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Ferrers diagram

(Al,...,/\k)with AM>...>2 X >0

=
A= (7,5,5,3,0)

Length=number of rows + number of columns=X; + k



Number

11 10 9
L2

Number the border : 1,2,...,12



Number

Code the border: DUUDDUUDUUUD



Number

Code the border: DUUDDUUDUUUD
Number of Ferrers diagrams of length n : 271



Example |

A=(n,n,...,n)
One 1 in each row and column : Permutation matrix

The number of PM of length 2n is n!.

o = 412635
An inversion in a permutation is a couple 1
(7,j) such that i < j and o(i) > o(j).

1
Question: What is the generating function 1

Z qinv(a) ? 1

ceS,
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Example | (continued)

Any X and one 1 per row and per column : Rook placements
The number of RP of length 2n is (2n — 1)!1.
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Example | (continued)

Any X and one 1 per row and per column : Rook placements
The number of RP of length 2n is (2n — 1)!1.
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Example | (continued)

Any X and one 1 per row and per column : Rook placements
The number of RP of length 2n is (2n — 1)!1.
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Example | (continued)

Any X and one 1 per row and per column : Rook placements
The number of RP of length 2n is (2n — 1)!1.
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Example | (continued)

Any X and one 1 per row and per column : Rook placements
The number of RP of length 2n is (2n — 1)!1.
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Example | (continued)

Any X and one 1 per row and per column : Rook placements
The number of RP of length 2n is (2n — 1)!1.
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Example | (continued)

Any X and one 1 per row and per column : Rook placements
The number of RP of length 2n is (2n — 1)!1.
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Crossings < Inversions

Z qcr(m) — Z qinv(R)

meNh, rook placement



Example | (cont.)

Ealrges

S ™R = WD+ UV

rook placement

where DU =qUD + 1, (W|U=0, D|V)=0, (W|V)=L1

n

S @ = Sy () - () )

rook placement i=0

(Touchard 50s, Riordan 70s)



Example [l

Pierre Leroux (88) 0-1 tableaux : One 1 per column.
The number of tableaux of length n is B, (the n'" Bell number)

Set partitions — 0-1 tableaux

m=(1,34,8)(2)(56)7,9)
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Pierre Leroux (88) 0-1 tableaux : One 1 per column.
The number of tableaux of length n is B, (the n'" Bell number)

Set partitions — 0-1 tableaux
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Example [l

Pierre Leroux (88) 0-1 tableaux : One 1 per column.
The number of tableaux of length n is B, (the n'" Bell number)

Set partitions — 0-1 tableaux

m=(1,34,8)(2)(56)7.9)
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Example Il

Pierre Leroux (88) 0-1 tableaux : One 1 per column.
The number of tableaux of length n is B, (the n" Bell number)

Set partitions — 0-1 tableaux

WX =

N x [~

m=(1,3,4,8)(2)(5,6)(7,9) >

S
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Sq(n, k) — Z qinv(T)

0-1 tableaux
length n, k rows



Example Il

Pierre Leroux (88) 0-1 tableaux : One 1 per column.
The number of tableaux of length n is B, (the n" Bell number)

Set partitions — 0-1 tableaux

WX =

N x |~

m=(1,3,4,8)(2)(5,6)(7,9) >

5~

e ¥l
o X[ XX~

Sq(n7 k) — Z qinv(T)

0-1 tableaux
length n, k rows

g-Log concavity (Leroux 88)

Sq(n, k)? — Sq(n, k —1)Sy(n, k 4 1)>,0.



Example Il (cont.)

R

Enumeration

Sa(n, k) = [y*KW|(yD + U)"|V)

with DU = qUD + U, (W|E =0, D|V) = 1.

Sq(n, k) = 1_an2 <kj—j>{k7qq

(Wachs and White 88)



Permutation tableaux (Postnikov 01, Williams 04)

Origin : Totally non negative part of the Grassmanian

Permutation tableau 7 : a Ferrers diagram filled with 0's and 1's
such that :

1. Each column contains at least one 1.

2. There is no 0 which has a 1 above it in the same column and
a 1 to its left in the same row.

ofof[1fofo]1]1] olof[1]ofof1]1]
ofof1]o o[ofofo]1
o[1]1]1 o[1]o]1]1
ofofo ofo]o
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Permutation tableaux (Postnikov 01, Williams 04)
Origin : Totally non negative part of the Grassmanian

Permutation tableau 7 : a Ferrers diagram filled with 0's and 1's
such that :

1. Each column contains at least one 1.

2. There is no 0 which has a 1 above it in the same column and
a 1 to its left in the same row.

olof1]o]of1]1] o[1]o]o|1}1]
olof1]o o]0 o]
of1|1]1 oj1|opx]1
olofo 0loto

1] P

Number of permutation tableaux of length n is n!



Permutation tableaux and alternative tableaux

Restricted zero : lies below some 1
A permutation tableau is uniquely defined by its topmost ones and

rightmost restricted zeros.

(C. Nadeau 07)
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Permutation tableaux and alternative tableaux

Restricted zero : lies below some 1
A permutation tableau is uniquely defined by its topmost ones and
rightmost restricted zeros.
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Permutation tableaux and alternative tableaux

Restricted zero : lies below some 1
A permutation tableau is uniquely defined by its topmost ones and

rightmost restricted zeros.

(C. Nadeau 07)
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Permutation tableaux and alternative tableaux

Restricted zero : lies below some 1
A permutation tableau is uniquely defined by its topmost ones and
rightmost restricted zeros.

(C. Nadeau 07)
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Alternative tableaux (Viennot 08, Nadeau 09)



Permutation tableaux and permutations

Columns < Descents
(C. and Nadeau 07)
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Permutation tableaux and permutations

Columns < Descents
(C. and Nadeau 07)
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Permutation tableaux and permutations

Columns <+ Descents
(C. and Nadeau 07)

1 1l1]1]s
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Permutation tableaux and permutations

Columns <+ Descents
(C. and Nadeau 07)

1l1]1]s
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(8,11,1,4)



Permutation tableaux and permutations

Columns <+ Descents
(C. and Nadeau 07)
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(10,8,11,1,4)



Permutation tableaux and permutations

Columns <+ Descents
(C. and Nadeau 07)
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Permutation tableaux and permutations

Columns <+ Descents
(C. and Nadeau 07)
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Permutation tableaux and permutations

Columns <+ Descents
(C. and Nadeau 07)
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(10,8,11, 1,7,9,6,4)



Other bijections

» Postnikov 01, Steingrimsson and Williams 05 : excedances
and crossings.

» Burstein 05 : cycles
» C. and Nadeau 07 : descents and 31-2.

» Viennot 07 : descents



Enumeration of PT

» u(7) : number of unrestricted rows minus one

» f(7) : number of ones in the first row

ofof1]ofo]1]1]
0f[0f1f0f1 =
0f1]1]1f1
| 1]
n—1
> DY D =TT (x+y +i) = (x+y)n.
T length n+1 i=0

(C. and Nadeau 07)



g-enumeration of PT of a given shape

wt(7): number of ones minus number of columns

1of1]oof1]1]

o[o]1fo]1

of1]1]1]1] wt(Z7)=10-7=3
wt(7)

F)\(q) - ZT shape A q
For any A and a given corner, we define smaller Young diagrams:

A1) = A2 = | A(3) = |

= o

Fx(q) is defined by the recurrence

Fx = qFy\o) + Fy\o + F@); Fop=1

(Williams 05)



g-enumeration of PT of a given shape

As columns « descents
Non commutative symmetric functions (Tevlin 07)

\=(7,5,5,3,1)




g-enumeration of PT of a given shape

As columns « descents
Non commutative symmetric functions (Tevlin 07)

A=(7,5,5,3,1)

I\ = (1,3,3,1,3)

p
Fa(q) = eipy(@) = Y _(—q) D= D=0 T k],
J=I k=1

(Novelli, Thibon, Williams 08)



g-enumeration (cont.)

Eknq) Z F)\

Z(A)
length n

g-enumeration of PT of length n with k rows

Ein(q) = " 2( )[k"]q(< >qk - (ifl))

(Williams 05)
g-analogue of Eulerian numbers
g = 0 Narayana numbers, g = —1 Binomial numbers

Moments of g-Laguerre polynomials
(Kasraoui and Zeng 09)



PT permutation tableaux and Motzkin paths

= Y A== Y )

A length n p length n

Weight of each step starting at height h is
» East: 1—¢g"lorl—g"
» North-East : 1 — ght!
» South-East : 1 — g”
g-Laguerre Polynomials

n

Fa(q) = ﬁ > (-1) <(n2_"k> — (n _2:_ 2>> Zk: G k+1)

k=0 j=0
(C. Josuat-Verges, Prellberg, Rubey 09)



PT permutation tableaux and Matrix Ansatz

Fr1(q: ¢, 8) = 3 "7 tength nt1 gt (D)o (T) g—u(T),

Fot1(q,a, B) = (W|(D + U)"|V), where
DU = qUD + D + U;

Lj_,-'“

a(W|E = (W[,

quF+

N

pDIV) =[V) (W]|V) = 1.

(C. Williams 06)



PT permutation tableaux and Motzkin paths

1
Frii(q, o, B) = =g > wip)
p length n

7 - Loy j= qul +1
Weight of each step starting at height h is

» East: 1—aqg"or 1— 3¢g"

» North-East : 1 — gt!

» South-East : 1 — &3qh~1

(Brak, C. Essam, Parviainen,Rechnitzer 05)

a =



Enumeration of PT (The end)

with

_ 2n 2n . ~ 2. _ - m ~m—k 2k .
Dn,k—<n_k> <n—k—2>' Bm(avﬁvq)_;[k]qa ﬁy
5" . (k+1) m-+ k

Rn,m = Z (_1) Dn,m+2kq 2 k
k=0 q

(Josuat-Verges 09)



PT and Partially asymmetric exclusion process
Model : n sites that are empty or occupied

The sites are delimited by n+ 1 positions (n — 1 positions in
between sites, left border and right border).
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PT and Partially asymmetric exclusion process

Model : n sites that are empty or occupied
The sites are delimited by n+ 1 positions (n — 1 positions in
between sites, left border and right border).

» First a position is chosen at random

» A particle hops to the right with probability 1
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PT and Partially asymmetric exclusion process

Model : n sites that are empty or occupied
The sites are delimited by n+ 1 positions (n — 1 positions in
between sites, left border and right border).

» First a position is chosen at random

» A particle hops to the right with probability 1

» A particle hops to the left with probability g
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PT and Partially asymmetric exclusion process

Model : n sites that are empty or occupied
The sites are delimited by n+ 1 positions (n — 1 positions in
between sites, left border and right border).

» First a position is chosen at random

» A particle hops to the right with probability 1

» A particle hops to the left with probability g

» A particle enters with probability «
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PT and Partially asymmetric exclusion process

Model : n sites that are empty or occupied
The sites are delimited by n+ 1 positions (n — 1 positions in
between sites, left border and right border).

» First a position is chosen at random

» A particle hops to the right with probability 1

» A particle hops to the left with probability g

» A particle enters with probability «

» A particles leaves with probability 3

3

0000000






Stationary distribution of the PASEP chain

o 7=(0,0,1,0,0,1,1,0,0)
00 00 | 00

Let Pﬁ’a’ﬁ(T) be the probability to be in state 7 = (71,..., 7).
Theorem. (Derrida et al. 93) The probability to be in state
T=(T1,...,7n) is

(WL (1D + (1 = m)E)IV)

Pa(7) = 7 .

with Z, = (W|(D + E)"|V), D and E are infinite matrices, V is a
column vector, and W is a row vector, such that

DE —gED =D +E

BDIV) = |V)
a(W|E = (W|



Permutation tableaux

7=1(0,0,1,0,0,1,1,0,0) < A(7) =

Theorem. Fix 7 = (71,...,7,) € {0,1}", and let XA := A(7). The
probability of finding the PASEP chain in configuration 7 in the
steady state is
Fi(g, o, B)
Fni1(q, o, B) -

(C. and Williams 06)

Markov chain on Permutation tableaux
(C. and Williams 07)



Ongoing work

» General PASEP with v and §

«Q 1 I6]
2 We /N
\90000(%/000 ,
ot

New tableaux. Enumeration problems? Crossings?
Combinatorics of Askey-Wilson polynomials? Grassmanians?
(C. and Williams 09)



Ongoing work

» General PASEP with v and §
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New tableaux.

» Total positivity for cominuscule Grassmannians (Lam and
Williams 08). Nice enumeration problems for Type B
permutation tableaux. (C., Kim, Williams 09)
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» General PASEP with v and §
«Q 1 I6]
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New tableaux.
» Nice enumeration problems for Type B permutation tableaux.
(C., Kim, Williams 09)

» Total positivity for affine Grassmannians (Lam and Postnikov
09). Combinatorial setting : balanced graphs. Tableaux?



Ongoing work

» General PASEP with v and §

a 1 I6]
‘Oe0080e0ee
v aq o

New tableaux.

» Nice enumeration problems for Type B permutation tableaux.
(C., Kim, Williams 09)

» Combinatorial setting : balanced graphs. Tableaux?

» PASEP with several types of particles and Koornwinder
polynomials? (Haiman 07)
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Thank you for your attention

Thank you for your attention



