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Overview

A.-Gigli-Savaré: Calculus and heat flows in metric measure spaces
and applications to spaces with Ricci bounds from below.
http://cvgmt.sns.it, submitted.
(some results and proofs)

A.-Gigli-Savaré: Riemannian Ricci curvature bounds in metric measure
spaces.
In preparation.
(just statements, no proofs)
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Some by now “classical” results

Let us consider in Rn the heat equation (ut(x) = u(t , x))

∂tut = ∆ut

Classically it can be viewed as the gradient flow of the energy

Dir(u) :=
1
2

∫
Rn
|∇u|2 dx (+∞ if u /∈ H1(Rn))

in the Hilbert space H = L2(Rn).

Formally, t 7→ ut solves the ODE u′ = −∇Dir(u) in H because

Dir “differentiable” at u ⇐⇒ −∆u ∈ L2, ∇Dir(u) = −∆u
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In 1998, Jordan-Kinderlehrer-Otto proved that the same equation
arises as gradient flow of the entropy functional

Ent(ρL n) :=

∫
Rn
ρ log ρdx (+∞ if µ is not a.c. w.r.t. L n)

in the space P2(Rn) of probability measures with finite quadratic
moments, with respect to Wasserstein distance W2.

W 2
2 (µ, ν) := min

{∫
Rn×Rn

|x − y |2 dγ(x , y) : (π1)]γ = µ, (π2)]γ = ν

}
.

Push forward notation. f : X → Y Borel induces a map
f] : P(X ) → P(Y ):

f]µ(B) := µ
(
f−1(B)

)
∀B ∈ B(X ).
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Proofs of this equivalence

1. By the so-called Otto calculus (formal);

2. Prove that the implicit time discretization scheme (Euler scheme),
traditionally used for the approximation of gradient flows, when done
with energy Ent(µ) and distance W2, does converge to the heat
equation.

3. Give a meaning to what “gradient flow of Ent w.r.t. W2 means”,
and check that solutions of this gradient flow are solutions to the heat
equation. Then, apply uniqueness for ∂tut = ∆ut .

The last strategy is more abstract, but still uses the differentiable
structure of Rn. The question is to understand deeper reasons for this
equivalence, in particular on which structural properties of the space
it depends (Riemannian manifolds, Finsler spaces, Wiener spaces,
sub-Riemannian spaces, etc.)
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Metric measure spaces
Let us consider a metric measure space (X ,d ,m), with m ∈ P(X ).
In this framework it is still possible to define a “Dirichlet energy”, that
we call Cheeger functional:

Ch(f ) := inf
{

lim inf
n→∞

∫
X
|∇fn|2 dm : fn ∈ Lip(X ),

∫
X
|fn − f |2 dm → 0

}
,

where
|∇g|(x) := lim sup

y→x

|g(y)− g(x)|
d(y , x)

is the slope (also called local Lipschitz constant).
Also, one can consider the so-called relative entropy functional
Entm : P(X ) → [0,+∞]

Entm(ρm) :=

∫
X
ρ log ρdm (+∞ if µ is not a.c. w.r.t. m).
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The basic result is that the equivalence between L2-gradient flow of
Ch and W2-gradient flow of Entm always holds, if the latter is properly
understood. But, without additional assumptions on the space, both
objects can be trivial.
Example. Let X = [0,1], d the Euclidean distance, m =

∑
n≥1 2−nδqn ,

where {qn}n≥1 is an enumeration of [0,1]∩Q. Let An ⊃ Q∩X be open
sets with L 1(An) → 0 and

χn(t) :=

∫ t

0

(
1− χAn(s)

)
ds t ∈ [0,1].

Then f ◦ χn → f in L2(X ,m) for all f ∈ Lip(X ) and f ◦ χn is locally
constant in Q ∩ X hence

Ch(f ) = 0 ∀f ∈ Lip(X ).

It follows that Ch ≡ 0 in L2(X ,m).
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Identification of weak gradients

A closely related question, relevant in particular for the second paper,
is the identification of weak gradients. The first one, that we call relaxed
gradient |∇f |∗, is the object that provides integral representation to Ch:

Ch(f ) =
1
2

∫
X
|∇f |2∗ dm ∀f ∈ D(Ch).

It has all the natural properties (locality, chain rules, etc.) a weak
gradient should have.

This gradient is useful when doing “vertical” variations ε 7→ f + εg (i.e.
in the dependent variable).
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Identification of weak gradients

But, when computing variations of the entropy, the “horizontal”
variations ε → f (γε) (i.e. in the independent variable) are necessary.
These are related to another weak gradient |∇f |w , defined as follows.
We require the so-called upper gradient property

|f (γ1)− f (γ0)| ≤
∫

γ
G

along “almost all” curves γ in AC2([0,1]; X ) and then we define |∇f |w
as the element with smallest L2(X ,m) norm.
The remarkable fact is that these two gradients always coincide (and,
of course, maybe both trivial without extra assumptions). The proof of
this identification uses ideas from optimal transportation, as lifting of
solutions to the heat flow to probability measures in AC2([0,1]; X

)
and

the energy dissipation rate of Entm.
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Why gradients are not trivial in Lott-Sturm-Villani
spaces
In these spaces one imposed convexity of W2 geodesics of Entm (the
so-called CD(0,∞) condition) or of functionals

ρm 7→ −
∫

X
ρ1−1/N dm

(the CD(0,N) condition).
In this case the gradient flow of Entm is not trivial, and since it coincides
with the heat flow, also this is not trivial.
The energy dissipation rate is

d
dt

∫
X
ρt log ρt dm =

∫
X

log ρt∆ρt dm = −
∫
{ρt>0}

|∇ρt |2

ρt
dm

= −4
∫

X
|∇√ρt |2 dm.
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Standing assumptions (for the lectures).

(X ,d) compact metric space, m ∈ P(X )

Prerequisites.

Basic facts of Optimal Transportation and Measure Theory

References. Villani’s monographs (’03, ’09), [A.-Gigli-Savaré] ’08,
A.-Gigli user’s guide ’11.
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The Hamilton-Jacobi semigroup

Qt f (x) := inf
y∈X

f (y) +
1
2t

d2(x , y) (Hopf-Lax formula)

Theorem. f bounded, lower semicontinuous. It holds:
(1) Qt f (x) ↑ f (x) as t ↓ 0;
(2) Qt(Qsf (x)) ≥ Qt+sf (x), with equality if (X ,d) is geodesic;
(3) d+

dt Qt f (x) + 1
2 |∇Qt f (x)|2 ≤ 0;

(4) Qt f (x) restricted to (ε,∞)× X is Lipschitz for all ε > 0.
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Sketch of proof
(1) It follows by the lower semicontinuity of f , which ensures also that
minimizers do exist (exercise)
(2) It follows by

inf
y

(
inf
z

f (z) +
1
2s

d2(z, y)

)
+

1
2t

d2(x , y)

= inf
z

inf
y

(
1
2s

d2(z, y) +
1
2t

d2(x , y)

)
+ f (z)

≥ inf
z

1
2(s + t)

d2(x , z) + f (z)

noticing that the last inequality is an equality in geodesic spaces.
In order prove (3), we set{

D+
f (x , t) := max{d(x , y) : y minimizer}

D−
f (x , t) := min{d(x , y) : y minimizer}.
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Sketch of proof
Since limit of minimizers is a minimizer, D+ is upper semicontinuous,
while D− is lower semicontinuous. In addition D+

f (x , t) ≥ D−
f (x , t) ≥

D+
f (x , s) if 0 < s < t .

We prove first that d±
dt Qt f (x) = −[D±

f (x , t)]2/(2t2).
Choosing xt at maximum distance and xs at minimum distance yields

Qsf (x)−Qt f (x) ≤ 1
2s

d2(x , xt)+f (xt)− f (xt)−
1
2t

d2(x , xt)

=
(D+

f (x , s))2

2
(
1
s
− 1

t
)

Qsf (x)−Qt f (x) ≥ 1
2s

d2(x , xs)+f (xs)− f (xs)−
1
2t

d2(x , xs)

=
(D−

f (x , s))2

2
(
1
s
− 1

t
)
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Sketch of proof
To conclude, suffices to show that |∇Qt f | ≤ D+

f (x , t)/t . The same trick
used before, now for variations in space, yields:

Qt f (x)−Qt f (y) ≤ 1
2t

d2(x , z)+f (z)− f (z)− 1
2t

d2(z, y)

≤ d(x , y)
(D−(y , t)

t
+

d(x , y)

2t
)

and we can use the upper semicontinuity of D+
f to conclude.

If y is kept fixed and we let x → y we obtain the sharper inequality

|∇+Qt f |(y)| ≤
D−

f (y , t)
t

,

where the ascending slope |∇+f | is defined by

|∇+f |(y) := lim sup
x→y

[f (x)− f (y)]+

d(x , y)
.
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Hamilton-Jacobi and optimal transportation
Why the Hopf-Lax formula and the Hamilton-Jacobi equation are
relevant in the theory of optimal transport?
c-transform. Given a cost function c : X ×Y → R the c-transforms are
ϕc : Y → R ∪ {−∞}, ψc : X → R ∪ {−∞} are defined by

ϕc(y) := inf
x∈X

c(x , y)− ϕ(x), ψc(x) := inf
y∈Y

c(x , y)− ψ(y)

Notice the analogy with convex analysis: ψc = (−ψ)∗ if X is Hilbert and
c(x , y) = 〈x , y〉. The relation with the HL formula is also obvious:

ψc = Q1(−ψ).

Then, we say that ϕ : X → R ∪ {−∞} is c-concave if ϕ = ψc for some
ψ : Y → R ∪ {−∞}. As in convex analysis, ϕ 7→ ϕc is an involution in
the class of c-concave functions: (ϕc)c = ϕ.
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Hamilton-Jacobi and optimal transportation
Definition. We say that a c-concave function ϕ : X → R ∪ {−∞} is a
Kantorovich potential relative to (µ, ν) if it satisfies

(∗) ϕ(x) + ϕc(y) = c(x , y) for γ-a.e. (x , y)

for any optimal plan γ from µ to ν.

Corollary. If ϕ is a Kantorovich potential from µ to ν it holds:

|∇+ϕ|(x) ≤ d(x , y) for γ-a.e. (x , y).

In particular
∫
|∇+ϕ|2 dµ ≤ W 2

2 (µ, ν).
Proof. Since ϕ = (ϕc)c we may write ϕ = Q1(−ϕc).
On the other hand, the optimality condition (*) gives

D−
−ϕc (x ,1) ≤ d(x , y) γ-a.e. in X × X .
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The classical Brenier theorem and an example
In the Euclidean case c(x , y) = |x − y |2/2, if ϕ is differentiable at x and

ϕ(x) + ϕc(y) =
1
2
|x − y |2

one can differentiate at x and obtain ∇ϕ(x) + (x − y) = 0, which tells
us that y is uniquely determined by x and

|∇ϕ|(x) = d(x , y).

Example. X = [0,1], µ = δ0, µt = t−1χ[0,t]L
1. In this case

ϕ(x) =
x2

2
− x ,

∫
|∇+ϕ|2 dµ0 = 0

while
W 2

2 (µ0, µ1) =
1
3
.
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Optimal transport and Kantorovich potentials in
geodesic spaces

If (X ,d) is Polish and geodesic we may formulate the optimal transport
problem in terms of geodesic plans i.e. probability measures π
concentrated in the Polish space Geo(X ) of constant speed geodesics:

(∗) min
{∫

d2(γ0, γ1) dπ(γ) : (e0)]π = µ, (e1)]π = ν

}
.

Here et : C([0,1]; X ) → X are the evaluation maps, namely et(γ) = γt .
The relation with the classical optimal plans γ of Kantorovich theory is
that if π is a minimizer in (*), then (e0,e1)]π is an optimal plan, and that
any optimal γ admits a (possibly nonunique) “lifting” π.
Theorem. Any constant speed geodesic µt can be represented as
(et)]π for a suitable optimal geodesic plan π. Conversely, any optimal
geodesic plan π induces a constant speed geodesic (et)]π.
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Optimal transport and Kantorovich potentials in
geodesic spaces

Theorem. Let µt , t ∈ [0,1] be a constant speed geodesic and let ϕ
be a Kantorovich potential relative to µ0, µ1. Then, for all t ∈ (0,1],
ϕt := Qt(−ϕc) is a Kantorovich potential, relative to the scaled cost
c/t , from µ1−t to µ1.

Sketch of proof. It is obvious that ϕt + ϕ ≤ ct . The key implication is

ϕ(γ0) + ϕc(γ1) = c(γ0, γ1) implies ϕt(γ1−t) + ϕc(γ1) = ct(γ0, γ1)

hence, if π is an optimal geodesic plan, ϕ + ϕc = c γ1-a.e. implies
ϕt + ϕc = c/t γt -a.e., where

γt := (γ1−t , γ1)]π

is an optimal plan from µ1−t to µ1.
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Cheeger’s energy and relaxed slopes

Ch(f ) :=
1
2

inf
{

lim inf
h→∞

∫
|∇fh|2 dm : fh ∈ Lip(X ),

∫
X
|fh − f |2 dm → 0

}

By construction Ch is lower semicontinuous, and it is easily seen to be
convex. Can we provide an integral representation to it?
Relaxed slope: G ∈ L2(X ,m) is a relaxed slope of f if G bounds from
above a function in{

weak L2 limit points of |∇fn|, fn ∈ Lip(X ), ‖fn − f‖2 → 0
}

or equivalently in{
strong L2 limit points of c.c. of |∇fn|, fn ∈ Lip(X ), ‖fn − f‖2 → 0

}
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Cheeger’s energy and relaxed slopes

We call minimal relaxed slope and denote by |∇f |∗ the function with
smallest L2(X ,m) norm among relaxed slopes.

Theorem. Let f ∈ D(Ch). Then:
(1) Ch(f ) = 1

2

∫
|∇f |2∗ dm;

(2) if G1, G2 are relaxed slopes, so is min{G1,G2};
(3) |∇f |∗ ≤ G m-a.e. for any relaxed slope G;
(4) g = f m-a.e. on a Borel set B implies |∇f |∗ = |∇g|∗ m-a.e. on B.

Calculus rules. If N ⊂ R is Lebesgue negligible, then |∇f |∗ = 0 a.e. in
f−1(N).

|∇φ(f )|∗ ≤ |φ′(f )||∇f |∗ with equality if φ′ ≥ 0.
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Sketch of proof

(1) Any weak limit point of |∇fn| yields a relaxed slope, hence
Ch(f ) ≥ 1

2

∫
|∇f |2∗ dm. Writing G ≤ |∇f |∗ as the strong limit of convex

combinations of |∇fn| we have∫
|∇f |2∗ dm ≥

∫
G2 dm ≥ lim inf

n

∫
|∇fn|2 dm ≥ 2Ch(f ).

(2) By approximation, suffices to show that χX\BG1 +χBG2 is a relaxed
slope if B is closed. Set ρ(x) = dist(x ,B), χr (x) = min{1, r−1ρ}, so that
χr ↑ χX\B as r ↓ 0, and pass to the limit in

|∇(χr fn,1 +(1−χr )fn,2)| ≤ χr |∇fn,1|+(1−χr )|∇fn,2|+Lip(χr )|fn,1− fn,2|.

(3) Just take G̃ := min{|∇f |∗,G}. Its L2 norm would be strictly smaller
than ‖|∇f |∗‖2, were the set {|∇f |∗ > G} with positive m-measure.
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Heat flow and Laplacian

Let’s start with some reminders on the classical theory of gradient flows
of convex and l.s.c. functionals F : H → R ∪ {+∞} in a Hilbert space
H.

Subdifferential ∂F . It is the multivalued map defined by

∂F (x) := {p ∈ H : F (x) + 〈p, y − x〉 ≤ F (y) ∀y ∈ H}

for all x ∈ D(F ) := {F < ∞}. The gradient ∇F (x) is the element with
minimal norm in ∂F (x).

Gradient flow. It is a locally absolutely continuous map x : (0,∞) → H
satisfying

−x ′(t) ∈ ∂F
(
x(t)

)
for a.e. t > 0.

In addition, we say that x(t) starts from x̄ if lim
t↓0

x(t) = x̄ .
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Heat flow and Laplacian
Theorem. (Existence and uniqueness) For all x̄ ∈ D(F ) there exists a
unique gradient flow starting from x̄ and the induced semigroup

St : [0,∞)× D(F ) → D(F )

is contractive. In addition, we have the regularizing effects:

(1) St x̄ ∈ D(∂F ) ⊂ D(F ) for all t > 0 and

F (St x̄) ≤ inf
v∈D(F )

F (v) +
1
2t

d2(v , x̄);

(2) d+

dt St x̄ = −∇F (St x̄) for all t > 0;
(3) t 7→ |∇F |2(St x̄) is nonincreasing, so that St x̄ is Lipschitz in (ε,∞)

for all ε > 0;
(4) d+

dt F (St x̄) = −|∇F |2(St x̄) = −|d+

dt St x̄ |2 for all t > 0.
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Heat flow and Laplacian
According to these results, we may choose H = L2(X ,m) and F = Ch
and define

−∆f :=the element with minimal L2-norm of ∂Ch(f )

so that (by the density of D(Ch) ⊃ Lip(X ) in L2(X ,m)) we obtain a L2

heat flow ht f solving
d
dt

ht f̄ = ∆ht f̄

starting from any initial condition f̄ ∈ L2(X ,m).
Remarks. (1) ∆ = ∆d ,m. Even in the classical situations, ∆f = div(∇f ),
where ∇f depends on the metric (to associate a vector ∇f to df ) while
div depends on the volume form m, via the adjoint formula∫

g divF dm = −
∫
〈∇g,F 〉dm.
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Heat flow and Laplacian
(2) ∆ need not to be linear in this context! Take X = R2 with the L∞

norm, to get

Ch(f ) =

∫ (∣∣∣∣ ∂f
∂x

∣∣∣∣ +

∣∣∣∣ ∂f
∂y

∣∣∣∣)2

dxdy .

Nowithstanding this potential lack of linearity, a reasonable calculus
can be developed:

−
∫

g∆f dm ≤
∫
|∇f |∗|∇g|∗ dm,

−
∫
φ(f )∆f dm =

∫
φ′(f )|∇f |2∗ dm.

The first one follows by

Ch(f )− ε

∫
g∆f dm ≤

∫
|∇(f + εg)|2∗ dm

noticing that |∇(f + εg)|∗ ≤ |∇f |∗ + ε|∇g|∗ for ε > 0.
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Heat flow and Laplacian

Properties of the heat flow. (1) Homogeneity: ht(λf ) = λht f ∀λ ∈ R;
(2) Comparison principle: if f ≤ g, then ht f ≤ htg for all t ≥ 0;
(3) Energy dissipation: if ft : X → J and e : J → R is convex and locally
C1,1, then∫

(ht f ) dm =

∫
e(f ) dm +

∫ t

0

∫
e′′(hsf )|∇hsf |2∗ dmds.

(4) Mass preservation:
∫

ht f dm =
∫

f dm for all t ≥ 0.
Strictly speaking, (3) does not cover the most interesting case, the
case of the entropy e(z) = z log z when ht f ≥ 0:∫

ht f log ht f dm =

∫
f log f dm +

∫ t

0

∫
{hs f>0}

|∇hsf |2∗
hsf

dmds.

It can be recovered by the approximation f 7→ max{f , ε}.
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Absolutely continuous functions and metric speed

A curve γ : [0,1] → X is said to be absolutely continuous if

(∗) d(γt , γs) ≤
∫ s

t
f (r) dr ∀[t , s] ⊂ [0,1]

for some f ∈ L1(0,1).
If γ is absolutely continuous, the metric speed |γ̇| : [0,1] → [0,∞] is
defined by

|γ̇t | := lim
h→0

d(γt+h, γt)

|h|
.

It is possible to prove that the limit exists for a.e. t , that |γ̇| ∈ L1(0,1),
and that it is the minimal L1 function for which the bound (*) holds.
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Kuwada lemma
Lemma. Let f0 ∈ L2(X ,m) a probability density, ft = ht f0. Then the
curve µt := ftm is absolutely continuous in P(X ) and

|µ̇t |2 ≤
∫
{ft>0}

|∇ft |2∗
ft

dm for a.e. t > 0.

It is convenient to introduce the Fisher information functional, defined
{ρ :

√
ρ ∈ D(Ch)}, as follows:

F (ρ) := 4
∫
|∇√ρ|2∗ dm =

∫
{ρ>0}

|∇ρ|2∗
ρ

dm

(the last equality follows by chain rule).
We prove an integral version of the lemma, namely

W 2
2 (µt , µs) ≤ `

∫ s

t
F (fr ) dr

with 0 ≤ s < t <∞ and ` := (s − t).
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Proof of Kuwada lemma

By Kantorovich’s duality formula, suffices to show∫
−ϕ dµt +

∫
Q1ϕ dµs ≤

`

2

∫ s

t
F (fr ) dr ,

where ϕ runs in the class of bounded continuous functions. Replacing
ϕ by Qεϕ and letting ε ↓ 0 we can assume that Qtϕ is Lipschitz in
[0,1]× X .

Now we set g(r) :=
∫

Qrϕ dµt+`r and we write the inequality as∫ 1

0
g′(r) dr ≤ `

2

∫ s

t
F (fr ) dr .
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Evaluation of g′(r)

Using the HJ subsolution property of Qrϕ and the “integration by parts”
we get

g′(r) =

∫
(

d
dr

Qrϕ)ft+`r dm + `

∫
Qrϕ∆ft+`r dm

≤ −1
2

∫
|∇Qrϕ|2∗ft+`r dm + `

∫
|∇Qrϕ|

√
ft+`r

|∇ft+`r |∗√
ft+`r

dm.

Eventually the Young inequality gives

g′(r) ≤ `2

2
F (ft+`r )=

`

2
d
dr

F (ft+`r )

and an integration in (0,1) with respect to r gives the result.
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Gradient flow of Entm
Since the ambient space P(X ) is not linear (at least if we take the
viewpoint of optimal transportation), what does it mean?
Key idea. (De Giorgi) Encode the system x ′(t) = −∇F (x(t)) in a
single differential inequality, by looking at the rate of energy dissipation:

(DG)
d
dt

F (x(t)) ≤ −1
2
|∇F |2(x(t))− 1

2
|x ′(t)|2.

Indeed, in a sufficiently smooth setting, along any curve y(t), we have
d
dt

F (y(t)) = 〈∇F (y(t)), y ′(t)〉

≥ −|∇F (y(t))||y ′(t)| (= iff −y ′(t) is parallel to ∇F (y(t)))

≥ −1
2
|∇F |2(y(t))− 1

2
|y ′(t)|2 (= iff |∇F |(y(t)) = |y ′(t)|).

All terms in (DG) make sense in a metric space (X ,d): |x ′| can be
replaced metric derivative and |∇F | by the descending slope |∇−F |,
so that the speed is 0 at minimum points.
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(EDE) and (EDI) flows in metric spaces

(EDI) F (x(t)) +

∫ t

0

1
2
|x ′r |2 +

1
2
|∇−F |2(x(r)) dr ≤ F (x(0)) ∀t ≥ 0.

(EDE) F (x(t)) +

∫ t

0

1
2
|x ′r |2 +

1
2
|∇−F |2(x(r)) dr = F (x(0)) ∀t ≥ 0.

Lemma. If F is convex, l.s.c in a geodesic metric space, we have the
upper gradient property

F (x(0)) ≤ F (x(t)) +

∫ t

0
|x ′r ||∇−F |(x(r)) dr .

As a consequence, (EDE) and (EDI) are equivalent for F , |x ′t | =
|∇−F |(x(t)) for a.e. t > 0, t 7→ F (x(t)) is locally a.c. in (0,∞), with
derivative −|∇−F |2(x(t)).
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Lott-Sturm-Villani spaces
In these spaces (I consider only the case N = ∞, K = 0) one requires
convexity along geodesics, namely for all µ0, µ1 ∈ D(Entm) there exists
a constant speed geodesic µt satisfying

Entm(µt) ≤ (1− t)Entm(µ0) + tEntm(µ1).

Consequences of convexity:
• Duality formula for the slope.

|∇−Entm|(µ) = sup
ν 6=µ

[Entm(µ)− Entm(ν)]+

W2(µ, ν)
.

It implies, among other things, that µ 7→ |∇−Entm|(µ) is l.s.c.
• Upper gradient property. The previous formula for the slope implies a
one-sided and local Lipschitz estimate

Entm(µt)− Entm(µt) ≤ |∇−Ent|(µt)W2(µt , µs).

This, together with the l.s.c. of Entm, can be used to show that
t 7→ Entm(µt) is absolutely continuous and the upper gradient property.
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Fisher bounds slope

Proposition. In a LSV space, assume that ρ ∈ L1(X ,m) is a probability
density with

√
ρ ∈ D(Ch). Then

|∇−Entm|2(ρm) ≤
∫
{ρ>0}

|∇ρ|2∗
ρ

dm

(
= 4

∫
|∇√ρ|2∗ dm

)
.

It is precisely this inequality that prevents, in LSV spaces, triviality of
the theory!
Proof. By approximation (recall that Ch is defined by approximation
with Lipschitz functions and that |∇−Entm| is l.s.c.) we can assume that√
ρ ∈ Lip(Z ).

By truncation, also that c−1 ≥ √
ρ ≥ c > 0, so that log ρ ∈ Lip(X ).

Let us consider another density η and an optimal plan πη from ρ to η.
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Fisher bounds slope

Then

Entm(ρm)− Entm(ηm) ≤
∫

log ρ(ρ− η) dm =

∫
log ρ(x)− log ρ(y) dπη

≤
∫ (

|∇− log ρ|(x) + ωx(y)
)
d(x , y) dπη(x , y)

≤W2(ηm, ρm)

(∫
(|∇− log ρ|(x) + ωx(y))2 dπη

)1/2

where ωx(y) is a uniformly bounded modulus of continuity with
ωx(x) = 0.
Dividing both sides by W2(ηm, ρm) and letting ηm → ρm gives the
result, by the convergence of πη to the identity plan, concentrated on
the diagonal.
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Identification of gradient flows

Traditional strategy.
{ g.f. of Entm} ⊂ {g.f. of Dir }

=⇒ =

Uniqueness of g.f. of Dir

New strategy. 
{ g.f. of Dir} ⊂ {g.f. of Entm }

=⇒ =

Uniqueness of g.f. of Entm

This is possible thanks to the recent uniqueness result of Gigli, a
surprising result because Otha-Sturm show that there is no contractivity
of W2 in LSV spaces.
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Proof of identification of gradient flows

We want to show that any L2 heat flow ft := ht f0 (with f0 probability
density) is a W2-gradient flow with µt := ftm, i.e.∫

ft log ft dm +

∫ t

0

1
2
|µ̇r |2 +

1
2
|∇−Entm|2(µr ) dr ≤

∫
f0 log f0 dm.

Indeed, Kuwada lemma and Fisher bounds slope give for a.e. t

|µ̇t |2 ≤
∫
{ft>0}

|∇ft |2∗
ft

dm, |∇−Entm|2(ftm) ≤
∫
{ft>0}

|∇ft |2∗
ft

dm

while the Hilbertian energy dissipation gives

d
dt

∫
ft log ft = −

∫
{ft>0}

|∇ft |2∗
ft

dm for a.e. t > 0.
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Proof of identification of gradient flows

A byproduct of the proof above is that all inequalities should be
equalities (so that L2 gradient flows provide (EDE) solutions, even
though Gigli’s result applies to the larger class of (EDI) solutions), so
that the energy dissipation rates are equal a.e.:

|∇−Entm|2(ftm) =

∫
{ft>0}

|∇ft |2∗
ft

dm for a.e. t > 0.

By letting t ↓ 0, this can be used to show that Fisher coincides with
slope:

|∇−Entm|2(fm) =

∫
{f>0}

|∇f |2∗
f

dm.

Luigi Ambrosio (SNS) Montreal, July 2011 41 / 54



Metric Sobolev spaces

Let’s start from the Euclidean case. We discuss only the case W 1,2,
although all W 1,p spaces 1 ≤ p ≤ ∞ and even the BV spaces could be
treated.

W 1,2(Rn) :=

{
u ∈ L2(Rn) :

∂u
∂xi

∈ L2(Rn), 1 ≤ i ≤ n
}

H1,2(Rn) :=
{

completion of C∞ ∩W 1,2 for the W 1,2 norm
}

“H = W ” theorem by Meyers-Serrin in 1960, even in any open domain.

Levi’s definition, 1906, n = 2. u ∈ BL1,2(R2) if:
(a) for a.e. x , u(x , ·) is a.c. in R and, for a.e. y , u(·, y) is a.c. in R.
(b)

∫
|∂u
∂x |

2 + |∂u
∂y |

2dxdy <∞.
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Metric Sobolev spaces

Theorem. BL1,2(Rn) ⊂ W 1,2(Rn). In addition, any u ∈ W 1,2(Rn) has a
version (for instance lim supε u ∗ ρε) in BL1,2(R2).

In metric spaces, the W definition roughly corresponds to the
Cheeger’s energy (with Lip(X ) playing the role of C∞), while Levi’s
definition corresponds to the Shanmugalingam’s notion of Newtonian
space N1,2(X ,d ,m).

Definition. Given Γ ⊂ AC([0,1]; X ) we define

Mod2(Γ) := inf

{(∫
g2 dm

)1/2
}
,

where the infimum runs among all Borel functions g : X → [0,∞]
satisfying

∫
γ g ≥ 1 for all γ ∈ Γ.
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Metric Sobolev spaces
We define N1,2(X ,d ,m) by{

f : X → R :
∣∣∫

∂γ
f | ≤

∫
γ

G for Mod2-a.e. γ,
∫

G2 dm <∞
}

and |∇f |S as the G with smallest L2 norm.
Absolute continuity lemma. Any f ∈ N1,2(X ,d ,m) is a.c. along
Mod2-a.e. curve γ.
Proof. Let Γ be the set of curves γ where the u.g. property with |∇f |S
does not hold,

Γ1 :=
{
γ : γ ⊃ γ′ ∈ Γ

}
Γ2 :=

{
γ :

∫
γ
|∇f |S = ∞

}
Γ1 is Mod2-negligible because Γ is, Γ2 is Mod2-negiglible by the
inequality

Mod2
(
Γ2 ∩

{∫
γ
|∇f |S = ∞

})
≤ 1

n2

∫
|∇f |2S dm → 0.
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Metric Sobolev spaces

If γ /∈ (Γ1 ∪ Γ2) we have∣∣∣∣∫
∂γ′

f
∣∣∣∣ ≤ ∫

γ′
|∇f |S ≤

∫
γ
|∇f |S <∞ ∀γ′ ⊂ γ

which yields immediately the absolute continuity property of t 7→ f (γ(t))
for Mod2-a.e. γ.
The gradient |∇f |S has pointwise minimality properties analogous to
|∇f |∗, in particular if G satisfies the weak upper gradient property∣∣∣∣∫

∂γ
f
∣∣∣∣ ≤ ∫

γ
G for Mod2-a.e. curve γ

then |∇f |S ≤ G m-a.e. in X .
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Identification of weak gradients
Are the gradients |∇f |∗, |∇f |S equal? While the first gradient is relevant
in connection with the L2 heat flow and the “vertical” derivative, the
second one is relevant in connection with the derivative of Entm and the
“horizontal” derivative.
If we assume doubling and Poincaré then we can approximate any
f ∈ N1,2(X ,d ,m) (Semmes, Cheeger) in the strong norm and even
in the Lusin sense by Lipschitz maps. This leads to the equality of
gradients.
With “optimal transportation tools” we can provide the equivalence of
gradients without doubling & Poincaré. This requires an approximation
by Lipschitz functions fn in the weak topology, namely

lim sup
n→∞

∫
|∇fn|2 dm ≤

∫
|∇f |2S dm,

∫
|fn − f |2 dm → 0.

Notice that as soon as we know that the Sobolev spaces are Hilbertian,
this yields approximation also in the strong topology (while without
doubling & Poincaré the Lusin approximation seems to be out of reach).
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Two auxiliary results
Lemma. If η ∈ P(C([0,1]; X )) concentrated on AC2([0,1]; X ) has
bounded time marginals, then

[η(Γ)]2 ≤ C(η)

(∫ ∫ 1

0
|γ̇s|2 ds dη(γ

)
Mod2(Γ) ∀Γ ⊂ AC2([0,1]; X ).

In particular Mod2(Γ) = 0 implies η(Γ) = 0.
Proof. If g is admissible for Γ we have

[η(Γ)]2 ≤
(∫ 1

0

∫
g(γs)|γ̇s|ds dη(γ)

)2

.

Then, it suffices to apply Hölder and to minimize w.r.t. g.

Superposition principle. ([AGS], Lisini, Calc. Var. & PDE) Let
(µt)t∈[0,T ] ⊂ P(X ) be absolutely continuous with L2-integrable metric
speed. Then there exists η ∈ P(C([0,1]; X )) concentrated on
AC2([0,1]; X ) and satisfying
(1) µt = (et)]η for all t ∈ [0,T ];
(2) |µ̇t |2 =

∫
|γ̇t |2 dη(γ) for a.e. t ∈ (0,T ).
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Proof of the equivalence
Lemma. (Stability of weak upper gradients) If fn → f in L2(X ,m),
Gn → G weakly in L2(X ,m) and∣∣∣∣∫

∂γ
fn

∣∣∣∣ ≤ ∫
γ

Gn for Mod2-a.e. curve γ,

then there is a version f̃ of f satisfying∣∣∣∣∫
∂γ

f̃
∣∣∣∣ ≤ ∫

γ
G for Mod2-a.e. curve γ.

Using this lemma with fn equal to the optimal sequence in the definition
of Ch and Gn = |∇fn|, weakly convergent to |∇f |∗, we obtain

|∇f |S ≤ G = |∇f |∗ m-a.e. in X .

The proof of the converse inequality is constructive: we need Lipschitz
functions fn satisfying fn → f in L2(X ,m) and

lim sup
n→∞

∫
|∇fn|2∗ dm ≤

∫
|∇f |2S dm.
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Proof of the equivalence
Suffices to find fn ∈ D(Ch) satisfying lim supn

∫
|∇fn|2∗ dm ≤

∫
|∇f |2S dm.

By a truncation argument, 0 < c ≤ f ≤ c−1 < ∞ and by homogeneity∫
f 2 dm = 1.

We set k = f 2, kt = ht f 2, µt = ktm ∈ P(X ). Then

∫
k log k − kt log kt dm

≤
∫

log kρ(k − kt) dm =

∫
log k(γ0)− log k(γt) dη(γ)

≤
∫ ∫ t

0
|∇ log k |S(γs)|γ̇s|dsdη(γ)

≤
(∫ t

0

∫
|∇ log k |2S(γs)dηds

)1/2(∫ t

0

∫
|γ̇s|2 dη(γ)ds

)1/2

≤ 1
2

∫ t

0

∫
|∇ log k |2Shsdmds +

1
2

∫
|µ̇s|2 ds.

Luigi Ambrosio (SNS) Montreal, July 2011 49 / 54



Proof of the approximation
By the Kuwada lemma we get∫

k log k − kt log kt dm

≤ 1
2

∫ t

0

∫
|∇ log k |2Shsdmds +

1
2

∫ t

0

∫
{ks>0}

|∇ks|2∗
ks

dmds.

The entropy dissipation formula then gives∫ t

0

∫
{ks>0}

|∇ks|2∗
ks

dmds ≤
∫ t

0

∫
|∇ log k |2Sksdmds,

so that the identity |∇ log k |S = |∇k |S/k = 2|∇f |S/f we get

4
t

∫ t

0
Ch(

√
ks) ds ≤ 4

t

∫ t

0

∫ |∇f |2S
f 2 ks dmds.

Letting t ↓ 0 and using the w∗-convergence in L∞(X ,m) of ks to k = f 2

gives the result.
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Strong CD(0,∞) condition and EVI gradient flows
For simplicity I will talk about the case Ric ≥ 0 only (K = 0).
Definition. We say that (X ,d ,m) is a strong CD(0,∞) space if for all
µ0, µ1 ∈ P(X ) with finite entropy there exists an optimal geodesic plan
π between them satisfying

Entm
(
(et)](hπ)

)
≤ (1−t)Entm

(
(e0)](hπ)

)
+tEntm

(
(e1)](hπ)

)
∀t ∈ [0,1],

whenever h ∈ Cb(Geo(X )), h ≥ 0,
∫

h dπ = 1.
Definition. In a metric space (E ,d), a locally absolutely continuous
curve u(t) is an (EVI) solution to the gradient flow of F : X → R∪{+∞}
if for all v ∈ D(F ) it holds

d
dt

1
2

d2(u(t), v) + F (u(t)) ≤ F (v) for a.e. t ∈ (0,∞).

This formulation of gradient flows is equivalent in Hilbert spaces, but in
general stronger than the one based on energy dissipation.
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Riemannian Ricci lower bounds

As shown by Ohta-Sturm, all Minkowski spaces (Rn endowed with the
Lebesgue measure and any norm ‖ · ‖) satisfy the CD(0,∞) condition.
Question. Is there a more restrictive notion, still stable and (strongly)
consistent with the Riemannian case, that rules out Minkowsky
spaces? The answer is yes.
Definition. [AGS] We say that (X ,d ,m) has Riemannian Ricci
curvature bounded from below if one of the following equivalent
conditions hold:

(i) (X ,d ,m) is a strong CD(K ,∞ space and the L2 heat flow ht is
linear;

(ii) (X ,d ,m) is a strong CD(K ,∞ space and the W2 heat flow Ht is
additive (i.e. convex and concave) on P(X );

(iii) Htµ is a gradient flow in the EVI sense.
One of the main results is indeed the proof of this equivalence.
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Properties of RCD(K ,∞) spaces
• Strong consistency with the Riemannian case and stability under
Gromov-Hausdorff limits.
• Tensorization: if (X ,dX ,mX ) and (Y ,dY ,mY ) are RCD(0,∞), so is

(X × Y ,
√

d2
X + d2

Y ,mX ×mY ).

• The heat flow ht is L2-selfadjoint, leaves Lip(X ) invariant and
regularizes L∞(X ,m) to Cb(X ). We have also the Bakry-Emery
estimate

|∇(ht f )|2∗ ≤ ht |∇f |2∗ m-a.e. in X .

• Compatibility with the theory of Dirichlet forms: the Dirichlet form

E(u, v) :=
Ch(u + v)− Ch(u − v)

4

associated to the quadratic form Ch induces a distance dE equal to d
and a local energy measure [u] equal to |∇u|2∗m.
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Properties of RCD(K ,∞) spaces

In particular the theory of Dirichlet forms can be applied to obtain a
unique (in law) Brownian motion in (X ,d ,m), i.e. a Markov process X t
with continuous sample paths satisfying

P(X t |X 0 = x) = Htδx ∀x ∈ X , t ≥ 0.
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