ K,

with Ûm the expansion coefficients.

University of Twente - Chair Numerical Analysis and Computational Mechanics 53

Finite Element Space

• Note : Since
∫

K(tn+1)
ψm(x)dK = 0 for m ≥ 1, we have the relation:

ūh(K(tn+1)) :=
1

|K(tn+1)|

∫

K(tn+1)

uhdK = Û0,

and we can write:

uh(x) = ūh(K(tn+1)) + ũh(x),

with
∫

K(tn+1)
ũh(x)dK = 0.

• One of the main benefits of this splitting is that the equation for Û0 is very similar

to a first order finite volume discretization and is only weakly coupled to the

equations for ũh.

University of Twente - Chair Numerical Analysis and Computational Mechanics 54

Weak Formulation for STDG Method

The scalar conservation law can now be transformed into a weak formulation:

• Find a uh ∈ V k
h (T n

h), such that for all wh ∈ V k
h (T n

h), we have:

NT
∑

n=0

Ne
∑

j=1

(

∫

Kn
j

wh divF(uh)dK +

∫

Kn
j

(gradwh)
T

D(uh) graduhdK
)

= 0.

• The second integral with D(uh) ∈ R
d+1 is the stabilization operator necessary to

obtain monotone solutions near discontinuities.

University of Twente - Chair Numerical Analysis and Computational Mechanics 55

Weak Formulation

After integration by parts we obtain the following weak formulation:

• Find a uh ∈ V k
h (T n

h), such that for all wh ∈ V k
h (T n

h), we have:

NT
∑

n=0

Ne
∑

j=1

(

−

∫

Kn
j

gradwh · F(uh)dK +

∫

∂Kn
j

w−
h n

− · F(u−
h)dS

+

∫

Kn
j

(gradwh)
T

D(uh) graduhdK
)

= 0.

University of Twente - Chair Numerical Analysis and Computational Mechanics 56

Flux Integrals

• Due to the summation over all space-time slabs and elements, the boundary

integrals can be transformed into:

∑

K

∫

∂K

w−
h n

− · F(u−
h)dS =

∑

S

∫

S

1

2
(w−

h − w+
h)n− · (F(u−

h) + F(u+
h))dS

• Before we can introduce a numerical flux on the right hand side we first need to

consider the space-time normal vector.

University of Twente - Chair Numerical Analysis and Computational Mechanics 57

Arbitrary Lagrangian Eulerian Formulation

• At faces S ⊆ Ω(tn+1) the space-time normal vector is equal to

n = (1, 0, · · · , 0)

and at faces S ⊆ Ω(tn) we have

n = (−1, 0, · · · , 0).

• At faces S ⊆ Q the space-time normal vector can be expressed as:

n = (−vg · n̄, n̄),

with vg the mesh velocity.

University of Twente - Chair Numerical Analysis and Computational Mechanics 58

• If we introduce this relation into the flux then we obtain at faces S ⊆ Q

F(u) · n = f(u) · n̄− vg · n̄ u,

which is exactly the flux in an Arbitrary Lagrangian Eulerian (ALE) formulation.

University of Twente - Chair Numerical Analysis and Computational Mechanics 59

Numerical Fluxes

• The numerical flux at the boundary faces K(tn) and K(tn+1), which have as

normal vectors n− = (∓1, 0, · · · , 0)T , respectively, is defined as:

HΩ(u−
h , u

+
h , n

−) =u+
h at K(tn)

=u−
h at K(tn+1)

which ensures causality in time.

• The numerical flux at the boundary faces Qn is a monotone Lipschitz

H(u−
h , u

+
h , n̄; vg), which is consistent:

H(u, u, n̄; vg) = n · F(u) = f(u) · n̄− vg · n̄ u

and conservative:

H(u
−
h , u

+
h , n

−
; vg) = −H(u

+
h , u

−
h , n

+
; vg).

University of Twente - Chair Numerical Analysis and Computational Mechanics 60

Weak Formulation for DG Discretization

After introducing the numerical fluxes we can transform the weak formulation into:

• Find a uh ∈ V k
h , such that for all wh ∈ V k

h , the following variational equation is

satisfied:

Nn
∑

j=1

(

−

∫

Kn
j

(gradwh) · F(uh)dK +

∫

Kj(tn+1)

w−
h u

−
h dK

−

∫

Kj(tn)

w
−
h u

+
hdK +

∫

Qn
j

w
−
hH(u

−
h , u

+
h , n

−
; vg)dS

+

∫

Kn
j

(grad wh)
T
D(uh) graduh dK

)

= 0.

• Note: Due to the causality of the time-flux the solution in a space-time slab only

depends explicitly on the data u+
h from the previous space-time slab.

University of Twente - Chair Numerical Analysis and Computational Mechanics 61

DG-Expansion Coefficient Equations for Element Mean

• Introduce the polynomial expansions for uh and wh into the weak formulation then

the following set of equations for the element mean ūh(Kj(tn+1)) is obtained:

∣

∣Kj(tn+1)
∣

∣ūh(Kj(tn+1))−
∣

∣Kj(tn)
∣

∣ūh(Kj(tn))+

∫

Qn
j

H(u−
h , u

+
h , n̄

−; vg)dQ = 0.

• These equations are equivalent to a first order accurate finite volume formulation,

except that more accurate data are used at the element faces.

University of Twente - Chair Numerical Analysis and Computational Mechanics 62

DG-Expansion Coefficient Equations for Element Fluctuations

• The equations for the coefficients Ûm(Kn
j), (m ≥ 1) for the fluctuating part of

the flow field ũh in each space-time element Kn
j satisfy the algebraic system

M
∑

m=1

Ûm(Kn
j)

(

−

∫

Kn
j

∂ψl

∂t
ψmdK +

∫

Kn+1
j

ψl(t
−
n+1, x̄)ψm(t

−
n+1, x̄)dK

+

∫

Kn
j

∂ψl

∂xk
Dkp(uh)

∂ψm

∂xp
dK

)

−

∫

Kn
j

uh(t
−
n , x̄)ψl(t

+
n , x̄)dK − ūh(K

n+1
j)

∫

Kn
j

∂ψl

∂t
dK

+

∫

Qn
j

ψlH(u−
h , u

+
h , n̄

−; vg)dS −

∫

Kn
j

∂ψl

∂x̄i
fi(uh)dK = 0, l = 1, · · · ,M.

University of Twente - Chair Numerical Analysis and Computational Mechanics 63

Solution of DG Expansion Coefficient Equations

• The space-time DG formulation results in an implicit time-integration scheme.

• The equations for the DG expansion coefficients are represented as:

L(Û
n
; Û

n−1
) = 0.

• The non-linear equations for the expansion coefficients Ûn are solved by

introducing a pseudo-time τ and marching the solution with a Runge-Kutta

method to a steady state:

∂Û(K∗)

∂τ
=

1

4t
L(Û

∗
; Û

n−1
).

• Convergence to steady state in pseudo-time can be accelerated using a FAS

multigrid procedure.

