Basics of binary quadratic forms and Gauss composition

Andrew Granville
Université de Montréal

SMS summer school: “Counting arithmetic objects”
Monday June 23rd, 2014, 3:30-5:00 pm
Any prime \(p \equiv 1 \pmod{4} \) can be written as the sum of two squares

“Geometry of numbers type” proof

Since \(p \equiv 1 \pmod{4} \implies \exists i \in \mathbb{Z} : i^2 \equiv -1 \pmod{p} \).

Idea: Find smallest non-zero integer lattice point

\((x, y) \in \mathbb{Z}^2 : x \equiv iy \pmod{p}\)
Since $p \equiv 1 \pmod{4}$ $\implies \exists i \in \mathbb{Z} : i^2 \equiv -1 \pmod{p}$.

Consider now the set of integers

$$\{m + ni : 0 \leq m, n \leq \lceil \sqrt{p} \rceil\}$$

pairs m, n is $(\lceil \sqrt{p} \rceil + 1)^2 > p$, so by the pigeonhole principle, two are congruent mod p; say that

$$m + ni \equiv M + Ni \pmod{p}$$

where $0 \leq m, n, M, N \leq \lceil \sqrt{p} \rceil$ and $(m, n) \neq (M, n)$.

Let $r = m - M$ and $s = N - n$ so that

$$r \equiv is \pmod{p}$$

where $|r|, |s| \leq \lceil \sqrt{p} \rceil < \sqrt{p}$, and r and s are not both 0.

Now

$$r^2 + s^2 \equiv (is)^2 + s^2 = s^2(i^2 + 1) \equiv 0 \pmod{p}$$

and $0 < r^2 + s^2 < \sqrt{p^2 + \sqrt{p^2}} = 2p$. The only multiple of p between 0 and $2p$ is p, and therefore $r^2 + s^2 = p$.
What integers can be written as the sum of two squares?

\[(a^2 + b^2)(c^2 + e^2) = (ac + be)^2 + (ae - bc)^2.\]

Generalization:
\[(a^2 + db^2)(c^2 + de^2) = (ac + dbe)^2 + d(ae - bc)^2.\]

Gauss’s view:
A binary quadratic form is of the shape
\[f(x, y) := ax^2 + bxy + cy^2.\]
Here we take \(f(x, y) = x^2 + dy^2\) and
\[f(a, b)f(c, e) = f(ac + dbe, ae - bc)\]
The latter values in \(f\), namely \(ac + dbe\) and \(ae - bc\), are bilinear forms in \(a, b, c, e\).
Does this generalize to other such multiplications?
Pell’s equation

Are there integer solutions x, y to

$$x^2 - dy^2 = 1?$$

Can always be found using continued fraction for \sqrt{d}. (Brahmagupta, 628 A.D.; probably Archimedes, to solve his “Cattle Problem” one needs to find a solution to

$$u^2 - 609 \cdot 7766v^2 = 1.$$

The smallest solution has about $2 \cdot 10^6$ digits!)

Solution to Pell’s Equation
Let $d \geq 2$ be a non-square integer.

$\exists x, y \in \mathbb{Z}$ for which

$$x^2 - dy^2 = 1,$$

with $y \neq 0$. If x_1, y_1 \textit{smallest positive solution}, then all others given by

$$x_n + \sqrt{d}y_n = (x + \sqrt{d}y)^n$$
\[x^2 - dy^2 = 1? \]

Solution to Pell’s Equation
Let \(d \geq 2 \) be a non-square integer. \(\exists x, y \in \mathbb{Z} \) for which \[x^2 - dy^2 = 1, \]
with \(y \neq 0 \). If \(x_1, y_1 \) smallest positive solution, then all others given by \[x_n + \sqrt{d}y_n = (x + \sqrt{d}y)^n. \]

Better to look for solutions to \[x^2 - dy^2 = \pm 4, \]
Understanding when there is solution with “−” is a difficult question (great recent progress by Fouvry and Kluners).
Theorem Any quadratic irrational real number has a continued fraction that is eventually periodic.

Here are some examples of the continued fraction for \sqrt{d}:

\[
\sqrt{2} = [1, \overline{2}], \quad \sqrt{3} = [1, \overline{1, 2}], \quad \sqrt{5} = [2, \overline{4}],
\]
\[
\sqrt{6} = [2, \overline{2, 4}],
\]
\[
\sqrt{7} = [2, \overline{1, 1, 1, 4}],
\]
\[
\sqrt{8} = [2, \overline{1, 4}],
\]
\[
\sqrt{10} = [3, \overline{6}],
\]
\[
\sqrt{11} = [3, \overline{3, 6}],
\]
\[
\sqrt{12} = [3, \overline{2, 6}],
\]
\[
\sqrt{13} = [3, \overline{1, 1, 1, 1, 6}], \ldots
\]

If p_k/q_k are the convergents for \sqrt{d} then
\[
p_{n-1}^2 - dq_{n-1}^2 = (-1)^n.
\]
Longest continued fractions and the largest fundamental solutions

\[
\sqrt{2} = [1, 2], \quad 1^2 - 2 \cdot 1^2 = -1
\]
\[
\sqrt{3} = [1, 1, 2], \quad 2^2 - 3 \cdot 1^2 = 1
\]
\[
\sqrt{6} = [2, 2, 4], \quad 5^2 - 6 \cdot 2^2 = 1
\]
\[
\sqrt{7} = [2, 1, 1, 1, 4], \quad 8^2 - 7 \cdot 3^2 = 1
\]
\[
\sqrt{13} = [3, 1, 1, 1, 6], \quad 18^2 - 13 \cdot 5^2 = -1
\]
\[
\sqrt{19} = [4, 2, 1, 3, 1, 2, 8], \quad 170^2 - 19 \cdot 39^2 = 1
\]
\[
\sqrt{22} = [4, 1, 2, 4, 2, 1, 8], \quad 197^2 - 22 \cdot 42^2 = 1
\]
\[
\sqrt{31} = [5, 1, 1, 3, 5, 3, 1, 1, 10], \quad 1520^2 - 31 \cdot 273^2 = 1
\]
\[
\sqrt{43} = [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12], \quad 3482^2 - 43 \cdot 531^2 = 1
\]
\[
\sqrt{46} = [6, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 1, 12], \quad 24335^2 - 46 \cdot 3588^2 = 1
\]
\[
\sqrt{76} = [8, 1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16], \quad 57799^2 - 76 \cdot 6630^2 = 1
\]
Length of longest cont fracts and fundl solutions

16 : \(2143295^2 - 94 \cdot 221064^2 = 1\)
16 : \(4620799^2 - 124 \cdot 414960^2 = 1\)
16 : \(2588599^2 - 133 \cdot 224460^2 = 1\)
18 : \(77563250^2 - 139 \cdot 6578829^2 = 1\)
20 : \(1728148040^2 - 151 \cdot 140634693^2 = 1\)
22 : \(1700902565^2 - 166 \cdot 132015642^2 = 1\)
26 : \(278354373650^2 - 211 \cdot 19162705353^2 = 1\)
26 : \(695359189925^2 - 214 \cdot 47533775646^2 = 1\)
26 : \(5883392537695^2 - 301 \cdot 339113108232^2 = 1\)
34 : \(2785589801443970^2 - 331 \cdot 153109862634573^2 = 1\)
37 : \(44042445696821418^2 - 421 \cdot 2146497463530785^2 = -1\)
40 : \(84056091546952933775^2 - 526 \cdot 3665019757324295532^2 = 1\)
42 : \(181124355061630786130^2 - 571 \cdot 7579818350628982587^2 = 1\)
Length of fundamental solutions

The length of the continued fractions here are around $2\sqrt{d}$, and the size of the fundamental solutions $10\sqrt{d}$.

How big is the smallest solution?

We believe that the smallest solution is typically of size $C\sqrt{d}$ but not much proved.

Understanding the distribution of sizes of the smallest solutions to Pell’s equation is an outstanding open question in number theory.
Descent on solutions of $x^2 - dy^2 = n$, $d > 0$

Let $\epsilon_d = x_1 + y_1 \sqrt{d}$, the smallest solution x_1, y_1 in positive integers to

$$x_1^2 - dy_1^2 = 1.$$

Given a solution of

$$x^2 - dy^2 = n$$

with $x, y \geq 0$, let

$$\alpha := x + y \sqrt{d} > \sqrt{n}.$$

If $\sqrt{n} \epsilon_d^k \leq \alpha < \sqrt{n} \epsilon_d^{k+1}$ let

$$\beta := \alpha \epsilon_d^{-k} = u + \sqrt{dv}$$

so that

$$\sqrt{n} \leq \beta < \sqrt{n} \epsilon_d$$

with $u, v \geq 1$ and $u^2 - dv^2 = n$.
Representation of integers by binary quadratic forms

What integers are represented by *binary quadratic form* \(f(x, y) := ax^2 + bxy + cy^2 \)?

That is, for what \(N \) are there coprime \(m, n \) such that

\[N = am^2 + bmn + cn^2 \]

WLOG \(\gcd(a, b, c) = 1 \). Complete the square to obtain

\[4aN = (2am + bn)^2 - dn^2 \]

where *discriminant* \(d := b^2 - 4ac \), so

\[d \equiv 0 \text{ or } 1 \pmod{4}. \]

When \(d < 0 \) the right side can only take positive values ...
... easier than when \(d > 0 \).

If \(a > 0 \) then *positive definite* binary quadratic form.
$x^2 + y^2$ represents the same integers as $X^2 + 2XY + 2Y^2$

If $N = m^2 + n^2$ then $N = (m - n)^2 + 2(m - n)n + 2n^2$,

If $N = u^2 + 2uv + 2v^2$ then $N = (u + v)^2 + v^2$.

$$\begin{pmatrix} x \\ y \end{pmatrix} = M \begin{pmatrix} X \\ Y \end{pmatrix}$$ where $M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

transforms $x^2 + y^2$ into $X^2 + 2XY + 2Y^2$, and the transformation is invertible, since $\det M = 1$.

Much more generally define

$$\text{SL}(2, \mathbb{Z}) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} : \alpha, \beta, \gamma, \delta \in \mathbb{Z} \text{ and } \alpha \delta - \beta \gamma = 1 \right\}.$$

Then $ax^2 + bxy + cy^2$ represents the same integers as $AX^2 + BXY + CY^2$ whenever $$\begin{pmatrix} x \\ y \end{pmatrix} = M \begin{pmatrix} X \\ Y \end{pmatrix}$$ with $M \in \text{SL}(2, \mathbb{Z})$. These quadratic forms are equivalent.
Equivalence

\(ax^2 + bxy + cy^2 \) is equivalent to \(AX^2 + BXY + CY^2 \)
if equal whenever \(\begin{pmatrix} x \\ y \end{pmatrix} = M \begin{pmatrix} X \\ Y \end{pmatrix} \) with \(M \in \text{SL}(2, \mathbb{Z}) \).

This yields an equivalence relation and splits the binary quadratic forms into equivalence classes. Write

\[
ax^2 + bxy + cy^2 = (x \ y) \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix} (x \ y)
\]

Discriminant(\(f \)) = \(-\det \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}\). We deduce that

\[
AX^2 + BXY + CY^2 = (X \ Y) M^T \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix} M \begin{pmatrix} X \\ Y \end{pmatrix},
\]

so \(A = a\alpha^2 + b\alpha\gamma + c\gamma^2 \) and \(C = a\beta^2 + b\beta\delta + c\delta^2 \) as

\[
\begin{pmatrix} A & B/2 \\ B/2 & C \end{pmatrix} = M^T \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix} M.
\]

Hence two equivalent bqfs have same discriminant.
Equivalence classes of binary quadratic forms

$29X^2 + 82XY + 58Y^2$ is equivalent to $x^2 + y^2$

Gauss: Every equivalence class of bqfs (with $d < 0$) contains a unique reduced representative, defined as

$-a < b \leq a \leq c$, and $b \geq 0$ whenever $a = c$.

If so, $|d| = 4ac - (|b|)^2 \geq 4a \cdot a - a^2 = 3a^2$ and hence

$$a \leq \sqrt{|d|/3}.$$

Therefore, for given $d < 0$, finitely many a, and so b (as $|b| \leq a$), and then $c = (b^2 - d)/4a$ is determined; so only finitely many ($h(d)$, the class number, the number of equivalence classes) reduced bqfs of discrim d. In fact $h(d) \geq 1$ since we always have the principal form:

$$\begin{cases}
 x^2 - (d/4)y^2 & \text{when } d \equiv 0 \pmod{4}, \\
 x^2 + xy + (1-d)/4y^2 & \text{when } d \equiv 1 \pmod{4}.
\end{cases}$$
Gauss’s reduction Theorem

Every positive definite binary quadratic form is properly equivalent to a reduced form.

i) If $c < a$ the transformation \[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix},
\]
yields $(c, -b, a)$ which is properly equivalent to (a, b, c).

ii) If $b > a$ or $b \leq -a$ let b' be the least residue, in absolute value, of $b \pmod{2a}$, so $-a < b' \leq a$, say $b' = b - 2ka$. Then let \[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 - k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}.
\]
The resulting form (a, b', c') is properly equivalent to (a, b, c).

iii) If $c = a$ and $-a < b < 0$ then we use the transformation \[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}
\]
yielding the form $(a, -b, a)$.

If resulting form not reduced, \textbf{repeat}
Gauss’s reduction Theorem

Every positive definite binary quadratic form is properly equivalent to a reduced form.

i) If \(c < a \) then \[
\begin{pmatrix}
 x \\
 y
\end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix}
 x' \\
 y'
\end{pmatrix}.
\]

ii) If \(b > a \) or \(b \leq -a \) then \[
\begin{pmatrix}
 x \\
 y
\end{pmatrix} = \begin{pmatrix} 1 & -k \\ 0 & 1 \end{pmatrix} \begin{pmatrix}
 x' \\
 y'
\end{pmatrix}.
\]

iii) If \(c = a \) and \(-a < b < 0 \) then \[
\begin{pmatrix}
 x \\
 y
\end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix}
 x' \\
 y'
\end{pmatrix}
\]

If resulting form not reduced, repeat

The algorithm terminates after (iii), and since (ii) is followed by (i) or (iii), and since (i) reduces the size of \(a \).
Gauss’s reduction Theorem; examples

(76, 217, 155) of discriminant -31, The sequence of forms is

(76, 65, 14), (14, -65, 76), (14, -9, 2), (2, 9, 14), (2, 1, 4),

the sought after reduced form.

(11, 49, 55) of discriminant -19, gives the sequence of forms

(11, 5, 1), (1, -5, 11), (1, 1, 5).
Restriction on values taken by a bqf

Suppose $d = b^2 - 4ac$ with $(a, b, c) = 1$, and p is a prime.

- (i) If $p = am^2 + bmn + cn^2$ for some integers m, n then d is a square mod $4p$.

- (ii) If d is a square mod $4p$ then there exists a binary quadratic form of discriminant d that represents p.

Proof. (i) If $p \nmid 2ad$ and $p = am^2 + bmn + cn^2$. Therefore $4ap = (2am + bn)^2 - dn^2$ and so dn^2 is a square mod $4p$. Now $p \nmid n$ else $p | 4ap + dn^2 = (2am + bn)^2$ so that $p | 2am$ which is impossible as $p \nmid 2a$ and $(m, n) = 1$. We deduce that d is a square mod p.

(ii) If $d \equiv b^2 \pmod{4p}$ then $d = b^2 - 4pc$ for some integer c, and so $px^2 + bxy + cy^2$ is a quadratic form of discriminant d which represents $p = p \cdot 1^2 + b \cdot 1 \cdot 0 + c \cdot 0^2$. \qed
Class number one

Theorem Suppose $h(d) = 1$. Then p is represented by the form of discrim d if and only if d is a square mod $4p$.

(Fundamental discriminants: If $q^2 | d$ then $q = 2$ and $d \equiv 8$ or $12 \pmod{16}$.)

The only fundamental $d < 0$ with $h(d) = 1$ are $d = -3, -4, -7, -8, -11, -19, -43, -67, -163$. (Heegner/Baker/Stark)

Euler noticed that the polynomial $x^2 + x + 41$ is prime for $x = 0, 1, 2, \ldots, 39$, and some other polynomials.

Rabinowicz’s criterion We have $h(1 - 4A) = 1$ for $A \geq 2$ if and only if $x^2 + x + A$ is prime for $x = 0, 1, 2, \ldots, A - 2$.
Class number one

Rabinowiscz’s criterion We have $h(1 - 4A) = 1$ for $A \geq 2$ if and only if $x^2 + x + A$ is prime for $x = 0, 1, 2, \ldots, A - 2$.

If $p \nmid d$ then
- p is rep’d by $x^2 + y^2$ if and only if $(-1/p) = 1$,
- p is rep’d by $x^2 + 2y^2$ if and only if $(-2/p) = 1$,
- p is rep’d by $x^2 + xy + y^2$ if and only if $(-3/p) = 1$,
- p is rep’d by $x^2 + xy + 2y^2$ if and only if $(-7/p) = 1$,
- p is rep’d by $x^2 + xy + 3y^2$ if and only if $(-11/p) = 1$,
- p is rep’d by $x^2 + xy + 5y^2$ if and only if $(-19/p) = 1$,
- p is rep’d by $x^2 + xy + 11y^2$ if and only if $(-43/p) = 1$,
- p is rep’d by $x^2 + xy + 17y^2$ if and only if $(-67/p) = 1$,
- p is rep’d by $x^2 + xy + 41y^2$ if and only if $(-163/p) = 1$.
Class number *not* one

What about when the class number is not one? First example, $h(-20) = 2$, the two reduced forms are $x^2 + 5y^2$ and $2x^2 + 2xy + 3y^2$.

p is represented by $x^2 + 5y^2$ if and only if $p = 5$, or $p \equiv 1$ or $9 \pmod{20}$;

p is represented by $2x^2 + 2xy + 3y^2$ if and only if $p = 2$, or $p \equiv 3$ or $7 \pmod{20}$.

Cannot always distinguish which primes are represented by which bqf of discriminant d by congruence conditions. Euler found 65 such *idoneal numbers*. No more are known – at most one further idoneal number.
Ideals in quadratic fields

Any ideal I in a quadratic ring of integers:

$$R := \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}$$

is generated by ≤ 2 elements. If $I \subset \mathbb{Z}$ then principal. Else $\exists r + s\sqrt{d} \in I$ with $s \neq 0$, wlog $s > 0$. Select s minimal.

Claim: If $u + v\sqrt{d} \in I$ then s divides v

(else if $ks + \ell v = g := \gcd(s, v)$ then

$(kr + \ell u) + g\sqrt{d} = k(r + s\sqrt{d}) + \ell(u + v\sqrt{d}) \in I \neq$)

Let $v = ms$, so that $(u + v\sqrt{d}) - m(r + s\sqrt{d}) = u - mr$.

Therefore $I = \{m(r + s\sqrt{d}) + n : m \in \mathbb{Z}, n \in I \cap \mathbb{Z}\}$.

Now $I \cap \mathbb{Z}$ is an ideal in \mathbb{Z} so principal, $= \langle g \rangle$ say hence

$$I = \langle r + s\sqrt{d}, g \rangle_{\mathbb{Z}}.$$
Any ideal \(I \subset R := \{a + b\sqrt{d} : a, b \in \mathbb{Z}\} \) has the form
\[
I = \langle r + s\sqrt{d}, g \rangle_{\mathbb{Z}}.
\]

More: \(\sqrt{d} \in R \), so \(g\sqrt{d} \in I \) and \(sd + r\sqrt{d} \in I \), and so
\(s \) divides both \(g \) and \(r \).

Therefore \(r = sb \) and \(g = sa \). Also
\[
s(b^2 - d) = (r + s\sqrt{d})(b - \sqrt{d}) \in I \cap \mathbb{Z}
\]
and so \(s(b^2 - d) \) is a multiple of \(g = sa \); hence \(a \) divides \(b^2 - d \). Therefore
\[
I = s\langle b + \sqrt{d}, a \rangle_{\mathbb{Z}}
\]
for some integers \(s, a, b \) where \(a \) divides \(b^2 - d \).
Binary quadratic forms and Ideals

\[I = s\langle a, b + \sqrt{d}\rangle_{\mathbb{Z}} \]

If \(f(x, y) = ax^2 + bxy + cy^2 \) then

\[af(x, y) = \left(ax + \frac{b + \sqrt{d}}{2} y \right) \left(ax + \frac{b - \sqrt{d}}{2} y \right) \]

so we see that \(af(x, y) \) is the Norm of \(\left(ax + \frac{b+\sqrt{d}}{2} y \right) \).

So the set of possible values of \(f(x, y) \) with \(x, y \in \mathbb{Z} \) is in 1-to-1 correspondence with the elements of \(\langle a, \frac{b+\sqrt{d}}{2} \rangle_{\mathbb{Z}} \).
Equivalence of ideals

Any two equivalent bqfs can be obtained from each other by a succession of two basic transformations:

\[x \rightarrow x+y, \ y \rightarrow y \text{ gives } \langle a, \frac{b + \sqrt{d}}{2} \rangle \mathbb{Z} \rightarrow \langle a, \frac{2a + b + \sqrt{d}}{2} \rangle \mathbb{Z} \]

Now \(\langle a, \frac{b+\sqrt{d}}{2} \rangle \mathbb{Z} = \langle a, \frac{2a+b+\sqrt{d}}{2} \rangle \mathbb{Z} \)

\[x \rightarrow -y, \ y \rightarrow x \text{ gives } \langle a, \frac{b + \sqrt{d}}{2} \rangle \mathbb{Z} \rightarrow \langle c, \frac{-b + \sqrt{d}}{2} \rangle \mathbb{Z}. \]

Since \(\frac{-b+\sqrt{d}}{2} \cdot \frac{b+\sqrt{d}}{2} = \frac{d-b^2}{4} = -ac \), and therefore

\[\frac{-b + \sqrt{d}}{2} \cdot \langle a, \frac{b + \sqrt{d}}{2} \rangle \mathbb{Z} = a \cdot \langle \frac{-b + \sqrt{d}}{2}, -c \rangle \mathbb{Z}. \]

So, equivalence of forms, in setting of ideals, gives: For ideals \(I, J \) of \(\mathbb{Q}(\sqrt{d}) \), we have that

\(I \sim J \) if and only there exists \(\alpha \in \mathbb{Q}(\sqrt{d}) \), such that

\(J = \alpha I \).
For ideals I, J of $\mathbb{Q}(\sqrt{d})$, we have that $I \sim J$ if and only there exists $\alpha \in \mathbb{Q}(\sqrt{d})$, such that

$$J = \alpha I.$$

This works in any number field; moreover then one has finitely many equivalence classes, and i bounds for the “smallest” element of each class.

Any ideal $I = \langle a, \frac{b+\sqrt{d}}{2} \rangle$ with $d < 0$ then we plot \mathbb{Z}-linear combinations on the complex plane and they form a lattice, $\Lambda = \langle a, \frac{b+\sqrt{d}}{2} \rangle$ — geometry of lattices.

Equivalence: Two lattices Λ, Λ' are homothetic if there exists $\alpha \in \mathbb{C}$ such that $\Lambda' = \alpha \Lambda$, and we write $\Lambda' \sim \Lambda$.

Divide through by a, every such lattice is homothetic to $\langle 1, \tau \rangle$ where $\tau = \frac{b+\sqrt{d}}{2a}$, in the upper half plane.
Fundamental discriminants and orders

A square class of integers, like $3, 12, 27, 48, \ldots$ gives same field $\mathbb{Q}(\sqrt{3n^2}) = \mathbb{Q}(\sqrt{3})$ — minimal one? Candidate: The only one that is squarefree? However, from theory of bqfs need discriminant $\equiv 0$ or $1 \pmod{4}$. Divisibility by 4 correct price to pay. The *fundamental discriminant* of a quadratic field to be the smallest element of the square class of the discriminant which is $\equiv 0$ or $1 \pmod{4}$. For d squarefree integer, the fundamental discriminant D is

$$D = \begin{cases} d & \text{if } d \equiv 1 \pmod{4} \\ 4d & \text{if } d \equiv 2 \text{ or } 3 \pmod{4} \end{cases}.$$

The ring of integers is $\mathbb{Z} \left[\frac{D + \sqrt{D}}{2} \right]$ or $\mathbb{Z}[\omega] = \langle 1, \omega \rangle_{\mathbb{Z}}$,

$$\omega := \begin{cases} \frac{1 + \sqrt{d}}{2} & \text{if } d \equiv 1 \pmod{4} \\ \sqrt{d} = \sqrt{D}/2 & \text{if } d \equiv 2 \text{ or } 3 \pmod{4} \end{cases}.$$
Gauss’s Composition Law

The product of any two values of a principal form gives a third value of that quadratic form:

\[(a^2 + db^2)(c^2 + de^2) = (ac + dbe)^2 + d(ae - bc)^2.\]

Gauss: if \(f\) and \(g\) are bqfs discrim \(d\), then \(\exists\) bqf \(h\) of discrim \(d\), such that any

\[f(a, b)g(c, e) = h(m, n),\]

\[m = m(a, b, c, e), \quad n = n(a, b, c, e)\]

are bilinear forms. Gauss showed this explicitly via formulae; e.g., for three bqfs of discrim \(-71\),

\[2m^2 + mn + 9n^2 = (4a^2 + 3ab + 5b^2)(3c^2 + ce + 6e^2).\]

with \(m = ac - 3ae - 2bc - 3be\) and \(n = ac + ae + bc - be\).

Gauss called this composition.
\[2m^2 + mn + 9n^2 = (4a^2 + 3ab + 5b^2)(3c^2 + ce + 6e^2).\]

Gauss showed composition stays consistent under the equivalence relation.

Allows us to find a group structure on the classes of quadratic forms of given discriminant, the \textit{class group}.

Gauss’s proof is monstrously difficult, even in the hands of the master the algebra involved is so overwhelming that he does not include many details.

Gauss’s student \textbf{Dirichlet} found several ways to simplify composition. The first involved finding forms that are equivalent to \(f\) and \(g\) that are easier to compose:
Dirichlet’s composition of forms

• For any given integer \(w \) there exist integers \(m, n \) with \((am^2 + bmn + cn^2, w) = 1\).

• Given quadratic forms \(f \) and \(g \), find \(f' \sim f \) such that \((f'(1, 0), g(1, 0)) = 1\).

• There exists \(F \sim f' \) and \(G \sim g \) such that \(F(x, y) = ax^2 + bxy + cy^2 \) and \(G(x, y) = Ax^2 + bxy + Cy^2 \) with \((a, A) = 1\).

• If \(f \) and \(g \) have the same discriminant then there exist \(h \) such that \(F(x, y) = ax^2 + bxy + Ahy^2 \) and \(G(x, y) = Ax^2 + bxy + ah y^2 \) with \((a, A) = 1\).

• \(d = b^2 - 4aAh \). If \(H(x, y) = aAx^2 + bxy + hy^2 \) then

\[
\begin{align*}
H(ux - hvy, auy + Avx + bvy) &= F(u, v)G(x, y)
\end{align*}
\]
Dirichlet’s composition of ideals

Dirichlet simplified by defining ideals: To multiply two ideals, $IJ = \{ij : i \in I, j \in J\}$.

$$2m^2 + mn + 9n^2 = (4a^2 + 3ab + 5b^2)(3c^2 + ce + 6e^2).$$

$$(4, \frac{3+\sqrt{-71}}{2})$$ corresponds to $4a^2 + 3ab + 5b^2$, and

$$(3, \frac{1+\sqrt{-71}}{2})$$ corresponds to $3c^2 + ce + 6e^2$. Then

$$\left(4, \frac{3+\sqrt{-71}}{2}\right) \left(3, \frac{1+\sqrt{-71}}{2}\right) = \left(12, \frac{-5+\sqrt{-71}}{2}\right),$$

which corresponds to $12x^2 - 5xy + 2y^2$, also of disc -71, but not reduced. Reduction then yields:

$$(12, -5, 2) \sim (2, 5, 12) \sim (2, 1, 9)$$
Comparing Dirichlet’s compositions

If \(F = ax^2 + bxy + Ahy^2 \), \(G = Ax^2 + bxy + ah^2 \) then

\[
H(ux - hvy, auy + Avx + bvy) = F(u, v)G(x, y)
\]

for \(H(x, y) = aAx^2 + bxy + hy^2 \).

The two quadratic forms \(F \) and \(G \) correspond to \((a, \frac{-b + \sqrt{d}}{2}) \) and \((A, \frac{-b + \sqrt{d}}{2}) \). The product is \((aA, \frac{-b + \sqrt{d}}{2}) \), so the composition of \(F \) and \(G \) must be \(aAx^2 + bxy + hy^2 \).

Identity of ideal class group: principal ideas. Inverses:

\[
\left(a, \frac{b + \sqrt{d}}{2} \right) \left(a, \frac{b - \sqrt{d}}{2} \right) = \left(a^2, a \cdot \frac{b + \sqrt{d}}{2}, a \cdot \frac{b - \sqrt{d}}{2}, \frac{b^2 - d}{4} \right)
\]

\[\supseteq a (a, b, c) = (a),\]

So an ideal and its conjugate are inverses in class group.
A more general set up

Let \(G(\mathbb{Z}) \) be \(\text{SL}(2, \mathbb{Z}) \), an “algebraic group”; \(V(\mathbb{Z}) \) the space of bqfs over \(\mathbb{Z} \), a “representation”. Seen that: The \(G(\mathbb{Z}) \)-orbits parametrize the ideal classes in the associated quadratic rings.

Do other such pairs exist? That is an algebraic group \(G \) and associated representation \(V \) such that \(G(\mathbb{Z}) \setminus V(\mathbb{Z}) \) parametrizes something interesting? Eg rings, modules etc of arithmetic interest.

In our example there is just one orbit over \(\mathbb{C} \):

A pre-homogenous vector space is a pair \((G, V)\) where \(G \) is an algebraic group and \(V \) is a rational vector space representation of \(G \) such that the action of \(G(\mathbb{C}) \) on \(V(\mathbb{C}) \) has just one Zariski open orbit.
A pre-homogenous vector space is a pair \((G, V)\) where \(G\) is an algebraic group and \(V\) is a rational vector space representation of \(G\) such that the action of \(G(\mathbb{C})\) on \(V(\mathbb{C})\) has just one Zariski open orbit.

Bhargava’s program centres around study of \(G(\mathbb{Z}) \setminus V(\mathbb{Z})\) for pre-homogenous vector spaces \((G, V)\).

There are just 36 of them (Sato-Kimura, 1977), but they have proved to be incredibly rich in structure of interest to number theorists.
Bhargava composition

Recently Bhargava gave a new insight into the composition law.

Note: If $IJ = K$ then IJK is principal.
Bhargava composition

We begin with a 2-by-2-by-2 cube. \(a, b, c, d, e, f, g, h \). Six faces, can be split into three parallel pairs. To each consider pair of 2-by-2 matrices by taking the entries in each face, with corresponding entries corresponding to opposite corners of the cube, always starting with \(a \). Hence we get the pairs

\[
M_1(x, y) := \begin{pmatrix} a & b \\ c & d \end{pmatrix} x + \begin{pmatrix} e & f \\ g & h \end{pmatrix} y,
\]

\[
M_2(x, y) := \begin{pmatrix} a & c \\ e & g \end{pmatrix} x + \begin{pmatrix} b & d \\ f & h \end{pmatrix} y,
\]

\[
M_3(x, y) := \begin{pmatrix} a & b \\ e & f \end{pmatrix} x + \begin{pmatrix} c & d \\ g & h \end{pmatrix} y,
\]

where we have, in each added the dummy variables, \(x, y \). The determinant, \(-Q_j(x, y)\), of each \(M_j(x, y) \) gives rise to a quadratic form in \(x \) and \(y \).
$M_1(x, y) := \begin{pmatrix} a & b \\ c & d \end{pmatrix} x + \begin{pmatrix} e & f \\ g & h \end{pmatrix} y,$

$M_2(x, y) := \begin{pmatrix} a & c \\ e & g \end{pmatrix} x + \begin{pmatrix} b & d \\ f & h \end{pmatrix} y,$

$M_3(x, y) := \begin{pmatrix} a & b \\ e & f \end{pmatrix} x + \begin{pmatrix} c & d \\ g & h \end{pmatrix} y,$

$Q_j(x, y) = - \det M_j(x, y), \text{ a bqf}$

Now apply an $\text{SL}(2, \mathbb{Z})$ transformation in one direction. That is, if $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \text{SL}(2, \mathbb{Z})$ then we replace the face

$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \alpha + \begin{pmatrix} e & f \\ g & h \end{pmatrix} \beta$

and

$\begin{pmatrix} e & f \\ g & h \end{pmatrix}$ by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \gamma + \begin{pmatrix} e & f \\ g & h \end{pmatrix} \delta.$
$M_1(x, y) := \begin{pmatrix} a & b \\ c & d \end{pmatrix} x + \begin{pmatrix} e & f \\ g & h \end{pmatrix} y,$

If $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \text{SL}(2, \mathbb{Z})$ then we replace the face

$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \alpha + \begin{pmatrix} e & f \\ g & h \end{pmatrix} \beta$

and

$\begin{pmatrix} e & f \\ g & h \end{pmatrix}$ by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \gamma + \begin{pmatrix} e & f \\ g & h \end{pmatrix} \delta.$

Then $M_1(x, y)$ gets mapped to

$\begin{cases} \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \alpha + \begin{pmatrix} e & f \\ g & h \end{pmatrix} \beta \right) x + \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \gamma + \begin{pmatrix} e & f \\ g & h \end{pmatrix} \delta \right) y, \end{cases}$

that is $M_1(\alpha x + \gamma y, \beta x + \delta y)$. Therefore

$Q_1(x, y) = - \det M_1(x, y)$ gets mapped to

$Q_1(\alpha x + \gamma y, \beta x + \delta y).$ which is equivalent to $Q_1(x, y).$
Now $M_2(x, y)$ gets mapped to

$$\begin{pmatrix} a\alpha + e\beta & c\alpha + g\beta \\ a\gamma + e\delta & c\gamma + g\delta \end{pmatrix} x + \begin{pmatrix} b\alpha + f\beta & d\alpha + h\beta \\ b\gamma + f\delta & d\gamma + h\delta \end{pmatrix} y$$

$$= \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} M_2(x, y);$$

hence the determinant, $Q_2(x, y)$, is unchanged. An analogous calculation reveals that $M_3(x, y)$ gets mapped to

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} M_3(x, y)$$

and its det, $Q_3(x, y)$ also unchanged.

Therefore we can act on our cube by such SL(2, \mathbb{Z})-transformations, in each direction, and each of the three quadratic forms remains in the same equivalence class.
Another prehomogenous vector space

We can act on our cube by such $\text{SL}(2, \mathbb{Z})$-transformations, in each direction, and each of the three quadratic forms remains in the same equivalence class.

Bhargava’s cubes can be identified as

$$a \ e_1 \times e_1 \times e_1 + b \ e_1 \times e_2 \times e_1 + c \ e_2 \times e_1 \times e_1 + d \ e_2 \times e_2 \times e_1 + e \ e_1 \times e_1 \times e_2 + f \ e_1 \times e_2 \times e_2 + g \ e_2 \times e_1 \times e_2 + h \ e_2 \times e_2 \times e_2$$

with

the representation $\mathbb{Z}^2 \times \mathbb{Z}^2 \times \mathbb{Z}^2$

of the group

$\text{SL}(2, \mathbb{Z}) \times \text{SL}(2, \mathbb{Z}) \times \text{SL}(2, \mathbb{Z})$.

This pair is also a prehomogenous vector space
Reducing a Bhargava cube

Simplify entries using the following reduction algorithm:

• We select the corner that is to be \(a \) so that \(a \neq 0 \).
• Transform cube to ensure \(a \) divides \(b, c \) and \(e \).

If not, say \(a \) does not divide \(e \), n select integers \(\alpha, \beta \) so that \(a\alpha + e\beta = (a, e) \). Let \(\gamma = -e/(a, e) \), \(\delta = a/(a, e) \).

In transformed matrix

\[
a' = (a, e), \quad e' = 0 \quad \text{and} \quad 1 \leq a' \leq a - 1.
\]

If \(a' \) does not divide \(b' \) or \(c' \), repeat the process.

Each time we reduce \(a \), so a finite process.

• Transform cube to ensure \(b = c = e = 0 \). Select \(\alpha = 1, \beta = 0, \gamma = -e/a, \delta = 1 \), so that \(e' = 0, b' = b, c' = c \). We repeat this in each of the three directions to ensure that \(b = c = e = 0 \).
Reducing a Bhargava cube, II

Replacing \(a\) by \(-a\), we have that the three matrices are:

\[
M_1 = \begin{pmatrix} -a & 0 \\ 0 & d \end{pmatrix} x + \begin{pmatrix} 0 & f \\ g & h \end{pmatrix} y, \quad \text{so} \quad Q_1 = adx^2 + ahxy + fgy^2;
\]
\[
M_2 = \begin{pmatrix} -a & 0 \\ 0 & g \end{pmatrix} x + \begin{pmatrix} 0 & d \\ f & h \end{pmatrix} y, \quad \text{so} \quad Q_2 = agx^2 + ahxy + dfy^2;
\]
\[
M_3 = \begin{pmatrix} -a & 0 \\ 0 & f \end{pmatrix} x + \begin{pmatrix} 0 & d \\ g & h \end{pmatrix} y, \quad \text{so} \quad Q_3 = afx^2 + ahxy + dgy^2.
\]

All \(\text{discrim}(Q_j) = (ah)^2 - 4adf g\), and

\(Q_1(fy_2x_3 + gx_2y_3 + hy_2y_3, ax_2x_3 - dy_2y_3) = Q_2(x_2, y_2)Q_3(x_3, y_3)\)

\(x_1 = fy_2x_3 + gx_2y_3 + hy_2y_3\) and \(y_1 = ax_2x_3 - dy_2y_3\).

Dirichlet: \(a = 1\). So

Includes every pair of bqfs of same discriminant.
Pre-homogenous vector spaces

SL(2, \mathbb{Z})-transformations. Forms-Ideals-Transformations

Generators of \(SL(2, \mathbb{Z}) \), \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \). correspond to two basic ops in Gauss’s reduction algorithm

The first is \(x \to x + y, y \to y \), so that

\[
 f(x, y) \sim g(x, y) := f(x+y, y) = ax^2 + (b+2a)xy + (a+b+c)y^2.
\]

Note that \(I_g = (2a, -(b + 2a) + \sqrt{d}) = I_f \),

and \(z_g = \frac{-b-2a+\sqrt{d}}{2a} = z_f - 1 \).
Generators of $\text{SL}(2, \mathbb{Z})$ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. correspond to two basic ops in Gauss’s reduction algorithm. The first is $x \to x + y, y \to y$, so that

$$f(x, y) \sim g(x, y) := f(x+y, y) = ax^2 + (b+2a)xy + (a+b+c)y^2.$$

Note that $I_g = (2a, -(b + 2a) + \sqrt{d}) = I_f$, and $z_g = \frac{-b-2a+\sqrt{d}}{2a} = z_f - 1$.

The second is $x \to y, y \to -x$ so that

$$f(x, y) \sim h(x, y) := f(y, -x) = cx^2 - bxy + ay^2.$$

Note that $I_h = (2c, b + \sqrt{d})$, and $z_h = \frac{b+\sqrt{d}}{2c}$.

$$z_f \cdot z_h = \frac{-b+\sqrt{d}}{2a} \cdot \frac{b+\sqrt{d}}{2c} = \frac{d - b^2}{4ac} = -1$$

that is $z_h = -1/z_f$. Then

$$I_h \sim (1, z_h) = (1, -1/z_f) \sim (1, -z_f) = (1, z_f) \sim I_f.$$
Since any $\text{SL}(2, \mathbb{Z})$-transformation can be constructed out of the basic two transformation we deduce

Theorem $f \sim f'$ if and only if $I_f \sim I_{f'}$ if and only if $z_f \sim z_{f'}$.
The ring of integers of a quadratic field, revisited

Integer solutions x, y to $x^2 + 19 = y^3$?

If so, y is odd else $x^2 \equiv 5 \pmod{8}$. Also $19 \nmid y$ else $19 | x \implies 19 \equiv x^2 + 19 = y^3 \equiv 0 \pmod{19^2}$.

Hence $(y, 38) = 1$.

Now $(x + \sqrt{-19})(x - \sqrt{-19}) = y^3$ and $(x + \sqrt{-19}, x - \sqrt{-19})$ contains $2\sqrt{-19}$ and y^3.

Hence the ideals $(x + \sqrt{-19})$ and $(x - \sqrt{-19})$ are coprime.

Their product is a cube and so they are both cubes.
Integer solutions x, y to $x^2 + 19 = y^3$?

The ring of integers of $\mathbb{Q}[\sqrt{-19}]$ has class number one. So every ideal is principal. Hence

$$x + \sqrt{-19} = u(a + b\sqrt{-19})^3 \text{ where } u \text{ is a unit.}$$

Only units: 1 and -1. Change a, b, to ua, ub. Hence

$$x + \sqrt{-19} = (a + b\sqrt{-19})^3$$

$$= a(a^2 - 57b^2) + b(3a^2 - 19b^2)\sqrt{-19},$$

so that $b(3a^2 - 19b^2) = 1$.

Therefore $b = \pm 1$ and so $3a^2 = 19b^2 \pm 1 = 19 \pm 1$ which is impossible. We deduce:

*There are no integer solutions x, y to $x^2 + 19 = y^3$."

However what about $18^2 + 19 = 7^3$?

The mistake: The ring of integers of $\mathbb{Q}[\sqrt{-19}]$ is *not* the set of numbers of the form $a + b\sqrt{-19}$ with $a, b \in \mathbb{Z}$. *It is* $(a + b\sqrt{-19})/2$ with $a, b \in \mathbb{Z}$ and $a \equiv b \pmod{2}$.
Integer solutions \(x, y \) to \(x^2 + 19 = y^3 \) ?

The ring of integers of \(\mathbb{Q}[\sqrt{-19}] \) has class number one. So every ideal is principal. Hence

\[
x + \sqrt{-19} = (\frac{a+b\sqrt{-19}}{2})^3
\]

\[
8x + 8\sqrt{-19} = (a + b\sqrt{-19})^3
\]

\[
= a(a^2 - 57b^2) + b(3a^2 - 19b^2)\sqrt{-19},
\]

so that \(b(3a^2 - 19b^2) = 8 \). Therefore

\(b = \pm 1, \pm 2, \pm 4 \) or \(\pm 8 \) and so

\(3a^2 = 19 \pm 8, 19 \cdot 4 \pm 4, 19 \cdot 16 \pm 2 \) or \(19 \cdot 64 \pm 1 \).

The only solution is \(b = 1, a = \pm 3 \) leading to

\(x = \mp 18, y = 7 \), the only solutions.