Enumeration of Fillings of Ferrers diagrams

Sylvie Corteel (LRI - CNRS et Université Paris-Sud)

Canadam 09 - May 25th, 2009

Dedication

Pierre Leroux

Coworkers

- M. Josuat-Vergès (LRI - CNRS et Université Paris-Sud)
- J.S. Kim (LRI - CNRS et Université Paris-Sud)
- P. Nadeau (U. Wien)
- L.K. Williams (Harvard)

Ferrers diagram

$$
\begin{aligned}
& \lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \text { with } \lambda_{1} \geq \ldots \geq \lambda_{k} \geq 0 \\
& \lambda=(7,5,5,3,0)
\end{aligned}
$$

Length $=$ number of rows + number of columns $=\lambda_{1}+k$

Number

Number the border: 1,2, . ., 12

Number

Code the border: $D U U D D U U D U U U D$

Number

Code the border: $D U U D D U U D U U U D$
Number of Ferrers diagrams of length $n: 2^{n-1}$

Example I

$\lambda=(n, n, \ldots, n)$
One 1 in each row and column : Permutation matrix
The number of PM of length $2 n$ is $n!$.

$$
\sigma=412635
$$

An inversion in a permutation is a couple (i, j) such that $i<j$ and $\sigma(i)>\sigma(j)$.

Question: What is the generating function

$$
\sum_{\sigma \in \mathfrak{S}_{n}} q^{i n v(\sigma)} ?
$$

Example I

$\lambda=(n, n, \ldots, n)$
One 1 in each row and column : Permutation matrix The number of PM of length $2 n$ is n !.

$$
\sigma=412635
$$

An inversion in a permutation is a couple (i, j) such that $i<j$ and $\sigma(i)>\sigma(j)$.

Question: What is the generating function

$$
\begin{aligned}
& \sum_{\sigma \in \mathfrak{S}_{n}} q^{i n v(\sigma)} ? \\
& \sum_{\sigma \in \mathfrak{S}_{n}} q^{i n v(\sigma)}=\prod_{i=1}^{n}\left(1+\ldots+q^{i-1}\right)=[n]_{q}!
\end{aligned}
$$

			1	\times	\times
					1
1	\times	\times		\times	
				1	
		1			
	1				

Example I (continued)

Any λ and one 1 per row and per column: Rook placements The number of RP of length $2 n$ is $(2 n-1)!$!.

Example I (continued)

Any λ and one 1 per row and per column: Rook placements The number of RP of length $2 n$ is $(2 n-1)!$!.

Example I (continued)

Any λ and one 1 per row and per column: Rook placements The number of RP of length $2 n$ is $(2 n-1)!$!.

Example I (continued)

Any λ and one 1 per row and per column: Rook placements The number of RP of length $2 n$ is $(2 n-1)!$!.

Example I (continued)

Any λ and one 1 per row and per column: Rook placements The number of RP of length $2 n$ is $(2 n-1)!$!.

Example I (continued)

Any λ and one 1 per row and per column: Rook placements The number of RP of length $2 n$ is $(2 n-1)!$!.

Example I (continued)

Any λ and one 1 per row and per column: Rook placements The number of RP of length $2 n$ is $(2 n-1)!$!.

Example I (continued)

Any λ and one 1 per row and per column: Rook placements The number of RP of length $2 n$ is $(2 n-1)$!!.

Crossings \leftrightarrow Inversions

$$
\sum_{m \in \mathfrak{M}_{2 n}} q^{c r(m)}=\sum_{\text {rook placement }} q^{i n v(R)}
$$

Example I (cont.)

$$
\sum_{\text {rook placement }} q^{i n v(R)}=\langle W|(D+U)^{2 n}|V\rangle
$$

$$
\text { where } D U=q U D+I, \quad\langle W| U=0, \quad D|V\rangle=0, \quad\langle W \| V\rangle=1
$$

$$
\sum_{\text {rook placement }} q^{i n v(R)}=\frac{1}{(1-q)^{n}} \sum_{i=0}^{n}(-1)^{i}\left(\binom{2 n}{n-i}-\binom{2 n}{n-i-1}\right) q^{\frac{i(i+1)}{2}} .
$$

(Touchard 50s, Riordan 70s)

Example II

Pierre Leroux (88) 0-1 tableaux: One 1 per column.
The number of tableaux of length n is B_{n} (the $n^{\text {th }}$ Bell number)
Set partitions $\mapsto 0-1$ tableaux

$$
\pi=(1,3,4,8)(2)(5,6)(7,9)
$$

Example II

Pierre Leroux (88) 0-1 tableaux: One 1 per column.
The number of tableaux of length n is B_{n} (the $n^{\text {th }}$ Bell number)

Set partitions $\mapsto 0-1$ tableaux

$$
\pi=(1,3,4,8)(2)(5,6)(7,9)
$$

$$
\mapsto
$$

Example II

Pierre Leroux (88) 0-1 tableaux: One 1 per column.
The number of tableaux of length n is B_{n} (the $n^{\text {th }}$ Bell number)
Set partitions $\mapsto 0-1$ tableaux

$$
\pi=(1,3,4,8)(2)(5,6)(7,9)
$$

$$
\mapsto
$$

Example II

Pierre Leroux (88) 0-1 tableaux: One 1 per column.
The number of tableaux of length n is B_{n} (the $n^{\text {th }}$ Bell number)

Set partitions $\mapsto 0-1$ tableaux

$$
\pi=(1,3,4,8)(2)(5,6)(7,9)
$$

$$
\mapsto
$$

Example II

Pierre Leroux (88) 0-1 tableaux: One 1 per column.
The number of tableaux of length n is B_{n} (the $n^{\text {th }}$ Bell number)

Set partitions $\mapsto 0-1$ tableaux

$$
\pi=(1,3,4,8)(2)(5,6)(7,9) \quad \mapsto
$$

Example II

Pierre Leroux (88) 0-1 tableaux: One 1 per column.
The number of tableaux of length n is B_{n} (the $n^{\text {th }}$ Bell number)
Set partitions $\mapsto 0-1$ tableaux

$$
\pi=(1,3,4,8)(2)(5,6)(7,9)
$$

$$
S_{q}(n, k)=\sum_{\substack{0-1 \text { tableaux } \\ \text { length } n, k \text { rows }}} q^{i n v(T)}
$$

Example II

Pierre Leroux (88) 0-1 tableaux: One 1 per column.
The number of tableaux of length n is B_{n} (the $n^{\text {th }}$ Bell number)
Set partitions $\mapsto 0-1$ tableaux

$$
\begin{gathered}
\pi=(1,3,4,8)(2)(5,6)(7,9)
\end{gathered} \sum_{\substack{0-1 \text { tableaux } \\
\text { length } n, k \text { rows }}} q^{i n v(T)}
$$

q-Log concavity (Leroux 88)

$$
S_{q}(n, k)^{2}-S_{q}(n, k-1) S_{q}(n, k+1) \geq_{q} 0 .
$$

Example II (cont.)

Enumeration

$$
S_{q}(n, k)=\left[y^{k}\right]\langle W|(y D+U)^{n}|V\rangle
$$

with $D U=q U D+U,\langle W| E=0, D|V\rangle=1$.

$$
S_{q}(n, k)=\frac{1}{(1-q)^{n-k}} \sum_{j=0}^{n-k}(-1)^{j}\binom{n}{k+j}\left[\begin{array}{c}
k+j \\
j
\end{array}\right]_{q}
$$

(Wachs and White 88)

Permutation tableaux (Postnikov 01, Williams 04)

Origin : Totally non negative part of the Grassmanian
Permutation tableau \mathcal{T} : a Ferrers diagram filled with 0 's and 1 's such that:

1. Each column contains at least one 1.
2. There is no 0 which has a 1 above it in the same column and a 1 to its left in the same row.

0	0	1	0	0	1	1
0	0	0	0	1		
0	1	0	1	1		
0	0	0				
1						

Permutation tableaux (Postnikov 01, Williams 04)

Origin : Totally non negative part of the Grassmanian
Permutation tableau \mathcal{T} : a Ferrers diagram filled with 0 's and 1 's such that :

1. Each column contains at least one 1.
2. There is no 0 which has a 1 above it in the same column and a 1 to its left in the same row.

0	0	1	0	0	1	1
0	0	1	0	1		
0	1	1	1	1		
0	0	0				
1						

0	0	1	0	0	1	1
0	0	0	0	1		
0	1	0	1	1		
0	0	0				

Permutation tableaux (Postnikov 01, Williams 04)

Origin : Totally non negative part of the Grassmanian
Permutation tableau \mathcal{T} : a Ferrers diagram filled with 0 's and 1's such that:

1. Each column contains at least one 1.
2. There is no 0 which has a 1 above it in the same column and a 1 to its left in the same row.

0	0	1	0	0	1	1
0	0	1	0	1		
0	1	1	1	1		
0	0	0				
1						

Number of permutation tableaux of length n is n !

Permutation tableaux and alternative tableaux

Restricted zero: lies below some 1
A permutation tableau is uniquely defined by its topmost ones and rightmost restricted zeros.
(C. Nadeau 07)

0	0	1	0	0	1	1
0	0	1	0	1		
0	1	1	1	1		
0	0	0				
1						

Permutation tableaux and alternative tableaux

Restricted zero: lies below some 1
A permutation tableau is uniquely defined by its topmost ones and rightmost restricted zeros.
(C. Nadeau 07)

Permutation tableaux and alternative tableaux

Restricted zero: lies below some 1
A permutation tableau is uniquely defined by its topmost ones and rightmost restricted zeros.
(C. Nadeau 07)

0	0	1	0	0	1	1
0	0		0	1		
0	1		1			
0	0	0				
1						

Permutation tableaux and alternative tableaux

Restricted zero: lies below some 1
A permutation tableau is uniquely defined by its topmost ones and rightmost restricted zeros.
(C. Nadeau 07)

Permutation tableaux and alternative tableaux

Restricted zero: lies below some 1
A permutation tableau is uniquely defined by its topmost ones and rightmost restricted zeros.
(C. Nadeau 07)

Alternative tableaux (Viennot 08, Nadeau 09)

Permutation tableaux and permutations

Columns \leftrightarrow Descents
(C. and Nadeau 07)

1	0	0	0	1	1	1
1	0	1	1	1	4^{3}	2
0	0	0	7^{6}	5		
0	1	1	8			
11	10	9				

Permutation tableaux and permutations

Columns \leftrightarrow Descents
(C. and Nadeau 07)

Permutation tableaux and permutations

Columns \leftrightarrow Descents
(C. and Nadeau 07)

$(1,4)$

Permutation tableaux and permutations

Columns \leftrightarrow Descents
(C. and Nadeau 07)

(8,11,1,4)

Permutation tableaux and permutations

Columns \leftrightarrow Descents

> (C. and Nadeau 07)

(10,8,11,1,4)

Permutation tableaux and permutations

Columns \leftrightarrow Descents
(C. and Nadeau 07)

(10,8,11,1,7,9,4)

Permutation tableaux and permutations

Columns \leftrightarrow Descents
(C. and Nadeau 07)

(10,8,11,1,7,9,6,4)

Permutation tableaux and permutations

Columns \leftrightarrow Descents
(C. and Nadeau 07)

(10,8,11,5,3,2,1,7,9,6,4)

Other bijections

- Postnikov 01, Steingrimsson and Williams 05 : excedances and crossings.
- Burstein 05 : cycles
- C. and Nadeau 07 : descents and 31-2.
- Viennot 07 : descents

Enumeration of PT

- $u(\mathcal{T})$: number of unrestricted rows minus one
- $f(\mathcal{T})$: number of ones in the first row

$$
\sum_{\text {length }} x^{u(\mathcal{T})} y^{f(\mathcal{T})}=\prod_{i=0}^{n-1}(x+y+i)=(x+y)_{n}
$$

(C. and Nadeau 07)

q-enumeration of PT of a given shape

$w t(\mathcal{T})$: number of ones minus number of columns

1	0	1	0	0	1

$F_{\lambda}(q)=\sum_{\mathcal{T} \text { shape } \lambda} q^{w t(\mathcal{T})}$
For any λ and a given corner, we define smaller Young diagrams:

$F_{\lambda}(q)$ is defined by the recurrence

$$
F_{\lambda}=q F_{\lambda^{(1)}}+F_{\lambda^{(2)}}+F_{\lambda^{(3)}} ; \quad F_{\emptyset}=1
$$

q-enumeration of PT of a given shape

As columns \leftrightarrow descents
Non commutative symmetric functions (Tevlin 07)
$\lambda=(7,5,5,3,1)$

q-enumeration of PT of a given shape

As columns \leftrightarrow descents
Non commutative symmetric functions (Tevlin 07)
$\lambda=(7,5,5,3,1)$

$$
\begin{array}{r}
I(\lambda)=(1,3,3,1,3) \\
F_{\lambda}(q)=e_{I(\lambda)}(q)=\sum_{J \preceq I}(-q)^{\ell(J)-\ell(I)} q^{-s t^{\prime}(I, J)} \prod_{k=1}^{p}[k]_{q}^{j_{k}} . \\
(\text { Novelli, Thibon, Williams 08) }
\end{array}
$$

q-enumeration (cont.)

$$
E_{k, n}(q)=\sum_{\substack{\lambda \\ \ell(\lambda)=k \\ \text { length } n}} F_{\lambda}(q)
$$

q-enumeration of PT of length n with k rows

$$
E_{k, n}(q)=q^{n-k^{2}} \sum_{i=0}^{k-1}(-1)^{i}[k-i]_{q}^{n}\left(\binom{n}{i} q^{k-i}+\binom{n}{i-1}\right)
$$

(Williams 05)
q-analogue of Eulerian numbers
$q=0$ Narayana numbers, $q=-1$ Binomial numbers

Moments of q-Laguerre polynomials

PT permutation tableaux and Motzkin paths

$$
F_{n}(q)=\sum_{\lambda \text { length } n} F_{\lambda}(q)=\frac{1}{(1-q)^{n}} \sum_{p \text { length } n} w(p)
$$

Weight of each step starting at height h is

- East : $1-q^{h+1}$ or $1-q^{h}$
- North-East : $1-q^{h+1}$
- South-East : $1-q^{h}$
q-Laguerre Polynomials

$$
\begin{array}{r}
F_{n}(q)=\frac{1}{(1-q)^{n}} \sum_{k=0}^{n}(-1)^{k}\left(\binom{2 n}{n-k}-\binom{2 n}{n-k-2}\right) \sum_{j=0}^{k} q^{j(k-j+1)} \\
\text { (C. Josuat-Vergès, Prellberg, Rubey 09) }
\end{array}
$$

PT permutation tableaux and Matrix Ansatz

$$
F_{n+1}(q, \alpha, \beta)=\sum_{\mathcal{T} \text { length } n+1} q^{\mathrm{wt}(\mathcal{T})} \alpha^{-f(\mathcal{T})} \beta^{-u(\mathcal{T})}
$$

$$
\begin{gathered}
F_{n+1}(q, \alpha, \beta)=\langle W|(D+U)^{n}|V\rangle, \quad \text { where } \\
D U=q U D+D+U
\end{gathered}
$$

$$
\alpha\langle W| E=\langle W| ; \quad \beta D|V\rangle=|V\rangle \quad\langle W \| V\rangle=1
$$

(C. Williams 06)

PT permutation tableaux and Motzkin paths

$$
F_{n+1}(q, \alpha, \beta)=\frac{1}{(1-q)^{n}} \sum_{p} \sum_{\text {length } n} w(p)
$$

$$
\tilde{\alpha}=\frac{q-1}{\alpha}+1 ; \quad \tilde{\beta}=\frac{q-1}{\beta}+1
$$

Weight of each step starting at height h is

- East: $1-\tilde{\alpha} q^{h}$ or $1-\tilde{\beta} q^{h}$
- North-East : $1-q^{h+1}$
- South-East : $1-\tilde{\alpha} \tilde{\beta} q^{h-1}$
(Brak, C. Essam, Parviainen, Rechnitzer 05)

Enumeration of PT (The end)

$$
F_{n+1}(q, \alpha, \beta)=\frac{1}{(1-q)^{n}} \sum_{m=0}^{n} R_{n, m}(q) B_{m}(\tilde{\alpha}, \tilde{\beta} ; q),
$$

with

$$
\begin{gathered}
D_{n, k}=\binom{2 n}{n-k}-\binom{2 n}{n-k-2} ; \quad B_{m}(\tilde{\alpha}, \tilde{\beta} ; q)=\sum_{k=0}^{m}\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q} \tilde{\alpha}^{m-k} \tilde{\beta}^{k} ; \\
R_{n, m}=\sum_{k=0}^{\left\lfloor\frac{n-m}{2}\right\rfloor}(-1)^{k} D_{n, m+2 k} q^{\binom{k+1}{2}}\left[\begin{array}{c}
m+k \\
k
\end{array}\right]_{q} \\
\quad \text { (Josuat-Vergès 09) }
\end{gathered}
$$

PT and Partially asymmetric exclusion process

Model : n sites that are empty or occupied The sites are delimited by $n+1$ positions ($n-1$ positions in between sites, left border and right border).

PT and Partially asymmetric exclusion process

Model : n sites that are empty or occupied The sites are delimited by $n+1$ positions ($n-1$ positions in between sites, left border and right border).

- First a position is chosen at random

PT and Partially asymmetric exclusion process

Model : n sites that are empty or occupied The sites are delimited by $n+1$ positions ($n-1$ positions in between sites, left border and right border).

- First a position is chosen at random
- A particle hops to the right with probability 1

PT and Partially asymmetric exclusion process

Model : n sites that are empty or occupied The sites are delimited by $n+1$ positions ($n-1$ positions in between sites, left border and right border).

- First a position is chosen at random
- A particle hops to the right with probability 1
- A particle hops to the left with probability q

PT and Partially asymmetric exclusion process

Model : n sites that are empty or occupied The sites are delimited by $n+1$ positions ($n-1$ positions in between sites, left border and right border).

- First a position is chosen at random
- A particle hops to the right with probability 1
- A particle hops to the left with probability q
- A particle enters with probability α

PT and Partially asymmetric exclusion process

Model : n sites that are empty or occupied The sites are delimited by $n+1$ positions ($n-1$ positions in between sites, left border and right border).

- First a position is chosen at random
- A particle hops to the right with probability 1
- A particle hops to the left with probability q
- A particle enters with probability α
- A particles leaves with probability β

Markov chain $n=2$

Stationary distribution of the PASEP chain

$$
\leftrightarrow \quad \tau=(0,0,1,0,0,1,1,0,0)
$$

000000000

Let $P_{n}^{q, \alpha, \beta}(\tau)$ be the probability to be in state $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$. Theorem. (Derrida et al. 93) The probability to be in state $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ is

$$
P_{n}(\tau)=\frac{\langle W|\left(\prod_{i=1}^{n}\left(\tau_{i} D+\left(1-\tau_{i}\right) E\right)\right)|V\rangle}{Z_{n}}
$$

with $Z_{n}=\langle W|(D+E)^{n}|V\rangle, D$ and E are infinite matrices, V is a column vector, and W is a row vector, such that

$$
\begin{aligned}
& D E-q E D=D+E \\
& \beta D|V\rangle=|V\rangle \\
& \alpha\langle W| E=\langle W|
\end{aligned}
$$

Permutation tableaux

$$
\tau=(0,0,1,0,0,1,1,0,0) \leftrightarrow \lambda(\tau)=\begin{array}{|l|l|l}
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{array}
$$

Theorem. Fix $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right) \in\{0,1\}^{n}$, and let $\lambda:=\lambda(\tau)$. The probability of finding the PASEP chain in configuration τ in the steady state is

$$
\frac{F_{\lambda}(q, \alpha, \beta)}{F_{n+1}(q, \alpha, \beta)}
$$

(C. and Williams 06)

Markov chain on Permutation tableaux
(C. and Williams 07)

Ongoing work

- General PASEP with γ and δ

New tableaux. Enumeration problems? Crossings?
Combinatorics of Askey-Wilson polynomials? Grassmanians?
(C. and Williams 09)

Ongoing work

- General PASEP with γ and δ

New tableaux.

- Total positivity for cominuscule Grassmannians (Lam and Williams 08). Nice enumeration problems for Type B permutation tableaux. (C., Kim, Williams 09)

Ongoing work

- General PASEP with γ and δ

New tableaux.

- Nice enumeration problems for Type B permutation tableaux. (C., Kim, Williams 09)
- Total positivity for affine Grassmannians (Lam and Postnikov 09). Combinatorial setting : balanced graphs. Tableaux?

Ongoing work

- General PASEP with γ and δ

New tableaux.

- Nice enumeration problems for Type B permutation tableaux. (C., Kim, Williams 09)
- Combinatorial setting : balanced graphs. Tableaux?
- PASEP with several types of particles and Koornwinder polynomials? (Haiman 07)

Thank you for your attention

Thank you for your attention

