English

Laboratoire de Physique Mathématique Membres Boursiers postdoctoraux 2006

Seung Yeop Lee (Harnad)

Affiliation:

Stagiaire postoctoral
Centre de recherches mathématiques
Université de Montréal
Case postale 6128, Succursale centre-ville
Montréal (Québec)
H3C 3J7

Highest degree:

PhD en physique, Université de Chicago, 2007

Contact information:

Email: leeseung@crm.umontreal.ca
Tél. (CRM) : (514) 343-6111 #4735

Areas of research:

Random matrix theory, Orthogonal polynomials, Ising model.

Publications récentes :

M. Boninsegni, S. Y. Lee, and V. H. Crespi. Helium in One- Dimensional Nanopores: Free Dispersion, Localization, and Commensurate/ Incommensurate Transitions with Nonrigid Orbitals. Phys. Rev. Lett., 86(15):3360-3363, Apr 2001.

S. Y. Lee, V. W. Scarola, and J. K. Jain. Stripe formation in the fractional quantum Hall regime. Phys. Rev. Lett., 87(25):256803, Nov 2001.

S. Y. Lee, V. W. Scarola, and J. K. Jain. Structures for interacting composite fermions: Stripes, bubbles, and fractional quantum Hall effect. Phys. Rev. B, 66(8):085336, Aug 2002.

S. Y. Lee, E. Bettelheim, and P. B. Wiegmann. Bubble break-off in Hele-Shaw flows : Singularities and integrable structures. PHYSICA D, 219:22, 2006.

S. Y. Lee. The boundary correlation function of fixed-to-free boundarycondition- changing operators in a square-lattice Ising model. Journal of Statistical Mechanics: Theory and Experiment, 2007(10):P10011, 2007.

M. Bertola and S. Y. Lee. First colonization of a spectral outpost in random matrix theory. Accepted in Constructive Approximation, 2008.

M. Bertola and S. Y. Lee. First colonization of a hard-edge in random matrix theory. Accepted in Constructive Approximation, http://arxiv.org/abs/0804.1111, 2008.

Non-publiés à ce jour :

S. Y. Lee, H. Dai, and E. Bettelheim, Asymptotic eigenvalue distribution of large Toeplitz matrices, arxiv.org/abs/0708.3124, 2007

S. Y. Lee, R. Teodorescu, and P. B. Wiegmann. Shocks and finite-time singularities in Hele-Shaw flow. http://arxiv.org/abs/0811.0635, 2008.

S. Y. Lee, R. Teodorescu, and P. B.Wiegmann. Weak solution of the Hele-Shaw problem: shocks and viscous fingering. http://arxiv.org/abs/0812.0579, 2008.