THREE-DIMENSIONAL ADAPTIVE CENTRAL SCHEMES ON UNSTRUCTURED STAGGERED GRIDS

AZIZ MADRANE† AND RÉMI VAILLANCOURT‡

Abstract. We present an explicit second-order finite volume generalization of the 1-dimensional Nessyahu–Tadmor schemes for hyperbolic equations on adaptive unstructured tetrahedral grids. The non-oscillatory central difference scheme of Nessyahu and Tadmor, in which the resolution of the Riemann problem at the cell interfaces is by-passed thanks to the use of the staggered Lax–Friedrichs scheme, is extended here to a two-steps scheme. In order to reduce artificial viscosity, we start with an adaptively refined primal grid in 3D, where the theoretical a posteriori result of the first-order scheme is used to derive appropriate refinement indicators. We apply these methods to solve Euler’s equations. Numerical experimental tests on classical problems are obtained by our method and by the CFD software Fluent. These tests include results for the 3D Euler system (shock tube problem) and flow around an NACA0012 airfoil.

Key words. 3D adaptive central schemes, unstructured staggered grid mesh adaptation, finite volume methods

AMS subject classifications. 65M55, 65M60, 76M12

1. Introduction. The history of schemes on staggered grids can at least be traced back to the famous paper of Courant, Friedrichs and Lewy in 1928 [13] in which they discovered a scheme on staggered grids for the linear wave equation in 1D. For a special system arising in fluid dynamic problems von Neumann and Richtmyer used staggered grids as well [38]. Four years later, Lax introduced the well-known Lax–Friedrichs scheme and analyzed it [29]. In 1990 Tadmor and Nessyahu [41] picked up the idea to use staggered grids, showed the connection to Godunov’s method and proposed a second-order extension to one-dimensional systems.

The main advantage of these schemes is that no information about solutions to local Riemann problems is needed. Using staggered grids one can replace the upwind fluxes by central differences. The price one has to pay is the occurrence of excessive numerical viscosity since the resulting scheme can be interpreted as a Lax–Friedrichs scheme. Therefore, a higher order scheme of MUSCL-type in one spatial dimension was proposed in [41]. Later in [4, 3, 6, 7, 8, 36] central schemes have been generalized.

*This work was supported in part by NSERC of Canada and the Centre de recherches mathématiques of the Université de Montréal.
†Airbus/Institut for Aerospace-Technology, Flughafenallee 10, D-28199 Bremen, Germany (aziz.madrane@airbus.com).
‡Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5 (remi@uottawa.ca).
to multi-dimensional schemes on unstructured grids. For a Cartesian grid, we refer to [9, 22, 30, 28, 31, 39, 40, 45, 32] for related work.

In the case of staggered unstructured multi-dimensional grids, there exist only a few convergence results. In [5] convergence of a second-order central scheme on two-dimensional grids has been proven for a linear conservation law. Convergence of the first-order Lax–Friedrichs scheme on the same staggered grids for nonlinear scalar problems has been proven in [19].

The major drawback of central schemes is their numerical dissipation due to staggering. In order to eliminate this disadvantage, we implement an adaptive refinement strategy based on local \textit{a posteriori} error estimates [25, 27, 26], which is a rigorous error estimator for central schemes on staggered grids.

In many applications, error, shock or grid indicators have been used in order to find those regions with steep gradients (see, for example, [39, 40, 34, 37, 24, 44]). Usually these indicators are based on discrete gradients to control the local process of grid refinement. But these indicators give no information about the true error $\|u - u_h\|$. Adaptive grid technology is a powerful tool in computational fluid dynamics, which provides three important benefits: automation, improved efficiency, and increase solution accuracy. In general, most adaptive methods fall into three broad categories: grid movement (r-refinement), grid enrichment (h-refinement), and local solution enhancement (p-refinement). While the methods in the first two classes modify the grid density to improve the solution accuracy, those in the third category enhance the order of numerical approximation at location where the solution undergoes abrupt variations. Most adaptive techniques used in the computational fluid dynamic applications fall into the first two classes.

In the grid movement approach, nodes are redistributed and moved towards regions where a higher degree of accuracy is needed. Since the grid topology remains unchanged throughout the grid adaptation, the process of grid movement can be simply incorporated into the solver in a modular fashion. In addition, no data transfer is required since the grid structure remains intact during the process. Since the number of grid nodes remains constant, transferring nodes from one part of the grid to another may cause local depletion of grid elements, and thus severe distortion of the grid may be introduced.

In the grid enrichment technique, more nodes are added to the regions where higher accuracy of the solution is desired. Nodes can also be removed from locations where the solution is smooth and requires less grid resolution. Due to node addition or deletion, the topology of the grid changes from one adaptation cycle to another. Consequently, interpolation of data between consecutive grids is required which curtails the applicability of these methods for unsteady problems. Adaptive methods by grid enrichment are particularly attractive for their flexibility, especially when applied in conjunction with unstructured grids. In the present work, an attempt has been made to combine the efficiency of h-refinement and the flexibility of remeshing for solution adaptive refinement. The focus of this paper is on the refinement mechanism aspect of the solution adaptive problem as applied to 3D problems. Our results are found to be in excellent agreement with previous simulations of the flow around NACA0012 airfoil carried out with upwind-type schemes (see [2]).

The paper is organized as follows. Section 2 describes the mathematical model. Section 3 deals with space and time discretization. In section 4, we present the mesh adaptation algorithm. Numerical results are in section 5.

2.1. Governing equations. Let \(\Omega \subset \mathbb{R}^3 \) be the domain of interest of the flow with boundary \(\Gamma \). We write \(\Gamma = \Gamma_B \cup \Gamma_\infty \), where \(\Gamma_B \) denotes the part of the body boundary which is relevant for the computational domain and \(\Gamma_\infty \) is the (upwind) farfield boundary. Three-dimensional compressible inviscid flows are described by Euler’s equations, written in their conservation form [43]:

\[
\frac{\partial U}{\partial t} + \nabla \cdot \vec{F}(U) = 0, \quad (2.1)
\]

where

\[
U = (\rho, \rho u, \rho v, \rho w, E)^T, \quad \vec{F}(U) = (F(U), G(U), H(U))^T.
\]

Here \(\vec{F}(U) \) denotes the convective flux [43], \(\rho \) is the density, \(\vec{V} = (u, v, w)^T \) is the velocity vector, \(E \) is the total energy per unit volume, and \(p \) is the pressure of the fluid. Let \(A, B \) and \(C \) denote the Jacobian matrices \(\partial F(U)/\partial U \), \(\partial G(U)/\partial U \) and \(\partial H(U)/\partial U \), respectively. Then Eq. (2.1) can be written in the nonconservative form:

\[
\frac{\partial U}{\partial t} + \vec{F}(U) \cdot \nabla U = \frac{\partial U}{\partial t} + A(U) \frac{\partial U}{\partial x} + B(U) \frac{\partial U}{\partial y} + C(U) \frac{\partial U}{\partial z} = 0. \quad (2.2)
\]

2.2. Boundary conditions. The flow is assumed to be uniform at the farfield boundary \(\Gamma_\infty \) and we impose the following three conditions:

\[
\rho_\infty = 1, \quad \vec{V}_\infty = \begin{bmatrix} \cos \alpha \cos \beta \\ \sin \beta \\ \sin \alpha \cos \beta \end{bmatrix}, \quad p_\infty = \frac{1}{\gamma M_\infty^2}, \quad (2.3)
\]

where \(\alpha \) is the angle of attack, \(\beta \) is the yaw angle and \(M_\infty \) denotes the free-stream Mach number. On the wall boundary \(\Gamma_B \), we use the slip condition \(\vec{V} \cdot \vec{n} = 0 \) where \(\vec{n} \) is the outward unit vector normal to the boundary \(\Gamma_\infty \cup \Gamma_B \). Finally, for unsteady calculations, an initial flow, \(U(x, 0) = U_0(x) \), is prescribed on \(\Omega \).

3. Space and time discretization.

3.1. Definitions. We assume that \(\Omega \) is a bounded polyhedral domain of \(\mathbb{R}^3 \) and we start from an arbitrary FEM tetrahedral grid \(\mathcal{T}_h \), where \(h \) is the maximal length of the edges in \(\mathcal{T}_h \).

A dual finite volume partition is derived from the construction of median planes, that is, for every vertex \(i \) of \(\mathcal{T}_h \), a cell \(C_i \) is defined around \(i \) as follows.

Every tetrahedron having \(i \) as a vertex is subdivided into 24 sub-tetrahedra by planes containing an edge and the midpoint of the opposite edge; then the cell \(C_i \) is the union of sub-tetrahedra having \(i \) as a vertex (see Fig. 3.1).

In particular, the boundary \(\partial C_i \) of \(C_i \) is the union of \(\partial C_{ij} = \partial C_i \cap \partial C_j \) that can be defined as the union of triangles (see Fig. 3.2) such that

- one vertex is the midpoint of the edge \([i, j]\),
- one vertex is the barycenter of the tetrahedron \(T \) having \([i, j]\) as an edge,
- one vertex is the barycenter of a (triangular) face of \(T \) having \([i, j]\) as a side.

As for 2D extensions [4], the present 3D extension also uses a dual grid, with dual cells \(L_{ij} \) associated with the edges of \(\mathcal{T}_h \). The dual (“diamond”) cell \(L_{ij} \) is composed of four sub-tetrahedra \(iGM_1g_1, iGM_1g_2, jGM_1g_1, jGM_1g_2 \) (defined above) sharing
edge \([i, j]\) (see Figs. 3.3 and 3.4). For complete details of the domain of computation for the NACA0012 airfoil in the 2D and 3D cases see Figs. 3.5 and 3.6.

The following notation will be needed.

Notation 1. Let \(i, j, k, l\) be the four nodes defining a tetrahedron \(\tau\), \(\tau \in T_h\). Then

- \(T_{ij}\) denotes the set of all tetrahedra which share edge \([i, j]\) as a common edge,
\(G\): barycenter of the tetrahedron \(T\) having \([i,j]\) as an edge

\(g\): barycenter of a (triangle) face of the tetrahedron \(T\)

Fig. 3.4. Boundary of cell \(L_{ij}\), in 3D and 2D

Fig. 3.5. NACA0012 airfoil. Primary grid, barycentric cell \(C_i\) and diamond cell \(L_{ij}\) in 2D

Fig. 3.6. NACA0012 airfoil. Primary grid, barycentric cell \(C_i\) and diamond cell \(L_{ij}\) in 3D

- \(K(i)\) is the set of nodes (vertices) which are neighbors of node \(i\),
- \(C_i = \bigcup_{j \in K(i)} (C_i \cap L_{ij})\) and
- \(\partial C_i = \bigcup_{j \in K(i)} \{\partial C_i \cap \partial C_j\} \cup \{\partial C_i \cap \Gamma_B\} \cup \{\partial C_i \cap \Gamma_\infty\}\),
- \(L_{ij} = \bigcup_{\tau \in T_{ij}} (L_{ij} \cap C_i \cap \tau) \cup (L_{ij} \cap C_j \cap \tau)\) and
- \(\partial L_{ij} = \bigcup_{\tau \in T_{ij}} (\partial L_{ij} \cap \tau) \cup (\partial L_{ij} \cap \Gamma_\infty) \cup (\partial L_{ij} \cap \Gamma_B)\),
- \(\vec{n}_{ij} = (n_{ij_x}, n_{ij_y}, n_{ij_z})\) is the unit outward normal vector to \(\partial L_{ij}\),
- \(\vec{\nu}_i = (\nu_{i_x}, \nu_{i_y}, \nu_{i_z})\) is the unit outward normal vector to \(\partial C_i\).

Let \(m_{ij}\) denote the midpoint of edge \([i,j]\), also written as \(M_1\) in Figs. 3.3 and 3.4, and let \(U^n_i \equiv U(a_i, t^n)\) and \(U^{n+1}_{ij} \equiv U(m_{ij}, t^{n+1})\) denote the nodal (resp. cell average) values in the first and second grids at time \(t = t^n\) and \(t = t^{n+1}\), respectively, \((n\text{ even})\).
The union of all the barycentric cells constitutes a partition of the computational domain Ω_h and the same holds for diamond cells:

$$\Omega_h = \bigcup_{i=1}^{nv} C_i, \quad \Omega_h = \bigcup_{k=1}^{ne} L_k,$$

where nv and ne are the number of vertices and the number of edges, respectively, of the original finite element triangulation T_h.

Remark: The quadrangle $\partial C_{ij} \cap \tau = M g_1 G g_2$ is planar, because

$$\overrightarrow{g_1 M_1} \times \overrightarrow{g_2 M_1} = 2(\overrightarrow{g_2 G} \times \overrightarrow{g_1 G}).$$

3.2. High-order accurate approximations.

Now we can define the two steps of our high-order accurate (staggered, Lax–Friedrichs type) finite volume method. To obtain second-order accuracy, we introduce cellwise piecewise linear interpolation (MUSCL, [46]), where the gradient can be estimated by least squares [20, 4], and Green–Gauss’ method [11].

First step: We integrate (2.1) on an extended control volume $L_{ij} \times [t^n, t^{n+1}]$, assuming we have obtained, from the cell average values U^n_i, piecewise linear reconstructions given by

$$U_h(\bar{x}, t^n)|_{C_i} = L_i(\bar{x}, t^n) = U^n_i + \nabla U^n_i \cdot (\bar{x} - \bar{x}_i), \quad \forall \bar{x} \in C_i, \bar{x} \in \mathbb{R}^3. \quad (3.1)$$

For the integration with respect to time, in order to ensure “nearly” second-order accuracy, we adopt a “quasi-midpoint formula” time discretization, where the convective flux is computed at the intermediate time $t^{n+1/2}$, thus requiring the computation of predicted values $U_h(\bar{x}, t^{n+1/2})$ given ∂L_{ij}.

Predictor’s first step: On each face of the cell L_{ij}, using Euler’s equations, we define a predicted vector

$$U^{n+1/2}_{i,g_1,G} = U^n_{i,g_1,G} - \frac{\Delta t}{2} \overrightarrow{F}_i(U^n_{i,g_1,G}) \cdot \nabla U^n_i \quad (3.2)$$

where, by (3.1), the value of U^n_h is taken equal to

$$U_h(\bar{x}, t^n) \equiv U^n_i + \nabla U^n_i \cdot (\bar{x}_{i,g_1,G} - \bar{x}_i) \equiv U^n_{i,g_1,G} \quad (3.3)$$

along the face i, g_1, G of the diamond cell L_{ij}.

Corrector’s first step: By (3.2) the corrector can be written as follows:

$$\text{Vol}(L_{ij})U^{n+1}_{ij} - \sum_{\tau \in T_{ij}} \left[\iint_{L_{ij} \cap C_{ij} \cap \tau} L(\bar{x}, t^n) \, d\bar{x} + \iint_{L_{ij} \cap C_{ij} \cap \tau} L(\bar{x}, t^n) \, d\bar{x} \right] \quad (3.4)$$

$$+ \Delta t \sum_{\tau \in T_{ij}} \left[\int_{\partial L_{ij} \cap \tau} L_{ij} \cdot \nabla\bar{u}_i^n \, d\tau + \int_{\partial L_{ij} \cap \tau} L_{ij} \cdot \nabla\bar{u}_j^n \, d\tau + \int_{\partial L_{ij} \cap \tau} L_{ij} \cdot \nabla\bar{u}_i^n \, d\tau \right] \overrightarrow{F}(U^n_{h+1/2}) \cdot \bar{n}_{ij} \, dA$$

$$+ \Delta t \int_{\partial L_{ij} \cap \Gamma_k} \overrightarrow{F}(U^n_{h}) \cdot \bar{n} \, dA + \Delta t \int_{\partial L_{ij} \cap \Gamma_{\infty}} \overrightarrow{F}(U^n_{h}) \cdot \bar{n} \, dA = 0,$$

where $\partial L_{ij}^1 \cap \tau = i g_1 G M_1, L_{ij}^2 \cap \tau = i g_2 G M_1, L_{ij}^3 \cap \tau = j g_1 G M_1$ and $L_{ij}^4 \cap \tau = j g_2 G M_1$.

defines an approximation to the value of U procedures, see [46]. Numerical experiments have led us to choose Green–Gauss’ least squares [20, 4] and Green–Gauss' method [11]. For the limitation we use several the gradient ∇ where the volume and the boundary integrals are computed as above.

The second step is

Corrector’s second step:
The cell C_i on the cell $C_i \times [t^n, t^{n+1}]$, assuming that, from the diamond cell average values U_i^n computed in the first time step, we have obtained piecewise linear reconstructions given by

$$U_h(\bar{x}, t^{n+1})|_{L_{ij}} = L_{ij}(\bar{x}, t^{n+1}) = U_i^n + \nabla U_i^n \cdot (\bar{x} - \bar{x}_{ij}). \quad (3.7)$$

Predictor’s second step: Proceeding as in the first step, we obtain the predictor’s second step:

$$U^{n+3/2}_{M_1, g_1, G} = U^{n+1}_{M_1, g_1, G} - \frac{\Delta t}{2} \mathbf{F}(U_{M_1, g_1, G}) \cdot \nabla U_i^n, \quad (3.8)$$

Second step: To obtain the second step of the time discretization, we integrate (2.1) on the cell $C_i \times [t^n, t^{n+2}]$, assuming that, from the diamond cell average values U_i^n computed in the first time step, we have obtained piecewise linear reconstructions by

$$U_h(\bar{x}, t^{n+1})|_{L_{ij}} = L_{ij}(\bar{x}, t^{n+1}) = U_i^n + \nabla U_i^n \cdot (\bar{x} - \bar{x}_{ij}). \quad (3.7)$$

where S_i is the barycenter of the sub-triangle $i g_1 G$ (see Fig. 3.2).

Corrector’s second step: The second step is

$$\text{Vol}(C_i) U_i^{n+2} - \sum_{j \in K(i)} \int_{C_i \cap L_{ij}} L_{ij}(\bar{x}, t^{n+1}) d\bar{x}$$

$$+ \Delta t \sum_{j \in K(i)} \int_{\partial C_i \cap \partial C_i} \mathbf{F}(U_{M_1, g_1, G}) \cdot \nabla U_i^n dA$$

$$+ \Delta t \int_{\partial C_i \cap \partial B} \mathbf{F}(U_h^{n+1}) \cdot \nabla dA + \Delta t \int_{\partial C_i \cap \partial \infty} \mathbf{F}(U_h^{n+1}) \cdot \nabla dA = 0, \quad (3.10)$$

where the volume and the boundary integrals are computed as above.

3.2.1. Approximation of the slopes and limitation. In order to compute the gradient ∇U_i^n of the piecewise linear interpolant $L(\bar{x}, t^n)$ for the cell C_i, we use least squares [20, 4] and Green–Gauss’ method [11]. For the limitation we use several procedures, see [46]. Numerical experiments have led us to choose Green–Gauss’
method for the gradients used in the reconstruction for the cells C_i and a least squares weighted procedure for the cells L_{ij}.

(a) **Green–Gauss’ method for cells C_i:** The gradient vector ∇U_i of U at the point i is obtained by Green–Gauss’ method:

$$\nabla U_i = \frac{1}{\text{Vol}(C_i)} \sum_{j \in K(i)} \int_{\partial C_i \cap \partial C_j} U \cdot \vec{v}_i \, dA$$

where $\text{Vol}(C_i)$ is the volume of the dual cell C_i around P_i.

(b) **Least squares method for cells L_{ij}:** This algorithm uses a Taylor expansion of a function U from a local point to each surrounding point [1] including its neighboring point

$$U_{jl} = U_{ij} + \nabla U_{ij} \cdot (\vec{x}_{jl} - \vec{x}_{ij}) + O((\vec{x}_{jl} - \vec{x}_{ij})^2).$$

The system of linear equations derived from all neighboring face points surrounding edge $[i, j]$ (see Fig. 3.7) can be expressed by the following system:

$$\begin{bmatrix}
\Delta x_{01} & \Delta y_{01} & \Delta z_{01} \\
\Delta x_{02} & \Delta y_{02} & \Delta z_{02} \\
\vdots & \vdots & \vdots \\
\Delta x_{0N} & \Delta y_{0N} & \Delta z_{0N}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial U}{\partial x} \\
\frac{\partial U}{\partial y} \\
\frac{\partial U}{\partial z}
\end{bmatrix}_{ij} =
\begin{bmatrix}
U_1 - U_0 \\
U_2 - U_0 \\
\vdots \\
U_N - U_0
\end{bmatrix}$$

where $\Delta x_{01} = x_1 - x_0$.

The solution of the linear system $Ax = b$ can be obtained by using Householder’s QR transformation (to avoid conditioning problem for highly stretched meshes), where the matrix $Q \in \mathbb{R}^{N \times 3}$ has orthonormal columns and the matrix $R \in \mathbb{R}^{3 \times 3}$ is upper triangular.

(c) **Slope limiter:** To prevent oscillations in nonsmooth regions, we introduce a slope limiter ϕ_i for both gradients. Then the reconstruction for cell C_i can be written as

$$U_h(\vec{x}, t^n)|_{C_i} = \mathcal{L}_i(\vec{x}, t^n) = U_i^n + \phi_i \nabla U_i^n \cdot (\vec{x} - \vec{x}_i), \quad \forall \vec{x} \in C_i, \vec{x} \in \mathbb{R}^3,$$

where ϕ_i is the slope limiter for the gradient at the point i. The reconstruction is then given by $U_h(\vec{x}, t^n)|_{C_i} = \mathcal{L}_i(\vec{x}, t^n) = U_i^n + \phi_i \nabla U_i^n \cdot (\vec{x} - \vec{x}_i)$.
with the limiter \(\phi_i \in [0, 1] \). To avoid creating a new extremum, the reconstruction \(U_h(\bar{x}, t^n)|_{C_i} \) should be bounded by the local extrema

\[
\min_{j \in K(i)} \{ U_i, U_j \} \leq U_h(\bar{x}, t^n)|_{C_i} \leq \max_{j \in K(i)} \{ U_i, U_j \}. \tag{3.15}
\]

The monotonicity of \(U \) can be satisfied by enforcing equation (3.15) at quadrature points. The limiter function \(\phi_i \) proposed by Venkatakrishnan [47] is currently used:

\[
\phi_i = \min_{j \in K(i)} \begin{cases}
1 & \text{if } U_j > U_i, \\
\frac{1}{\Delta_2} \left[\frac{(\Delta_1^{3, \max} + \epsilon^2) \Delta_2}{\Delta_2^{1, \max} + 2\Delta_2^2 \Delta_1^{1, \max}} + 2\Delta_2^2 \Delta_1^{1, \max} + \epsilon^2 \right] & \text{if } U_j < U_i, \\
1 & \text{if } U_j = U_i,
\end{cases}
\]

\[
\Delta_2 = \frac{1}{2} \nabla U_i \cdot (\bar{x}_j - \bar{x}_i),
\]

\[
\Delta_1^{1, \max} = \max \{ U_i, \max_{j \in K(i)} U_j \} - U_i, \tag{3.17}
\]

\[
\Delta_1^{1, \min} = \min \{ U_i, \min_{j \in K(i)} U_j \} - U_i.
\]

A small number, \(\epsilon^2 \), prevents division by zero when the gradient is very small. In the implementation, \(\epsilon^2 \) is set to be a function of the local length scale,

\[
\epsilon^2 = (k \delta h)^3, \tag{3.18}
\]

where \(k \) is a user-specified constant and \(\delta h \) is the local mesh length scale. The present work uses \(k = 5 \) and \((\delta h)^3 = \text{Vol}(C_i) \).

3.2.2. Treatment of the boundary conditions. The treatment of the boundary conditions is different from barycentric cells \(C_i \) to diamond cells \(L_{ij} \). Since a vertex-based (barycentric cells) approach results in degrees of freedom being located directly on the boundary (see Fig. 3.8), this would seem to facilitate the implementation of the boundary conditions. However, a more fundamental problem arises for barycentric cells \(C_i \), since individual boundary vertices may have ill-defined boundary conditions if they are located at the intersection of two faces with different boundary conditions as shown in left Fig. 3.8. That this situation never occurs for diamond
cells (see right Fig. 3.8). In order to implement such boundary condition, in the case of barycentric cells, a weak formulation must be used:

\[
\int_{\partial C_i \cap \Gamma_B} \mathbf{F}(U_h^{n+1}) \cdot \mathbf{v}_i \, dA = \int_{\partial C_i \cap \Gamma_B} \begin{bmatrix} 0 \\ p\nu_x \\ p\nu_y \\ p\nu_z \\ 0 \end{bmatrix}^{n+1} dA. \quad (3.19)
\]

We shall use the following approximation

\[
\int_{\partial C_i \cap \Gamma_{\infty}} \mathbf{F}(U_h^{n+1}) \cdot \mathbf{v}_i \, dA = \mathbf{A}^+(U_i, \mathbf{v}_{i,\infty}) U_i + \mathbf{A}^-(U_i, \mathbf{v}_{i,\infty}) U_{\infty}, \quad (3.20)
\]

where

\[
\mathbf{A}(U_i, \mathbf{v}_{i,\infty}) = \mathbf{F}'(U_i) \cdot \int_{\partial C_i \cap \Gamma_{\infty}} \mathbf{v}_i \, dA
\]

and \(\mathbf{A}^+\) and \(\mathbf{A}^-\) are the positive and negative parts of \(\mathbf{A}\), respectively, [18].

Another problem arises for the treatment of curved boundary in the case of diamond cells \(L_{ij}\) as the midpoint of the cell \(L_{ij}\) is not located anymore on the boundary, as shown in (Fig. 3.9).

Remark on the treatment of a curved boundary: For a curved boundary, the midpoint \(M_{ij}\) of the diamond cell \(L_{ij}\) may not be located on the surface geometry of the model to be simulated because it was located at the midpoints of existing edges (see Fig. 3.9). To address this issue, we have implemented a boundary curvature correction based on Hermite interpolation [35]. The projected point \(M_{ij}^s\) is defined by

\[
x_{M_{ij}^s} = 0.5(x_i + x_j) + 0.125(r_i - r_j)
\]

where

\[
r_l = \frac{|s \times (s \times n_l)|}{|n_l \times (s \times n_l)|}, \quad s = x_i - x_j, \quad (l = i, j),
\]

and \(n_l\) is the normal to the node \(l\) to be the weighted average of the normals of the surface elements sharing that node. That is, for each node \(l\) the normal \(n_l\) is defined by

\[
n_l = \frac{1}{|\tau|} \sum_{\tau \in T_l} n_\tau |\tau|,
\]

where \(|\tau|\) is the size of the surface element \(\tau\), \(T_l\) denotes the set of all the surface elements of the mesh that contains \(l\), \(n_\tau\) is the outer normal of the surface element \(\tau\), and \(x_i\) is the coordinate of the node \(i\) (see Fig. 3.9).

3.2.3. Stability. We refer to [5] for a stability study of linear multidimensional advection models that is also valid in the 3D case. For the second time-step we take

\[
\Delta t_i = \text{CFL}_{C_i} \text{Vol}(C_i) \left/ \left(\chi_{\max} \int_{\partial C_i} dA \right) \right.
\]

4.1. General description. The theory behind the mesh adaptation technique for central schemes on unstructured staggered grids has been developed in [25, 27]. We introduce the following three main steps of this technique.

- First, a strategy to determine where a modification is needed in the field of the grid, e.g., by means of an \((a \ posteriori)\) error estimate.
- Secondly, a rule that selects the elements or edges in \(T_h\) (marking strategy).
- Thirdly, a rule that refines the elements in \(T_h\) (refinement strategy).

4.1.1. A posteriori error estimate. For stationary problems, following the theory of [25, 27], for each edge \(e_{ij} \in T_h\) we have the error estimate

\[
\|u - u_h\|_{L^1(e_{ij})} \leq \eta(u_{e_{ij}}) = aQ + b\sqrt{Q},
\]

where

\[
\lambda_{i} = \|\vec{V}_i\| + c_i.
\]

Fig. 3.9. Treatment of a curved boundary for diamond cell \(L_{ij}\)

Here \(\vec{V}_i\) and \(c_i\) refer to the values of the velocity vector and sound speed, respectively, in cell \(C_j\). We then choose \(\Delta t = \min_{1 \leq i \leq n_{v}}\{\Delta t_i\}\), with a similar time-step definition for the first (odd) step \((t^n \rightarrow t^{n+1})\).
and \(h_{e_{ij}} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2} \).

For transient problems, following the theory of [25, 27], for each edge \(e_{ij} \in T_h \) we have the error estimate \(\eta_{e_{ij}} \):

\[
\|u - u_h\|_{L^1(e_{ij})} \leq \eta(u_{e_{ij}}) = T \left(\|u_0 - u_h(\cdot, 0)\|_{L^1(e_{ij})} + aQ + \sqrt{bcQ} \right),
\]

where \(a, b \) and \(c \) are given in [25, 27], and \(Q \) is

\[
Q = \frac{1}{2} \sum_{n=0}^{N^0} \sum_{e_{ij}} h_{e_{ij}}^{n+1} \sum_{\tau \in T_{e_{ij}}} \frac{\text{Vol}(L_{e_{ij}}^{n+1} \cap C_i^n \cap \tau^n)}{\text{Vol}(L_{e_{ij}}^{n+1})} \frac{\text{Vol}(L_{e_{ij}}^{n+1} \cap C_j^n \cap \tau^n)}{\text{Vol}(L_{e_{ij}}^{n+1})} |u_i^n - u_j^n|
\]

\[
+ \sum_{n=0}^{N^0} \sum_{e_{ij}} (\Delta t)^n \text{Vol}(L_{e_{ij}}^{n+1}) |u_{e_{ij}}^{n+1} - \sum_{j \in K(i)} \frac{\text{Vol}(L_{e_{ij}}^{n+1} \cap C_j^n)}{\text{Vol}(L_{e_{ij}}^{n+1})} u_{e_{ij}}^n|
\]

\[
+ 6 \sum_{n=0}^{N^0} (\Delta t)^n \sum_{e_{ij}} \text{Area}(\partial C_i^n \cap \partial C_j^n \cap \tau^n) |u_i^n - u_j^n| \]

\[
(4.3)
\]

Remark: For unsteady flows, the flow solver and unstructured dynamic mesh adaptation procedure should be coupled for the efficient capturing of the continuously varying flow physics. However, this requires very large computational resources, particularly for solving 3D flow problems. Therefore, unsteady simulation will not be presented in this paper.

4.1.2. Marking strategy

In this subsection, we introduce the maximum strategy to determine the set \(\widetilde{T}_h \) in the general adaptive algorithm.

Algorithm 1 (Maximum strategy). This algorithm determines the set \(\widetilde{T}_h \).

(a) *Given:* a partition \(T_h \), error estimates \(\eta_{e_{ij}} \) for the edges \(e_{ij} \in T_h \), and a threshold \(\theta \in (0, 1) \).

Sought: a subset \(\widetilde{T}_h \) of marked edges that should be refined.

(b) Compute

\[
\eta_{T_h, \text{max}} = \max_{e_{ij} \in T_h} \eta_{e_{ij}}.
\]

(c) If \(\eta_{e_{ij}} \geq \theta \eta_{T_h, \text{max}} \), then mark the edge \(e_{ij} \) for refinement and put it into the set

\[
\widetilde{T}_h = \{ e_{ij} \in T_h \mid \eta_{e_{ij}} \geq \theta \eta_{T_h, \text{max}}, \theta \in (0, 1) \}.
\]

4.1.3. Refinement strategy

The set of marked edges is examined, tetrahedron by tetrahedron, and additional edges are marked in an attempt to maintain the grid quality and to get a conforming mesh (see Fig. 4.1). The final set of marked edges results in tetrahedra with one edge or three edges on one face, or all six edges. A tetrahedron with all six marked edges is shown in Fig. 4.1. The mesh is then refined by inserting new nodes on the midpoints of the marked edges and reconnecting these nodes into new tetrahedra and boundary faces. For the last configuration, cutting off tetrahedra on all four corners leaves an octahedron which can be split into four tetrahedra by adding an inner edge connecting two diagonally opposite corners of the octahedron. To minimize distortion of the created tetrahedra, the shortest of the three possible inner diagonals should be chosen (see Fig. 4.2).
4.1.4. Tetrahedral mesh improvement. Here we describe the mesh transformation operation that forms the core of our mesh improvement program.

4.1.5. Smoothing technique. The standard technique is Laplacian smoothing [21], in which a vertex is moved to the centroid of the vertices to which it is connected. Laplacian smoothing is effective for triangular meshes, but for tetrahedral meshes it is less reliable, and often produces poor tetrahedra. We use better smoothing algorithms which are based on numerical optimization [12, 42]. These algorithms define a smooth objective function that summarizes the quality of a group of elements, and use a numerical optimization algorithm such that as steepest descent or Newton’s method to move a vertex to the optimal location.

4.1.6. Edge and face removal. Edge removal is a topological transformation that removes a single edge from a mesh, along with all the tetrahedra that include it. It includes 3-4 and 4-4 flips, but also includes other transformations that remove edges shared by any number of tetrahedra. In general edge removal replaces n tetrahedra with $2n - 4$. Face removal is the inverse of edge removal, and includes 2-3 and 4-4 flips. An n-face removal replaces $2n$ tetrahedra with $n + 2$.

The edge and face removal techniques effectively improve shape measures in combination with a smoothing technique. The algorithm minimizes a shape function,
Fig. 4.2. Regular refinement of the triangular faces and splitting of the remaining octahedron into four tetrahedra based on the shortest diagonal.

Such as the aspect ratio, AR, for tetrahedra [33] as follows.

Let τ stand for a tetrahedron with vertices P_1, P_2, P_3 and P_4; $L_{ij} = \|P_i - P_j\|$, $1 \leq i < j \leq 4$, denote the length of the six edges P_iP_j of τ; S_1, S_2, S_3 and S_4 denote the area of the triangular faces $P_2P_3P_4$, $P_1P_3P_4$, $P_1P_2P_4$ and $P_1P_2P_3$, respectively, and V denote the volume of tetrahedron τ. Then we have

$$AR = \frac{1}{3} \frac{\rho_{\text{out}}}{\rho_{\text{in}}}$$

(4.5)

with

$$\rho_{\text{out}} = \frac{\sqrt{(a + b + c)(a + b - c)(a + c - b)(b + c - a)}}{24V},$$

$$\rho_{\text{in}} = \frac{3V}{S_1 + S_2 + S_3 + S_4},$$

where ρ_{out} is the tetrahedral circumsphere radius, ρ_{in} is the tetrahedral in-sphere radius (see Fig. 4.3), $a = L_{12}L_{34}$, $b = L_{13}L_{24}$, and $c = L_{14}L_{23}$ are the products of opposite edge lengths of τ. In a tetrahedron, two edges are opposed if they share no vertex. The value of the aspect ratio varies from 1, for an ideal element, to ∞, for badly shaped elements. Reconnections of tetrahedra with undesirable shape measures...
are investigated and new local configurations for tetrahedra are selected with better shape measures. Edges on boundary faces can also be swapped. Details of the way in which face swapping can be implemented in practice can be found in [23, 14, 17, 10].

4.1.7. Boundary modification. The inserted boundary nodes may not be located on the surface geometry of the model to be simulated because they were inserted at the midpoints of existing edges. To address this issue, we have implemented a boundary curvature correction based on Hermite interpolation [35, 48].

5. Numerical experiments.

5.1. Shock tube problem (global refinement). To illustrate the accuracy of our scheme, we present numerical results for a 3D extension of the shock tube problem introduced by Sod, where the domain of computation is $[0, 1]^3$ (see Fig. 5.1). In this problem, an initial discontinuity in the thermodynamical state of the gas breaks into a shock wave followed by a contact discontinuity and a rarefaction wave. Finite element meshes with 909 and 3609 nodes (see Fig. 5.1) are used and the initial conditions at $t = 0$ are specified by the data

$$\begin{cases}
\rho = 1, u = 0, v = 0, w = 0, p = 1.0, & \text{for } x \in [0, 1/2], \\
\rho = 0.125, u = 0, v = 0, w = 0, p = 0.1, & \text{for } x \in [1/2, 1].
\end{cases}$$

(5.1)

The profiles of density ρ, x-velocity u, and pressure p are compared with the analytical solution (solid lines) at $y = z = 0.5$ and $t = 0.16$, (see Fig. 5.2). The numerical solution of the 3D shock tube problem is clearly much more likely to suffer from
excessive numerical dissipation than its 1D analogue (see e.g. [15]). In our case, this dissipation might be due to the fact that the tetrahedra are fairly stretched, with high aspect ratios and this damages the accuracy of our scheme (see Table 5.1 and Fig. 5.2). With badly shaped tetrahedra (slivers) which are nearly flat and exhibit large dihedral angles (Fig. 5.3), these problematic cells create an additional difficulty for the capture of the shock and particularly of the contact discontinuity. In [4, 6, 8] we have showed that our scheme is second order for good shaped tetrahedra (isotropic elements) and also for 2D [27].

5.2. Transonic NACA0012, Mach = 0.85, $\alpha = 1^\circ$, (local refinement). A NACA0012 wing configuration has been employed to demonstrate the transonic shock capturing capability of the present adaptive grid solution method. The initial grid consisted of 76125 points and 395203 tetrahedral cells (see Fig. 5.4). The free stream Mach number was 0.85 and the angle of attack was set to 1.0 degree.

A fully converged steady-state solution was achieved in 6000 iterations. The CPU time required 19189 seconds.

An inviscid flow computation on this grid reveals the presence of a weak shock wave on the upper and lower surfaces of the wing. The Mach and C_p contours are also illustrated in Fig. 5.4. As expected, the shock wave is diffused due to the grid coarseness and excessive numerical viscosity. Using the local remeshing procedures described earlier, after four refinement levels, the mesh has 295201 points and 1611337 tetrahedra.

A threshold value $\theta = 0.5$ is used. Figure 5.6 shows the adapted grid and the corresponding Mach and C_p contours. As evidenced, the grid is efficiently refined at the shock location, which shows a sharp shock definition. Figures 5.4 and 5.6 illustrate the chordwise distributions of the surface pressure coefficient C_p for the initial coarse and adapted grids. As expected, there are significant differences between the adapted and the initial grid results. From the C_p distribution, it appears that the shock location of adapted grids is well captured compared to that of coarse grids. Furthermore, this example emphasizes the advantage of grid adaptation in providing more accurate flow solutions economically. For comparison, we used the CFD software Fluent [16], which solves the full compressible Navier–Stokes equations. A fully converged steady-state solution was achieved by means of Fluent in 37500 iterations and the CPU time required 92656 seconds. For this steady flow problem we compared our finite volume method with the Fluent solver using an upwind scheme which seems to be fairly competitive. We used the same meshes with both methods which gave fairly comparable results; notice that C_p and Mach contours can be nearly superposed (see Figs. 5.4 and 5.5). This is an indication that both methods are indeed doing reasonable calculation. Going to the fourth adapted level, the advantage offered by our finite volume method become more obvious in Figs. 5.6 and 5.7. Our method gives a nearly perfect shock resolution with very smooth contours, while the Fluent solver shows a serious breach of monotonicity (see the C_p curve Fig. 5.7). The major difference between the two methods appears to lie in the computing times. Computing times (CPU:19189 seconds).
Sod's shock tube problem with 909 nodes

Sod's shock tube problem with 3609 nodes

Fig. 5.2. Sod’s shock tube problem with 909 and 3609 gridpoints, computed solution at \(y = z = 0.5 \) and \(t = 0.16 \). The solid lines are the exact solution.

6. Conclusion. In this paper a new strategy was developed for adaptive unstructured staggered grids in 3D as an alternative to those presented in [4, 6, 7, 8], and tested on 3D cases.

Actual calculations have been restricted to the higher-order method. An error estimate for central schemes on staggered unstructured mesh adaptation has been
developed for the simulation of such flows to improve the quality of the results, eliminate numerical diffusion and meet original expectations. It was shown that the present method is efficient and accurate for solving such flows. Further development includes the implementation of better error indicators for accurate adaptation of solutions involving multiple dominated flow features, solution interpolation between adaptation cycles, and extension of the method for the MHD solution adaptive gridding.

7. Acknowledgments. The first author would like to express his appreciation to Prof. Dr. Mario Ohlberger from Universität Münster for many helpful and fruitful discussions, and for providing more information about a posteriori error estimates for central schemes. Thanks are due to the anonymous referees for many suggestions which clarified this paper. Thanks are also due to Prof. Tavoularis from the University of Ottawa for providing us with the Fluent licence to make some comparison with our scheme.

REFERENCES

Fig. 5.5. Mach and C_p contours at $M_\infty = 0.85$ and $\alpha = 1^\circ$ for the initial grid (Fluent simulation)

Fig. 5.6. Mach and C_p contours at $M_\infty = 0.85$ and $\alpha = 1^\circ$ for the adapted grid

[6] P. Arminjon, A. Madrane and A. St-Cyr, Non-oscillatory Lax–Friedrichs type central finite
Fig. 5.7. Mach and C_p contours at $M_\infty = 0.85$ and $\alpha = 1^\circ$ for the adapted grid (Fluent simulation)

solutions for aerospace geometries on efficiently generated unstructured tetrahedral meshes, AIAA paper, 93-3390.