THE STOKES PHENOMENON IN THE CONFLUENCE OF THE HYPERGEOMETRIC EQUATION USING RICCATI EQUATION

CAROLINE LAMBERT AND CHRISTIANE ROUSSEAU

Abstract. In this paper we study the confluence of two regular singular points of the hypergeometric equation into an irregular one. We study the consequence of the divergence of solutions at the irregular singular point for the unfolded system. Our study covers a full neighborhood of the origin in the confluence parameter space. In particular, we show how the divergence of solutions at the irregular singular point explains the presence of logarithmic terms in the solutions at a regular singular point of the unfolded system. For this study, we consider values of the confluence parameter taken in two sectors covering the complex plane. In each sector, we study the monodromy of a first integral of a Riccati system related to the hypergeometric equation. Then, on each sector, we include the presence of logarithmic terms into a continuous phenomenon and view a Stokes multiplier related to a 1-summable solution as the limit of an obstruction that prevents a pair of eigenvectors of the monodromy operators, one at each singular point, to coincide.

1. Introduction

The hypergeometric differential equation arises in many problems of mathematics and physics and is related to special functions. It is written

\[X(1 - X) v''(X) + \{c - (a + b + 1)X\} v'(X) - ab v(X) = 0. \tag{1} \]

More precisely, any linear equation of order two \((y''(z) + p(z)y'(z) + q(z)y(z) = 0)\) with three regular singular points can be transformed into the hypergeometric equation by a change of variables of the form \(y = f(z)v\) and a new independent variable \(X\) obtained from \(z\) by a Möbius transformation (see for example [3]).

The confluent hypergeometric equation with a regular singular point at \(z = 0\) and an irregular one at \(z = \infty\) is often written in the form

\[zu''(z) + (c - z)u'(z) - a'u(z) = 0. \tag{2} \]

Solutions of this equation at the irregular point \(z = \infty\) are in general divergent and always 1-summable. C. Zhang ([9] and [10]) and J.-P. Ramis [5] showed that the Stokes multipliers related to the confluent equation can be obtained from the limits of the monodromy of the solutions of the nonconfluent equation (1). They assumed that the bases of solutions of (1) around the merging singular points \((z = b\) and \(z = \infty)\) never contain logarithmic terms and they described the phenomenon using two types of limits: first with \(\Im(b) \to \infty\), then with \(\Re(b) \to \infty\) on the subset

Date: June 8, 2007.

Key words and phrases. Hypergeometric equation, confluence, Stokes phenomenon, divergent series, analytic continuation, summability, monodromy, confluent hypergeometric equation, Riccati equation.

Research supported by NSERC and FQRNT in Canada.
\(b \leq b_0 + N\) for \(b_0 \in \mathbb{C}\). They also proved the uniform convergence of the solutions on all compact sets in the case \(3b \rightarrow \infty\).

In this paper, we propose a different approach: we describe the phenomenon in a whole neighborhood of values of the confluence parameter, but we are forced to cover the neighborhood with two sectors on which the presentations are different. We are then able to explain the presence of the logarithmic terms: they occur precisely for discrete values of the confluence parameter when we unfold a confluent equation with at least one divergent solution. On each sector, each divergent solution explains the presence of logarithmic terms at one of the unfolded singular points. The occurrence of logarithmic terms, a discrete phenomenon, is embedded into a continuous phenomenon valid on the whole sector.

To help understanding the phenomenon, we give a translation of the hypergeometric equation in terms of a Riccati system in which two saddle-nodes are unfolded with a parameter \(\epsilon\). The parameter space is again covered with two sectors \(S^\pm\). For this Riccati system, we consider on each sector \(S^\pm\) of the parameter space a first integral which has a limit when \(\epsilon \rightarrow 0\), written in the form \(I^\pm(x, y) = H^\pm(x) \frac{y-p_1(x, \epsilon)}{y-p_2(x, \epsilon)}\) where \(y = p_1(x, \epsilon)\) and \(y = p_2(x, \epsilon)\) are analytic invariant manifolds of singular points and, for \(\epsilon = 0\), center manifolds of the saddle-nodes. Then, when we calculate the monodromy of one of these first integrals, we can separate it into two parts: a continuous one which has a limit when \(\epsilon \rightarrow 0\) inside the sector \(S^\pm\) and a wild one which has no limit but which is linear. The wild part is independent of the divergence of the solutions and present in all cases. The divergence of \(p_1(x, 0)\) corresponds to the analytic invariant manifold of one singular point being ramified at the other in the unfolding of one saddle-node. For particular values of \(\epsilon\) for which one singular point is a resonant node, this forces the node to be non-linearisable (i.e. to have a nonzero resonant monomial), in which case logarithmic terms appear in \(I^\pm\). This is called the parametric resurgence phenomenon in [6]. The divergence of \(p_2(x, 0)\) corresponds to a similar phenomenon with the pair of singular points coming from the unfolding of the other saddle-node.

2. Solutions of the hypergeometric equations

In this paper, we study the confluence of the singular points 0 and 1; the confluent hypergeometric equation has an irregular singular point at the origin. We make the change of variables \(X = \frac{1}{x}\) in (1) to bring the singular point at \(X = 1\) to a singular point at \(x = \epsilon \neq 0\). We consider small values of \(\epsilon\) and we limit the values of \(\epsilon\) to

\(c = 1 - \frac{1}{\epsilon}\).

Let \(v(\frac{1}{x})\) be denoted by \(w(x)\). Then (1) becomes

\(x(\epsilon - x) w''(x) + \{\epsilon - 1 - (a + b + 1)x\} w'(x) - ab w(x) = 0.\)

We will then let \(\epsilon \rightarrow 0\). We want to study what happens in a neighborhood of \(\epsilon = 0\). The confluence parameter \(\epsilon\) will be taken in two sectors, the union of which is a small neighborhood of the origin in the complex plane.

Remark 1. Although not explicitly written, our study is still valid if we let \(a(\epsilon)\) and \(b(\epsilon)\) be analytic functions of \(\epsilon\).

Definition 2. Given \(\gamma \in (0, \frac{\pi}{2})\) fixed, we define

- \(S^+ = \{\epsilon \in \mathbb{C} : |\epsilon| < r; \arg(\epsilon) \in (-\pi + \gamma, \pi - \gamma)\}\)
Confluence of the hypergeometric equation

- \(S^- = \{ \epsilon \in \mathbb{C} : |\epsilon| < r, \arg(\epsilon) \in (\gamma, 2\pi - \gamma) \} \).

Remark 3. \(\gamma \) can be chosen arbitrary small, but \(r(\gamma) \) will depend on \(\gamma \) and \(r(\gamma) \to 0 \) as \(\gamma \to 0 \). In particular, we will ask \(a + b + \frac{1}{\epsilon} \notin -\mathbb{N} \) on \(S^+ \) and \(2 - a - b - \frac{1}{\epsilon} \notin -\mathbb{N} \) on \(S^- \) (in this paper \(\mathbb{N} = \{0, 1, \ldots\} \)).

2.1. Bases for the solutions of the hypergeometric equation (4) at the regular singular points \(x = 0 \) and \(x = \epsilon \). The fundamental group of \(\mathbb{C} \setminus \{0, \epsilon\} \) based at an ordinary point acts on a solution (valid at this base point) by giving its analytic continuation at the end of a loop. In this way we have monodromy operators around each singular point. We can extend it to act on any function of solutions.

Notation 4. The monodromy operator \(M_0 \) (resp. \(M_\epsilon \)) is the one associated to the loop which makes one turn around the singular point \(x = 0 \) (resp. \(x = \epsilon \)) in the positive direction (and which does not surround any other singular point). In this paper, since we use bases of solutions whose Taylor series are convergent in a disk of radius \(\epsilon \) centered at a singular point, it will be useful to define \(M_0 \) (resp. \(M_\epsilon \)) with the fundamental group based at a point belonging to the line joining \(-\epsilon\) and \(0\) (resp. \(\epsilon \) and \(2\epsilon\)).

As the hypergeometric equation is linear of second order, the space of solutions is of dimension 2. Given a basis for the space of solutions, the monodromy operator \(M_0 \) (resp. \(M_\epsilon \)) acting on this basis is linear and is represented by a two-dimensional matrix.

As elements of a basis \(\mathcal{B}_0 \) (resp. \(\mathcal{B}_\epsilon \)) around the singular point \(x = 0 \) (resp. \(x = \epsilon \)), it is tradition to use solutions which are eigenvectors of the monodromy operator \(M_0 \) (resp. \(M_\epsilon \)) whenever these solutions exist. However, none of these bases is defined on the whole of a sector \(S^+ \) or \(S^- \). This is why we later switch to mixed bases. C. Zhang ([9] and [10]) also used mixed bases but he has not pushed the study as far as we do.

Definition 5. The hypergeometric series \({}_kF_j(a_1, a_2, \ldots, a_k, c_1, c_2, \ldots, c_j; x) \) is defined by

\[
{}_kF_j(a_1, a_2, \ldots, a_k, c_1, c_2, \ldots, c_j; x) = 1 + \sum_{n=1}^{\infty} \frac{(a_1)_n(a_2)_n \ldots (a_k)_n}{(c_1)_n(c_2)_n \ldots (c_j)_n n!} x^n
\]

with

\[
\begin{aligned}
(a)_0 &= 1 \\
(a)_n &= a(a+1)(a+2)\ldots(a+n-1)
\end{aligned}
\]

and for \(c_1, \ldots, c_j \notin -\mathbb{N} \).

A basis \(\mathcal{B}_0 = \{w_1(x), w_2(x)\} \) of solutions of (4) around the singular point \(x = 0 \) is well known (see [2] for details):

\[
\begin{aligned}
w_1(x) &= {}_2F_1(a, b; 1 - \frac{1}{\epsilon}, x) \\
&= (1 - \frac{x}{\epsilon})^{1-a-b} {}_2F_1(1 - \frac{1}{\epsilon}, a, 1 - \frac{1}{\epsilon} - b, \frac{1}{\epsilon} \cdot \frac{1}{\epsilon}); x, \\
w_2(x) &= (\frac{x}{\epsilon})^{1-a-b} {}_2F_1(1 + \frac{1}{\epsilon}, b + \frac{1}{\epsilon}, 1 + \frac{1}{\epsilon}; \frac{x}{\epsilon}) \\
&= (\frac{x}{\epsilon})^{1-a-b} (1 - \frac{x}{\epsilon})^{1-a-b} \cdot {}_2F_1(1 - a, 1 - b, 1 + \frac{1}{\epsilon}; \frac{x}{\epsilon}).
\end{aligned}
\]

The solution \(w_1(x) \) exists if \(1 - \frac{1}{\epsilon} \notin -\mathbb{N} \) whereas \(w_2(x) \) exists if \(1 + \frac{1}{\epsilon} \notin -\mathbb{N} \).
Similarly, a basis $\mathcal{B}_\varepsilon = \{w_3(x), w_4(x)\}$ of solutions of (4) around the singular point $x = \varepsilon$ is given by:

\begin{align}
\begin{cases}
w_3(x) = 2F_1(a, b, a + b + \frac{1}{\varepsilon}; 1 - \frac{1}{\varepsilon}) , \\
w_4(x) = (\varepsilon)^{a-b} (1 - \frac{1}{\varepsilon})^{1-a-b} 2F_1(1 - a, 1 - b, 2 - \frac{1}{\varepsilon} - a - b; 1 - \frac{1}{\varepsilon}).
\end{cases}
\end{align}

The solution $w_3(x)$ exists if $a+b+\frac{1}{\varepsilon} \notin -\mathbb{N}$ whereas $w_4(x)$ exists if $2 - \frac{1}{\varepsilon} - a - b \notin -\mathbb{N}$.

In particular, $w_2(x)$ and $w_3(x)$ exist for all $\varepsilon \in S^+$ and $w_1(x)$ and $w_4(x)$ exist for all $\varepsilon \in S^-$, provided $r(\gamma)$ is sufficiently small.

Traditionally, in order to get a basis when $1 - \frac{1}{\varepsilon} \in -\mathbb{N}$, $a \notin -\mathbb{N}$ and $b \notin -\mathbb{N}$ (resp. $2 - \frac{1}{\varepsilon} - a - b \in -\mathbb{N}$, $1 - a \notin -\mathbb{N}$ and $1 - b \notin -\mathbb{N}$), the solution $w_1(x)$ in \mathcal{B}_0 (resp. $w_4(x)$ in \mathcal{B}_1) is replaced by some other solution $\tilde{w}_1(x)$ (resp. $\tilde{w}_4(x)$) which contains logarithmic terms. The converse is true if $\varepsilon \in S^+$ is sufficiently small. Similarly, we have $\tilde{w}_2(x)$ and $\tilde{w}_3(x)$ for specific value of ε in S^- (see for example [1]).

The problem with this approach is that the basis $\mathcal{B}_0 = \{w_1(x), w_2(x)\}$ (resp. $\mathcal{B}_1 = \{w_3(x), w_4(x)\}$) does not have a limit when the parameter tends to a value for which there are logarithmic terms at the origin (resp. at $x = \varepsilon$). For $\varepsilon \in S^+$, there are values of ε for which $w_1(x)$ or $w_4(x)$ may not be defined, whereas $w_2(x)$ or $w_3(x)$ may not be defined for some values of ε in S^-. This means that \mathcal{B}_0 and \mathcal{B}_1 are not optimal bases to describe the dynamics for all values of ε in the sectors S^\pm. We will rather consider the bases $\mathcal{B}^+ = \{w_2(x), w_3(x)\}$ on S^+ and $\mathcal{B}^- = \{w_4(x), w_1(x)\}$ on S^-. With these bases we will explain the occurrence of logarithmic terms (a phenomenon occurring for discrete values of the confluence parameter) in a continuous way. The following lemma will allow us to consider only one of the bases, namely \mathcal{B}^+ with $\varepsilon \in S^+$.

Lemma 6. The equation (4) is invariant under

\begin{align}
\begin{cases}
\varepsilon' = 1 - c + a + b \\
\varepsilon' = \frac{1}{1-\varepsilon} \\
x' = \varepsilon'(1 - \frac{1}{\varepsilon}) \\
a' = a \\
b' = b
\end{cases}
\end{align}

which transforms S^+ into S^- and \mathcal{B}^+ into \mathcal{B}^-.

2.2. The confluent hypergeometric equation and its summable solutions.

Taking the limit $\varepsilon \to 0$ in (4), we obtain a confluent hypergeometric equation:

\begin{align}
x^2 w''(x) + \{1 + (1 + a + b)x\} w'(x) + ab w(x) = 0.
\end{align}

A basis of solutions around the origin is

\begin{align}
\begin{cases}
g(x) = 2F_0(a, b; -x), \\
k(x) = e^{\varepsilon} x^{1-a-b} 2F_0(1 - a, 1 - b; x) = e^{\varepsilon} x^{1-a-b} h(x).
\end{cases}
\end{align}

Remark 7. The confluent equation in the literature is often studied with the irregular singular point at infinity:

\begin{align}
zu''(z) + (c' - z) u'(z) - au(z) = 0.
\end{align}
The following transformation applied to (12) yields the confluent equation (10):

\[
\begin{align*}
 z &= \frac{1}{2}, \\
 u\left(\frac{1}{2}\right) &= x^a w(x), \\
 c' &= a + 1 - b.
\end{align*}
\]

We recall the well-known theorem:

Theorem 8. The series \(g(x) \) is divergent if and only if \(a \notin -\mathbb{N} \) and \(b \notin -\mathbb{N} \). It is 1-summable in all directions except \(\mathbb{R}^- \). The series \(h(x) \) is divergent if and only if \(1 - a \notin -\mathbb{N} \) and \(1 - b \notin -\mathbb{N} \). It is 1-summable in all directions except \(\mathbb{R}^+ \). The Borel sums of these series are thus defined in the sectors illustrated in Figure 1.

![Figure 1. Domains of the Borel sums of the confluent series \(g(x) \) and \(h(x) \)](image-url)

Proof. Let us study the convergence of \(g(x) \). If \(a \notin -\mathbb{N} \) and \(b \notin -\mathbb{N} \), then the series is divergent for all \(x \). If \(a \in -\mathbb{N} \) or \(b \in -\mathbb{N} \), the series is in fact a polynomial. If the series \(_2F_0(a,b;-x) \) is divergent, the Borel transform of \(_2F_0(a,b;-x) - 1 \) is \(-abF_1(a+1,b+1,2;-u)\), which is convergent in a disk of radius 1 centered at the origin and which has a singularity at \(u = -1 \). It has an analytic continuation along any line from the origin except \(\mathbb{R}^- \). To prove the 1-summability (Borel summability), it suffices to prove that for each half line \(d \) (other than \(\mathbb{R}^- \)) starting at the origin, the integral along this line \(\int_d e^{-u} _2F_1(a,b,1;-u)du \) is convergent. But we know that \(_2F_1(a,b,1;-u) \) is a solution of the hypergeometric equation in which we substitute \(u \) by \(-x \). Infinity is a regular point, so all solutions near infinity have at most polynomial growth (see for instance [4], theorem 6.1). More precisely, there exists \(C_1, C_2 > 0 \) such that \(_2F_1(a,b,1;-u) < C_1 |u|^{C_2} \). The integral \(\int_{\mathbb{R}^+} e^{-u} _2F_1(a,b,1;-u)du \) is thus convergent for \(\Re(x) > 0 \). When integrating along other directions (except \(\mathbb{R}^- \)), we obtain the domain illustrated in Figure 1 with arbitrary radius. With proper substitution we obtain the second statement. \(\square \)

As illustrated in Figure 1, we have one Borel sum \(g(x) \) in the region \(\Re(x) > 0 \). When extending \(g(x) \) to the region \(\Re(x) < 0 \) by turning around the origin in the positive (resp. negative) direction, we get a sum \(g^+(x) \) (resp. \(g^-(x) \)). The functions \(g^+(x) \) and \(g^-(x) \) are different in general and never coincide if the series is divergent. Since \(g^+(x) \) and \(g^-(x) \) have the same asymptotic expansion \(g(x) \), their difference is a solution of (10) which is asymptotic to 0 in the region \(\Re(x) < 0 \), and thus

\[
g^+(xe^{2\pi i}) - g^-(x) = \lambda k(x) \quad \text{if} \quad \arg(x) \in (\frac{-3\pi}{2}, \frac{-\pi}{2}).
\]

Similarly, we consider \(h(x) \) defined in the region \(\Re(x) < 0 \). When we extend it by turning around the origin in the positive (resp. negative) direction, we obtain the
sum \(h^+(x) \) (resp. \(h^-(x) \)). We define

\[
\begin{align*}
 k^+(x) &= e^{\frac{\pi}{2} x^{1-a-b} h^+(x)} \\
 k^-(x) &= e^{\frac{\pi}{2} x^{1-a-b} h^-(x)}
\end{align*}
\]

for \(\Re(x) > 0 \). Then we can write

\[
(16) \quad k^+(x) - e^{2\pi i(1-a-b)} k^-(xe^{-2\pi i}) = \mu g(x) \quad \text{if } \arg(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right).
\]

Remark 9. For all \(k \in \mathbb{Z} \), we have \(g^+(xe^{2k\pi i}) = g^+(x) \), \(g^-(xe^{2k\pi i}) = g^-(x) \), \(g(xe^{2k\pi i}) = g(x) \) and similar relations for \(h^+(x) \), \(h^-(x) \) and \(h(x) \), so these functions are univalued. Since \(x^{1-a-b} \) is a multivalued function, \(k^+(x) \), \(k^-(x) \) and \(k(x) \) are also multivalued functions of \(x \). They become univalued if \(\arg(x) \) is determined.

Definition 10. In the relations (14) and (16), we call \(\lambda \) and \(\mu \) the Stokes multipliers associated respectively to the solutions \(g(x) \) and \(k(x) \).

Their values are calculated in [4]. Using the change of variable (13), we have

\[
(17) \quad \lambda = -\frac{2\pi i e^{\pi i(1-a-b)}}{\Gamma(a) \Gamma(b)}
\]

and

\[
(18) \quad \mu = -\frac{2i\pi}{\Gamma(1-a) \Gamma(1-b)}.
\]

Notation 11. Let us write

\[
(19) \quad H^0(x) = \begin{cases}
 \frac{k(x)}{g(x)} & \text{if } \Re(x) < 0 \\
 \frac{g^-(x)}{k^+(x)} & \text{if } \Re(x) > 0
\end{cases}
\]

and

\[
(20) \quad H^{0'}(x) = \begin{cases}
 \frac{k^-(x)}{g(x)} & \text{if } \Re(x) > 0 \\
 \frac{g^+(x)}{k^+(x)} & \text{if } \Re(x) < 0
\end{cases}
\]

with \(H^0(x) \) (resp. \(H^{0'}(x) \)) analytic in the complex plane minus a cut with values in \(\mathbb{C} \mathbb{P}^1 \), as illustrated in Figure 2.

![Diagram](image)

Figure 2. Domains of \(H^0(x) \) and \(H^{0'}(x) \), with arbitrary radius

Proposition 12. The Stokes multiplier of \(g(x) \) is

\[
(21) \quad \lambda = \frac{1}{H^0(x)} - \frac{1}{H^{0'}(x)} \quad \text{if } \arg(x) \in \left(-\frac{3\pi}{2}, \frac{\pi}{2} \right),
\]
while the Stokes multiplier of $k(x)$ is
\begin{equation}
\mu = H^0(x) - e^{2\pi i(1 - a - b)} H^0\left(x e^{-2\pi i} \right) \quad \text{if } \arg(x) \in \left(\frac{-
\pi}{2}, \frac{\pi}{2} \right).
\end{equation}

Proof. We have
\begin{align}
\lambda &= \frac{g^+(x)^2}{k(x)} - \frac{g^-(x)}{k(x)} \\
&= \frac{g^+(x)}{k(x)} - \frac{g^-(x)}{k(x)} \\
&= \frac{1}{H^0(x)} \frac{1}{k(x)} \quad \text{if } \arg(x) \in \left(\frac{-3\pi}{2}, \frac{\pi}{2} \right)
\end{align}

and
\begin{align}
\mu &= \frac{k^+(x)}{g(x)} - e^{2\pi i(1 - a - b)} \frac{k^-(x)}{g(x)} \\
&= \frac{k^+(x)}{g(x)} - e^{2\pi i(1 - a - b)} \frac{g(x)}{g(x)} \\
&= H^0(x) - e^{2\pi i(1 - a - b)} H^0\left(x e^{-2\pi i} \right) \quad \text{if } \arg(x) \in \left(\frac{-\pi}{2}, \frac{\pi}{2} \right).
\end{align}

\hfill \Box

In view of this proposition, it will seem natural in the next section to study the monodromy of some quotient of solutions of the hypergeometric equation (4). But before, let us explore the link between divergent series in particular solutions of the confluent differential equation and analytic continuation of series appearing in solutions of the nonconfluent equation.

3. Divergence and Monodromy

3.1. Divergence and ramification: first observations

Let us illustrate by an example the link between the divergence of a confluent series and the ramification of its unfolded series.

Example 13. The series $g(x) = {}_2F_0(a, b; -x)$ is non-summable in the direction \mathbb{R}^-, i.e. on the left side. By continuity, when we unfold with a small $\epsilon \in \mathbb{R}$, the unfolded functions are
\begin{equation}
g^\epsilon(x) = \begin{cases}
_2F_1(a, b, a + b + \frac{1}{\epsilon}; 1 - \frac{2}{\epsilon}) & \text{if } \epsilon \in S^+ \\
_2F_1(a, b, 1 - \frac{1}{\epsilon}; \frac{2}{\epsilon}) & \text{if } \epsilon \in S^-.
\end{cases}
\end{equation}

Their analytic continuations will be ramified at the left singular point and regular at the right singular point. For the special values of ϵ for which logarithmic terms may exist in the general solution, this will force their existence. Indeed, for these special values of ϵ, the solution either has logarithmic terms or is a polynomial, in which case it cannot be ramified.

This example illustrates that a direction of non-summability for a confluent series determines which merging singular point is "pathologic" (with ϵ in S^\pm) for an unfolded solution, as illustrated in Figure 3. Although subtleties are needed to adapt the Example 13 to the other solution $k(x) = e^{2\pi} x^{1-a-b} h(x)$ because of the ramification of x^{1-a-b}, we have a similar phenomenon if we define adequately the pathology. For example, if $\epsilon \in S^+$, the singular point $x = 0$ will be defined pathologic for the solution $w_0(x)$ if the analytic continuation of this solution is not an eigenvector of the monodromy operator M_0. This will be studied more precisely in section 3.4 from results we will obtain in the next two sections.
3.2. Limit of quotients of solutions on \(S^\pm \). We will later see that a divergent series in the basis of solutions at the confluence necessarily implies the presence of an obstruction that prevents an eigenvector of \(M_0 \) to be an eigenvector of \(M_\epsilon \). As a tool for our study, we will consider the behavior of the analytic continuation of some functions of the particular solutions \(w_\epsilon(x) \in B^\pm \) when turning around singular points. A first motivation for studying these functions comes from Proposition 12. We will see in section 4 that these quantities have the same ramification as first integrals of a Riccati system related to the hypergeometric equation, these first integrals having a limit when \(\epsilon \to 0 \) on \(S^\pm \). They are defined by

\[
H^+ (x) = \frac{\kappa^+(\epsilon)w_3(x)}{w_3(x)} \quad \text{if } \epsilon \in S^+
\]

and

\[
H^- (x) = \frac{\kappa^-(\epsilon)w_4(x)}{w_3(x)} \quad \text{if } \epsilon \in S^-
\]

with

\[
\kappa^+(\epsilon) = \epsilon^{1-a-b} e^{\pi i(a+b+1+\frac{1}{2})}, \quad \kappa^-(\epsilon) = \epsilon^{1-a-b} e^{-\pi i(a+b+1+\frac{1}{2})}.
\]

The coefficients \(\kappa^\pm \) in the functions \(H^{\pm}(x) \) are chosen so that \(H^{\pm}(x) \) have the limit \(H^0(x) \) when \(\epsilon \to 0 \) inside \(S^\pm \).

Proposition 14. When \(\epsilon \to 0 \) and \(\epsilon \in S^+ \) (resp. \(\epsilon \in S^- \)), \(H^+(x) \) (resp. \(H^-(x) \)) converges uniformly to \(H^0(x) \) on any compact subset of the domain of \(H^0(x) \) illustrated in Figure 2. More precisely, we have the uniform limits on compact subsets:

\[
\begin{align*}
\lim_{\epsilon \to 0} \kappa^+(\epsilon)w_3(x) &= k^+(x) \\
\lim_{\epsilon \to 0} \kappa^-(\epsilon)w_4(x) &= k^+(x) \\
\lim_{\epsilon \to 0} w_3(x) &= g(x) \\
\lim_{\epsilon \to 0} w_1(x) &= g(x)
\end{align*}
\]

Figure 3. Link between ramification of the analytic continuation of the hypergeometric series in the unfolded case and divergence (ramification) of the associated confluent series.
Before presenting the proof, let us consider the following example.

Example 15. For the particular case \(a = 1, \ b = 0 \), we have

\[
\begin{align*}
\left\{
\begin{array}{ll}
w_2(x) &= (\frac{x}{\epsilon})^{\frac{1}{2}} \left(1 - \frac{x}{\epsilon}\right)^{-\frac{1}{2}}, \\
\ w_3(x) &= 1.
\end{array}
\right.
\end{align*}
\] (30)

Let \(\epsilon \) be real. The function \(w_2(x) \) is real on the interval \((0, \epsilon) \) and it is ramified at \(x = 0 \) and \(x = \epsilon \). The function has no limit at \(\epsilon = 0 \). For \(\epsilon \in \mathbb{R}_+ \), we replace it by the function \(\kappa^+(\epsilon)w_2(x) \), so that the function becomes real simultaneously on the two intervals \(\mathbb{R}_- \) and \((\epsilon, +\infty) \). Then the limit when \(\epsilon \to 0 \) and \(\epsilon \in S^+ \) exists and

\[
\lim_{\epsilon \to 0} \kappa^+(\epsilon)w_2(x) = e^{\frac{1}{2}}.
\] (31)

uniformly on any compact set which does not contain 0. The ramification along \((0, \epsilon) \) has disappeared. Where does the constant \(\kappa^+(\epsilon) \) come from?

For \(\epsilon \in \mathbb{R}_+ \) and \(x \in \mathbb{R}_- \), the natural function to consider is \(\left(\frac{x}{\epsilon}\right)^{\frac{1}{2}} \left(1 - \frac{x}{\epsilon}\right)^{-\frac{1}{2}} = \tilde{w}_2(x) \), while for \(x \in (\epsilon, +\infty) \) it is \(\left(\frac{x}{\epsilon}\right)^{\frac{1}{2}} \left(\frac{x}{\epsilon} - 1\right)^{-\frac{1}{2}} = \tilde{w}_2(x) \). Besides, if we consider the analytic continuation of the function \(\kappa^+(\epsilon)w_2(x) \) like in Figure 4, we obtain

\[
\begin{align*}
\left\{
\begin{array}{ll}
\tilde{w}_2(x) & \text{if } x \in \mathbb{R}_- , \\
\hat{w}_2(x) & \text{if } x \in (\epsilon, +\infty).
\end{array}
\right.
\end{align*}
\] (32)

Figure 4. Analytic continuation of \(\kappa^+(\epsilon)w_2(x) \)

Similarly, \(\epsilon \in \mathbb{R}_- \) leads to the natural choice of the constant \(\kappa^-(\epsilon) \) when the analytic continuation of \(\kappa^-(\epsilon)w_4(x) \) is done like in Figure 5.

Figure 5. Analytic continuation of \(\kappa^-(\epsilon)w_4(x) \)

If we had done the analytic continuation of \(\kappa^+(\epsilon)w_2(x) \) like in Figure 6, we would have obtained

\[
\begin{align*}
\left\{
\begin{array}{ll}
e^{-\frac{i\pi x}{\epsilon}} \tilde{w}_2(x) & \text{if } x \in \mathbb{R}_- , \\
\ e^{-\frac{i\pi x}{\epsilon}} \hat{w}_2(x) & \text{if } x \in (\epsilon, +\infty).
\end{array}
\right.
\end{align*}
\] (33)

Figure 6. Analytic continuation of \(\kappa^+(\epsilon)w_2(x) \)
A similar behavior is observed when the series appearing in \(w_2(x) \) and \(w_3(x) \) are polynomials (i.e. when \(h(x) \) and \(g(x) \) are convergent series). So it is clear that, even in the convergent case, there is some wild behavior \((\epsilon \frac{2\pi}{x})^{\frac{x}{\epsilon}} \) in the monodromy of the solutions which does not go to the limit. Fortunately, this wild behavior is linear. In the divergent case, we will separate it from the nonlinear part in order to get a limit for the linear part (see Theorem 17 below).

Proof of proposition 14. The hypergeometric functions appearing in \(w_k(x) \) \((k = 1, 2, 3, 4)\) and having the limit \(h(x) \) or \(g(x) \) are ramified as illustrated in Figure 3, which suggests to take sectors like in Figure 2 when considering the quotient of these functions.

We will prove the uniform convergence on compact subsets of \(w_3(x) \) to \(g(x) \) for \(\epsilon \in S^+ \) in section 4.2. Now, with \(w_2(x) \) as in (7), we can decompose \(\kappa^+(\epsilon)w_2(x) \) as

\[
(34) \quad \left(\epsilon \frac{2\pi}{x} \right)^{\frac{x}{\epsilon}} (1 - \frac{x}{\epsilon}) \left((x - \epsilon)^{1-a-b} \right) F_2(1-a, 1-b, 1 + \frac{1}{\epsilon}, \frac{x}{\epsilon}).
\]

The first part converges to \(e^\frac{\pi}{\epsilon} \) (see Example 15). The second part converges to \(x^{1-a-b} F_0(1-a, 1-b; x) \). The fact that \(F_2(1-a, 1-b, 1 + \frac{1}{\epsilon}, \frac{x}{\epsilon}) \) converges to \(F_0(1-a, 1-b; x) \) can be obtained from the convergence of \(w_3(x) \) to \(g(x) \) by a change of coordinates. The case \(\epsilon \in S^- \) is similar. □

3.3. The wild and continuous part of the monodromy operator. In this section, we see that the monodromy of \(H^{c^+}(x) \) can be separated in a wild part and continuous part and that the continuous part leads us to the Stokes coefficients. This is done in the two covering sectors \(S^\pm \) of a small neighborhood of \(\epsilon \).

Notation 16. Let \(H^{c^+}_{(\delta, \pi)}(x) \) be the analytic continuation of \(H^{c^+}(x) \) when starting on \((0, \epsilon)\) and turning of an angle \(\theta \) around \(x = \delta \), with \(\delta \in \{0, \epsilon\} \) (see Figure 7 for \(H^{c^+}(x) \)). In short, \(H^{c^+}_{(\delta, \pi)}(x) \) can be obtained from the action of the monodromy operator around \(x = \delta \) applied on \(H^{c^+}_{(\pi, -\pi)}(x) \).

\[
\begin{align*}
H^{c^+}_{(0, \pi)}(x) & \quad H^{c^+}_{(\epsilon, -\pi)}(x) \\
H^{c^+}_{(0, -\pi)}(x) & \quad H^{c^+}_{(\epsilon, \pi)}(x)
\end{align*}
\]

FIGURE 7. Analytic continuation of \(H^{c^+}(x) \)

Theorem 17. The relation between \(H^{c^+}_{(\epsilon, \pi)} \) and \(H^{c^+}_{(\epsilon, \pm \pi)} \), as well as the relation between \(H^{c^+}_{(0, \pi)} \) and \(H^{c^+}_{(0, \pm \pi)} \) may be separated into

- a wild linear part with no limit at \(\epsilon = 0 \)
- a continuous non linear part

on each of the sectors \(S^\pm \). More precisely,

- if \(\epsilon \in S^+ \),

\[
(35) \quad H^{c^+}_{(\epsilon, -\pi)} = e^{2\pi i(a+b-1+\frac{1}{\epsilon})} (H^{c^+}_{(\epsilon, \pi)} - \mu^+(\epsilon))
\]
and

\begin{equation}
\frac{1}{H^+_{(0,\pi)}} = e^{2\pi i} \left(\frac{1}{H^+_{(0,-\pi)}} + \lambda^+(\epsilon) \right)
\end{equation}

with

\begin{equation}
\mu^+(\epsilon) = \frac{-2\pi i}{\Gamma(1-a)\Gamma(1-b)} \frac{e^{1-a-b}\Gamma(1+\frac{1}{\epsilon})}{\Gamma(1+\frac{1}{\epsilon})}
\end{equation}

and

\begin{equation}
\lambda^+(\epsilon) = \frac{-2\pi i e^{\pi i(1-a-b)} e^{a+b-1} \Gamma(a+b+\frac{1}{\epsilon})}{\Gamma(a)\Gamma(b)} \frac{1}{\Gamma(1+\frac{1}{\epsilon})}
\end{equation}

- if \(\epsilon \in S^+ \),

\begin{equation}
H^+_{(0,-\pi)} = e^{2\pi i} (H^+_{(0,\pi)} - \mu^-(\epsilon))
\end{equation}

and

\begin{equation}
\frac{1}{H^-_{(\epsilon,\pi)}} = e^{2\pi i(a+b-1+\frac{1}{\epsilon})} \left(\frac{1}{H^-_{(\epsilon,-\pi)}} + \lambda^-(\epsilon) \right)
\end{equation}

with

\begin{equation}
\mu^-(\epsilon) = \frac{-2\pi i}{\Gamma(1-a)\Gamma(1-b)} \frac{(\epsilon e^{\pi i})^{1-a-b}\Gamma(2-\frac{1}{\epsilon}-a-b)}{\Gamma(2-\frac{1}{\epsilon}-a-b)}
\end{equation}

and

\begin{equation}
\lambda^-(\epsilon) = \frac{-2\pi i e^{\pi i(1-a-b)} (\epsilon e^{\pi i})^{a+b-1} \Gamma(1-\frac{1}{\epsilon})}{\Gamma(a)\Gamma(b)} \frac{1}{\Gamma(1-\frac{1}{\epsilon})}
\end{equation}

Then, with the limit taken for any path in \(S^+ \) or in \(S^- \), we have

\begin{equation}
\lim_{\epsilon \to 0} \mu^\pm(\epsilon) = \mu
\end{equation}

and

\begin{equation}
\lim_{\epsilon \to 0} \lambda^\pm(\epsilon) = \lambda,
\end{equation}

which are precisely the Stokes multipliers associated to the solutions \(k(x) \) and \(g(x) \) and given by (17) and (18).

Proof. Let \(\epsilon \in S^+ \). To make analytic continuation of the solutions \(w_2(x) \) and \(w_3(x) \), we need to make further restrictions on the values of \(\epsilon \), but we will shortly show the validity of the result without these hypotheses. We have (see for example [2])

- if \(2 - \frac{1}{\epsilon} - a - b \notin -\mathbb{N} \),

\begin{equation}
\begin{aligned}
w_2(x) &= \frac{\Gamma(1-a-b)\Gamma(1+\frac{1}{\epsilon})}{\Gamma(1-a)\Gamma(1-b)} w_3(x) + \frac{\Gamma(a+b-1+\frac{1}{\epsilon})\Gamma(1+\frac{1}{\epsilon})}{\Gamma(a)\Gamma(b+\frac{1}{\epsilon})} w_4(x) \\
&= D(\epsilon) w_3(x) + E(\epsilon) w_4(x);
\end{aligned}
\end{equation}

- if \(1 - \frac{1}{\epsilon} \notin -\mathbb{N} \),

\begin{equation}
\begin{aligned}
w_3(x) &= \frac{\Gamma(1-a-b+\frac{1}{\epsilon})\Gamma(1+\frac{1}{\epsilon})}{\Gamma(a+\frac{1}{\epsilon})\Gamma(b+\frac{1}{\epsilon})} w_1(x) + \frac{\Gamma(a+b-1+\frac{1}{\epsilon})\Gamma(-\frac{1}{\epsilon})}{\Gamma(a)\Gamma(b)} w_2(x) \\
&= A(\epsilon) w_1(x) + B(\epsilon) w_2(x).
\end{aligned}
\end{equation}
These relations allow the calculation of the monodromy of \(w_2(x) \) (resp. \(w_3(x) \)) around \(x = \epsilon \) (resp. \(x = 0 \)). The explosion of the coefficients (coefficients becoming infinite) for specific values of \(\epsilon \) corresponds to the presence of logarithmic terms in the general solution around the singular point \(x = \epsilon \) (resp. \(x = 0 \)). We have, in the region \(U_\epsilon \) (with the hypothesis that \(2 - \frac{1}{\epsilon} - a - b \notin -\mathbb{N} \)),

\[
H^{+}_\epsilon = \kappa^+(\epsilon)w_2(x) = \kappa^+(\epsilon) \left(\frac{w_3(x)}{D(x)}w_3(x)+E(\epsilon)w_3(x) \right)
\]

(47)

and

\[
H^{+}_i = e^{2\pi i(a+b-\frac{1}{2})}(H^{+}_\epsilon) - \mu^+(\epsilon)
\]

with

\[
\mu^+(\epsilon) = -D(\epsilon) e^{1-a-b} \left(\frac{1}{\epsilon} - \frac{2\pi i(a+b-\frac{1}{2})}{e^{2\pi i(a+b-\frac{1}{2})}} \right)
\]

(49)

Since \(\sin(z) = \frac{e^{iz} - e^{-iz}}{2i} \) and \(\Gamma(z) \sin(\pi z) = \frac{\pi}{\Gamma(1-z)} \), we can simplify the latter expression:

\[
\mu^+(\epsilon) = -2iD(\epsilon) e^{1-a-b} \sin(\pi(1-a-b-\frac{1}{\epsilon}))
\]

(50)

Remark that this expression is defined even if \(2 - \frac{1}{\epsilon} - a - b \in -\mathbb{N} \).

In the particular case \(a + b \in \mathbb{Z} \),

\[
\mu^+(\epsilon) = \frac{-2\pi i}{\Gamma(1-a)\Gamma(1-b)} e^{1-a-b} r(a+b)
\]

(51)

with

\[
r(\gamma) = \gamma^{1\frac{1}{1\frac{1}{2}}} = \begin{cases} \prod_{j=1}^{\infty} \frac{1}{\gamma+j} & \gamma > 1 \ , \\ \prod_{j=1}^{\infty} \left(\frac{1}{\gamma+j} \right) & \gamma < 1 \ , \\ 1 & \gamma = 1 \ . \end{cases}
\]

(52)

Finally,

\[
\lim_{\epsilon \to 0} e^{1-a-b} \frac{\Gamma(\frac{1}{2} + 1)}{\Gamma(\frac{1}{2} + a + b)} = 1.
\]

(53)

Hence

\[
\lim_{\epsilon \to 0} \mu^+(\epsilon) = \frac{-2\pi}{\Gamma(1-a)\Gamma(1-b)} = \mu.
\]

(54)

Let \(\epsilon_n \) such that \(2 - \frac{1}{\epsilon_n} - a - b = -n, n \in \mathbb{N} \). Recall that we have supposed \(\epsilon \neq \epsilon_n \) to obtain \(\mu^+(\epsilon) \). Since \(\mu^+(\epsilon) \) is analytic in a punctured disk \(B(\epsilon_n, \rho) \setminus \{\epsilon_n\} \) (for some well chosen \(\rho \in \mathbb{R}_+ \)), and \(\lim_{\epsilon \to \epsilon_n} \mu^+(\epsilon) \) exists, then \(\mu^+(\epsilon) \) is analytic in \(B(\epsilon_n, \rho) \). Hence, the result obtained is valid without the restriction \(2 - \frac{1}{\epsilon} - a - b \notin -\mathbb{N} \).
A similar calculation gives
\[
\frac{1}{H^+(0, \pi)} = e^{-\frac{2\pi i}{\lambda^+(\epsilon)}} \left(\frac{1}{H^+(0, -\pi)} + \lambda^+(\epsilon) \right)
\]
or, equivalently,
\[
H^+(0, \pi) = \frac{\lambda^+(\epsilon) H^+(0, -\pi) + 1}{\lambda^+(\epsilon)}
\]
with \(\lambda^+(\epsilon) = B(\epsilon) e^{-\pi i (a+b-1+\frac{1}{r})} e^{\epsilon a+b-1} \left(1 - \frac{2\pi i}{\epsilon} \right).
\]
And then
\[
\lambda^+(\epsilon) = -2\pi i e^{\pi i (1-a-b)} \frac{1}{\Gamma(a)\Gamma(b)} e^{\epsilon a+b-1} \frac{\Gamma(a + b + \frac{1}{r})}{\Gamma(1 + \frac{1}{r})},
\]
which, for \(a + b \in \mathbb{Z}\), yields
\[
\lim_{\epsilon \to 0} \lambda^+(\epsilon) \in S^+
\]
Finally, lemma 6 relates the case \(\epsilon' \in S^+\) to the case \(\epsilon \in S^-,\) and we have
\[
H^-(x) = \left(\frac{e^{-x}}{1 - e^{-x}} \right)^{a+b-1} H^+(x')
\]

Remark 18. If \(\mu^+(\epsilon) \neq 0\), we can take \(\mu^+(\epsilon) w_3(x)\) instead of \(w_3(x)\) in the expression for \(H^+(x)\). Then, \(\mu^+(\epsilon)\) is replaced by 1 in equation (35) and \(\lambda^+(\epsilon)\) is replaced by \(\lambda^+(\epsilon) \mu^+(\epsilon)\) in equation (36). Similarly if \(\lambda^+(\epsilon) \neq 0\). So we can regard our invariants as 1 and \(\lambda^+(\epsilon) \mu^+(\epsilon)\), instead of \(\lambda^+(\epsilon)\) and \(\mu^+(\epsilon)\) in the case where one of them is different from 0. When asking which invariants are realisable, it is sufficient to look at the product \(\lambda^+(\epsilon) \mu^+(\epsilon)\). We have
\[
\lambda^+(\epsilon) \mu^+(\epsilon) = \frac{-4\pi^2 e^{\pi i (1-a-b)}}{\Gamma(1-a)\Gamma(1-b)\Gamma(a)\Gamma(b)}
\]
\[
= -4\pi^2 e^{\pi i (1-a-b)} \sin(\pi a) \sin(\pi b)
\]
\[
= (1 - e^{-2\pi i a})(1 - e^{-2\pi i b}),
\]
If \(\mu^+(\epsilon) \neq 0\) (resp. \(\lambda^+(\epsilon) \neq 0\)), the last product is zero precisely when \(a \in \mathbb{N}\) or \(b \in \mathbb{N}\) (resp. \(1 - a \in \mathbb{N}\) or \(1 - b \in \mathbb{N}\), i.e. when \(g(x)\) (resp. \(k(x)\)) is a convergent solution.

Remark 19. When \(a + b = 1\), we have \(\mu^+(\epsilon) = \lambda^+(\epsilon)\) and \(\mu^-(\epsilon) = \lambda^-(\epsilon)\) (and \(\mu = \lambda\)). We will see in Remark 26 of Section 4 that this is the particular case when the formal invariants of the two saddle-nodes of the Riccati equation (84) vanish.
3.4. Divergence and nondiagonal form of the monodromy operator in the basis B^+. It is clear that $w_2(x)$ is an eigenvector of the monodromy operator M_0 with eigenvalue $e^{\frac{2\pi i}{N}}$, and that $w_3(x)$ is an eigenvector of M_r with eigenvalue 1. In general, eigenvectors of the monodromy operators M_0 and M_r should not coincide. In the generic case, the analytic continuation of an eigenvector of the monodromy operator M_0 is not an eigenvector of M_r. If we are in the generic case and this persists to the limit $\epsilon = 0$, then at the limit we have a nonzero Stokes multiplier. The results stated in Theorem 17 tell us whether or not the analytic continuation of $w_3(x)$ (resp. $w_2(x)$) is an eigenvector of M_0 (resp. M_r). Furthermore, it includes the presence of logarithmic terms: we will detail this last part in Theorem 21 below. Recall that the wild part is present even in the case of convergence of the confluent series in $g(x)$ and in $k(x)$ and is purely linear. So Theorem 17 gives:

Corollary 20. Let $w_{1,(\delta,\hat{\beta})}(x)$ be obtained from analytic continuation of $w_1(x)$ as in notation 16.

- If $\epsilon \in S^+$, then

$$
\begin{pmatrix}
\kappa^+(\epsilon) \dot{w}_{2,(0,\pi)} \\
\dot{w}_{3,(0,\pi)}
\end{pmatrix}
=
\begin{pmatrix}
e^{\frac{2\pi i}{N}} \\
0
\end{pmatrix}
\begin{pmatrix} 0 \\
\lambda^+(\epsilon)
\end{pmatrix}
\begin{pmatrix}
\kappa^+(\epsilon) \dot{w}_{2,(0,-\pi)} \\
\dot{w}_{3,(0,-\pi)}
\end{pmatrix}
$$

and

$$
\begin{pmatrix}
\kappa^+(\epsilon) \dot{w}_{2,(\epsilon,\pi)} \\
\dot{w}_{3,(\epsilon,\pi)}
\end{pmatrix}
=
\begin{pmatrix} e^{2\pi i(1-a-b-\frac{1}{2})} \\
0
\end{pmatrix}
\begin{pmatrix} \mu^+(\epsilon) \\
1
\end{pmatrix}
\begin{pmatrix}
\kappa^+(\epsilon) \dot{w}_{2,(\epsilon,-\pi)} \\
\dot{w}_{3,(\epsilon,-\pi)}
\end{pmatrix}
.$$

Hence, when it is nonzero, the coefficient $\lambda^+(\epsilon)$ (resp. $\mu^+(\epsilon)$) represents the obstruction that prevents $w_3(x)$ (resp. $w_2(x)$) of being an eigenvector of the monodromy operator around $x = 0$ (resp. $x = \epsilon$).

- If $\epsilon \in S^-$, then

$$
\begin{pmatrix}
\kappa^-(\epsilon) \dot{w}_{4,(\epsilon,\pi)} \\
\dot{w}_{1,(\epsilon,\pi)}
\end{pmatrix}
=
\begin{pmatrix} e^{2\pi i(1-\frac{1}{2}-a-b)} \\
\lambda^-(\epsilon)
\end{pmatrix}
\begin{pmatrix} 0 \\
1
\end{pmatrix}
\begin{pmatrix}
\kappa^-(\epsilon) \dot{w}_{4,(\epsilon,-\pi)} \\
\dot{w}_{1,(\epsilon,-\pi)}
\end{pmatrix}
$$

and

$$
\begin{pmatrix}
\kappa^-(\epsilon) \dot{w}_{4,(0,\pi)} \\
\dot{w}_{1,(0,\pi)}
\end{pmatrix}
=
\begin{pmatrix} e^{\frac{2\pi i}{N}} \\
0
\end{pmatrix}
\begin{pmatrix} \mu^-(\epsilon) \\
1
\end{pmatrix}
\begin{pmatrix}
\kappa^-(\epsilon) \dot{w}_{4,(0,-\pi)} \\
\dot{w}_{1,(0,-\pi)}
\end{pmatrix}
.$$

Hence, when it is nonzero, the coefficient $\lambda^-(\epsilon)$ (resp. $\mu^-(\epsilon)$) represents the obstruction that prevents $w_1(x)$ (resp. $w_4(x)$) of being an eigenvector of the monodromy operator around $x = \epsilon$ (resp. $x = 0$).

Proof. Let $\epsilon \in S^+$ (the proof for $\epsilon \in S^-$ is similar). Since $w_{3,(\epsilon,-\pi)} = w_{3,(\epsilon,\pi)}$ by (8), equation (35) gives

$$
\frac{\kappa^+(\epsilon) \dot{w}_{2,(\epsilon,-\pi)}}{w_{3,(\epsilon,-\pi)}} = e^{2\pi i(a+b-1+\frac{1}{2})} \left(\frac{\kappa^+(\epsilon) \dot{w}_{2,(\epsilon,\pi)}}{w_{3,(\epsilon,\pi)}} - \mu^+(\epsilon) \right)
$$

and

$$
\kappa^+(\epsilon) \dot{w}_{2,(\epsilon,\pi)} = e^{-2\pi i(a+b-1+\frac{1}{2})} \kappa^+(\epsilon) \dot{w}_{2,(\epsilon,-\pi)} + \mu^+(\epsilon) w_{3,(\epsilon,-\pi)}.
$$

Similarly, since $w_{2,(0,\pi)} = e^{\frac{2\pi i}{N}} w_{2,(0,-\pi)}$ by (7), equation (36) implies

$$
\frac{w_{3,(0,\pi)}}{\kappa^+(\epsilon) \dot{w}_{2,(0,\pi)}} = e^{-\frac{2\pi i}{N}} \left(\frac{w_{3,(0,-\pi)}}{\kappa^+(\epsilon) \dot{w}_{2,(0,-\pi)}} + \lambda^+(\epsilon) \right)
$$
and
\[(68) \quad w_3,(0,\pi) = w_3,(0,-\pi) + \lambda^+(\epsilon)\kappa^+(\epsilon)w_2,(0,-\pi) .\]

Theorem 21.

(1) If the series \(g(x)\) is divergent, then, for all \(\epsilon \in S^+\) (resp. for all \(\epsilon \in S^-\)), \(w_3(x)\) (resp. \(w_1(x)\)) is not an eigenvector of the monodromy operator \(M_0\) (resp. \(M_\epsilon\)). In particular, this forces the existence of logarithmic terms at \(x = 0\) (resp. \(x = \epsilon\)) for all special values of \(\epsilon\) for which they may exist.

(2) Conversely, for fixed \(a\) and \(b\), if \(w_3(x)\) (resp. \(w_1(x)\)) is not an eigenvector of the monodromy operator \(M_0\) (resp. \(M_\epsilon\)) for some \(\epsilon \in S^+\) (resp. for some \(\epsilon \in S^-\)), then the series \(g(x)\) is divergent.

(3) If the series \(h(x)\) is divergent, then, for all \(\epsilon \in S^+\) (resp. for all \(\epsilon \in S^-\)), \(w_2(x)\) (resp. \(w_4(x)\)) is not an eigenvector of the monodromy operator \(M_\epsilon\) (resp. \(M_0\)). In particular, this forces the existence of logarithmic terms at \(x = \epsilon\) (resp. \(x = 0\)) for all special values of \(\epsilon\) for which they may exist.

(4) Conversely, for fixed \(a\) and \(b\), if \(w_2(x)\) (resp. \(w_4(x)\)) is not an eigenvector of the monodromy operator \(M_\epsilon\) (resp. \(M_0\)) for some \(\epsilon \in S^+\) (resp. for some \(\epsilon \in S^-\)), then the series \(h(x)\) is divergent.

Proof. Let \(\epsilon \in S^+\) (the proof for \(\epsilon \in S^-\) is similar). With Theorem 8, we have that \(g(x)\) is divergent if and only if \(\lambda \neq 0\). Since \(\lim_{\epsilon \to 0} \lambda^+(\epsilon) = \lambda\), we have \(\lambda^+(\epsilon) \neq 0\) for \(\epsilon \in S^+\) provided the radius of \(S^+\) is sufficiently small. If \(w_3(x)\) were an eigenvector of the monodromy operator \(M_0\), then we would have \(\lambda^+(\epsilon) = 0\) which is a contradiction. If \(\lambda^+(\epsilon) \neq 0\), then the analytic continuation of \(w_3(x)\) is ramified around \(x = 0\). When \(1 - \frac{1}{\epsilon} \in -\mathbb{N}\), we have only two cases: \(w_3(x)\) is a polynomial or \(w_3(x)\) has logarithmic terms. The former case is forbidden since \(w_3(x)\) is ramified at \(x = 0\), so we are forced to have the latter. The argument is similar for \(w_2(x)\).

To prove the converse, we use the expressions (37) and (38): for \(\epsilon \in S^+\) and \(a\) and \(b\) fixed, we have \(\lambda^+(\epsilon) \neq 0\) if and only if \(\lambda \neq 0\) as well as \(\mu^+(\epsilon) \neq 0\) if and only if \(\mu \neq 0\).

Hence, the singular direction \(\mathbb{R}^-\) (resp. \(\mathbb{R}^+\)) of the \(1\)-summable series \(g(x)\) (resp. \(h(x)\)) is directly related to the presence of logarithmic terms at the left (resp. right) singular point for specific values of the confluence parameter.

Remark 22. The necessary condition in Theorem 21 is still valid when \(a\) and \(b\) are analytic functions \(a(\epsilon)\) and \(b(\epsilon)\). A counter example to the converse, for instance with \(a(\epsilon)\) and \(b(\epsilon)\) non constant, is given by
\[(69) \quad \begin{cases} a(\epsilon) = n + \epsilon, & n \in -\mathbb{N} \\ b(\epsilon) = m + \epsilon, & m \in \mathbb{N}^* . \end{cases}\]

4. A related Riccati system

4.1. First integrals of a Riccati system related to the hypergeometric equation (4). We studied the monodromy of \(H^{i,j}(x) = \frac{e^\pm(\epsilon)w_i(x)}{w_j(x)}\) (with \((i,j) = (2,3), \epsilon \in S^+\) \((4,1), \epsilon \in S^-\)) instead of the monodromy of each solution \(w_k(x)\), for \(k = i, j\).
To justify this choice, we transform the hypergeometric equation into a Riccati system, the idea of the transformation coming from [11].

Proposition 23. The Riccati equation

\[
\frac{dY}{dX} = \frac{KX}{1 - X} - \frac{(LX + \Lambda)Y}{X(1 - X)} + \frac{Y^2}{X(1 - X)}
\]

or, equivalently, the Riccati system

\[
\begin{cases}
\dot{X} = X(1 - X) \\
\dot{Y} = KX^2 -(LX+\Lambda)Y+Y^2
\end{cases}
\]

is related to the hypergeometric equation (1) with singular points at \(\{0, 1, \infty\} \) with the following change of variables:

\[
(Y, K, L, \Lambda) \mapsto \left(X(X - 1) \frac{\nu'(X)}{\nu(X)} + X \frac{ab}{c}, \frac{ab(c - a)(c - b)}{c^2}, 1 - a - b + 2 \frac{ab}{c}, c - 1 \right).
\]

Proof. Let

\[
Y(X) = -\frac{X(1 - X)z'(X)}{z(X)}.
\]

Remplacing the latter expression in (70) and simplifying, we have

\[
X(1 - X)^2 z''(X) + (\Lambda + 1 + (L - 2)X)(1 - X)z'(X) + KXz(X) = 0.
\]

Besides, if we let \(v(X) = z(X)(1 - X)^{-\alpha} \) in the hypergeometric equation (1) and multiply each side of the equation by \((1 - X)^{\alpha + 1} \), we have

\[
X(1 - X)^2 z''(X) + (c - (a + b + 1 - 2\alpha)X)(1 - X)z'(X)
+ (-ab + \alpha c + X(\alpha^2 - \alpha(a + b) + ab))z(X) = 0.
\]

The two equations (75) and (74) are identical if we take

\[
\alpha = \frac{ab}{c}
\]

and

\[
\begin{cases}
K = \alpha^2 - \alpha(a + b) + ab = \frac{ab(ab - z(a+b) + c^2)}{c^2} = \frac{ab(c - a)(c - b)}{c^2}, \\
L = 1 - a - b + 2 \frac{ab}{c}, \\
\Lambda = c - 1.
\end{cases}
\]

Finally, if we substitute \(z(X) = (1 - X)^{\alpha}v(X) \) in (73) and simplify, we obtain

\[
Y = X \left(\frac{ab}{c} + (X - 1) \frac{\nu'(X)}{\nu(X)} \right).
\]

The space of all nonzero solutions \((C_1w_1(x) + C_2w_2(x))\) is the manifold \(\mathbb{CP}^1 \times \mathbb{C}^* \). The next proposition derives a first integral of the Riccati system which takes values in \(\mathbb{CP}^1 \). Up to a constant (in \(\mathbb{C}^* \)), this first integral is related to a general solution of the hypergeometric equation.
Proposition 24. Let \(v_j(X) \) et \(v_i(X) \) be two linearly independent solutions of the hypergeometric equation (1) and consider the related Riccati equation (70). In their shared region of validity, with \(\alpha = \frac{ab}{c} \), we have the following first integral of the Riccati system (71):

\[
I_{(i,j)} = \frac{(Y - \alpha X)v_i(X) + X(1 - X)v'_i(X)}{(Y - \alpha X)v_j(X) + X(1 - X)v'_j(X)}
\]

or, equivalently,

\[
I_{(i,j)} = \frac{v_i(X)(Y - \alpha X) + X(1 - X)v'_i(X)}{v_j(X)(Y - \alpha X) + X(1 - X)v'_j(X)}.
\]

Proof. The hypergeometric equation is a linear differential equation, so its general solution can be written as \(v(X) = C_1 v_i(X) + C_2 v_j(X) \). Without loss of generality, suppose \(C_1 \neq 0 \). The differential equation (74) is also linear, so its basis of solutions consists of \(z_i(X) = (1 - X)^\alpha v_i(X) \) and \(z_j(X) = (1 - X)^\alpha v_j(X) \). With (73), we obtain a general solution of the Riccati equation (70):

\[
Y(X) = \frac{-X (1 - X)(C_1 z'_i(X) + C_2 z'_j(X))}{C_1 z_i(X) + C_2 z_j(X)}.
\]

With \(C = \frac{C_2}{C_1} \in \mathbb{C} \), we isolate \(C \) from the last equation. Since \(-C\) is a constant, we have the first integral of the Riccati system:

\[
I_{(i,j)} = \frac{Y z_i(X) + X (1 - X) z'_i(X)}{Y z_j(X) + X (1 - X) z'_j(X)}.
\]

Since \(z'(X) = -\alpha (1 - X)^{\alpha - 1} v(X) + (1 - X)^\alpha v'(x) \), we simplify and obtain (79). \(\square \)

With the following change of variables

\[
(X, Y, \epsilon) \mapsto \left(\frac{x}{\epsilon}, -\frac{y}{\epsilon}, 1 - \frac{1}{\epsilon} \right)
\]

in the Riccati system (71) and in the first integral (79), we obtain

- a Riccati system related to the hypergeometric equation (4) (i.e. with singular points \(\{0, \epsilon, \infty\} \))

\[
\begin{cases}
\dot{x} = x(x - \epsilon) \\
\dot{y} = K(\epsilon)x^2 + (L(\epsilon)x - 1)y + y^2
\end{cases}
\]

with \(K(\epsilon) \) and \(L(\epsilon) \) as in (77) and \(\epsilon = 1 - \frac{1}{\epsilon} \);

- and a first integral of this system

\[
I'_{(i,j)} = \frac{w_i(x)}{w_j(x)} \left(\frac{y - \rho_i(x, \epsilon)}{y - \rho_j(x, \epsilon)} \right)
\]

with the notation

\[
\rho_i(x, \epsilon) = x(\epsilon - x)\frac{w'_i(x)}{w_i(x)} - ax.
\]
In order that the limit exists when \(\epsilon \in S^+ \) goes to zero, we consider the first integral

\[
I^{\pm} = \begin{cases}
\kappa^+(\epsilon)I_{(2,3)}^{(1,1)} & \text{if } \epsilon \in S^+ \\
\kappa^-(\epsilon)I_{(1,4)}^{(1,1)} & \text{if } \epsilon \in S^-
\end{cases}
\]

where \(\kappa^\pm(\epsilon) \) are defined in (28). Now let us see why we can work with a simpler expression than this one to study its ramification.

Proposition 25. The quotient \(H_{\epsilon}^{\pm} = \kappa^+(\epsilon) \frac{w_1(x)}{w_2(x)} \) has the same ramification around \(x = 0 \) and \(x = \epsilon \) as

\[
I^{\pm} = \kappa^+(\epsilon) \frac{w_1(x)}{w_2(x)} \left(\frac{y - \rho_1(x, \epsilon)}{y - \rho_2(x, \epsilon)} \right),
\]

namely we can replace \(H_{\epsilon}^{\pm} \) by \(I^{\pm} \) in the formulas (35), (36), (39) and (40).

Proof. Let us prove that \(H_{\epsilon}^{\pm} = \kappa^+(\epsilon) \frac{w_1(x)}{w_2(x)} \) has the same ramification as \(I^{\pm} \) in the case \(\epsilon \in S^+ \). We have, with relation (64),

\[
\frac{w_2'(x, -\epsilon, x)}{w_2(x, -\epsilon, x)} = \frac{\kappa^+(\epsilon)w_2'(x, \epsilon, x)}{\kappa^+(\epsilon)w_2(x, \epsilon, x)} = \frac{e_{2\pi i(a+b+\frac{1}{2})}(\kappa^+(\epsilon)w_2'(x, \epsilon, x) - \mu^+(\epsilon)w_3'(x, \epsilon, x))}{\kappa^+(\epsilon)w_2(x, \epsilon, x)} = \frac{1}{H_{(\epsilon, \pi), \mu}^{\pm}(\epsilon)w_2'(x, \epsilon, x)H_{(\epsilon, \pi), \mu}^{\pm}(\epsilon)w_3'(x, \epsilon, x)} = \frac{1}{\mu^+(\epsilon)w_2'(x, \epsilon, x)H_{(\epsilon, \pi), \mu}^{\pm}(\epsilon)w_3'(x, \epsilon, x)}.
\]

Using (86), (35) and (89), we have

\[
I_{(\epsilon, -\pi)}^{\pm} = H_{(\epsilon, -\pi), \mu}^{\pm}(\epsilon) \left(\frac{y - \rho_2(x, -\epsilon, x)}{y - \rho_3(x, -\epsilon, x)} \right)
\]

\[
= e^{2\pi i(a+b+\frac{1}{2})}(H_{(\epsilon, \pi), \mu}^{\pm}(\epsilon) - \mu^+(\epsilon)) \left(\frac{y + a\pi - x(\epsilon - x)}{y + a\pi - x(\epsilon - x)} \right) \frac{w_2'(x, -\epsilon, x)}{w_3'(x, -\epsilon, x)} \frac{w_2'(x, \epsilon, x)}{w_3'(x, \epsilon, x)}
\]

\[
= e^{2\pi i(a+b+\frac{1}{2})} \left(H_{(\epsilon, \pi), \mu}^{\pm}(\epsilon) - \mu^+(\epsilon) \right) \left(\frac{y + a\pi - x(\epsilon - x)}{y + a\pi - x(\epsilon - x)} \right) \frac{w_2'(x, -\epsilon, x)}{w_3'(x, -\epsilon, x)} \frac{w_2'(x, \epsilon, x)}{w_3'(x, \epsilon, x)}
\]

\[
= e^{2\pi i(a+b+\frac{1}{2})} \left(I_{(\epsilon, \pi), \mu}^{\pm}(\epsilon) - \mu^+(\epsilon) \right).
\]

The proofs for \(I_{(0, \pm\pi)}^{\pm}, I_{(0, \pm\pi)}^{-} \) and \(I_{(\pm\pi, \pm\pi)}^{-} \) are similar to this one. \(\square \)

4.2. Divergence and unfolding of the saddle-nodes.

Let us consider the Riccati system (84) with \(\epsilon = 0 \). It has two saddle-nodes located at \((0, 0) \) and \((0, 1) \) (see Figure 8). In the unfolding with \(K(\epsilon) \) and \(L(\epsilon) \), this yields the Riccati system (84) with the four singular points \((0, 0) \), \((\epsilon, y_0) \), \((0, 1) \) and \((\epsilon, y_1) \) as illustrated in Figures 9 and 10, with \(y_1 = 1 + \epsilon(a + b - 1) + \frac{\epsilon^2}{4\pi^2} \) and \(y_0 = \frac{\epsilon a}{4\pi^2} \).

The quotient of the eigenvalue in \(y \) by the eigenvalue in \(x \), for each singular point, is given in Table 1.
Confluence of the hypergeometric equation

\[y = 1 \]
\[y = 0 \]
\[x = 0 \]

Figure 8. Phase plane \(\epsilon = 0 \)

<table>
<thead>
<tr>
<th>Singular point</th>
<th>Quotient of eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 0))</td>
<td>(\frac{1}{\epsilon} - a - b)</td>
</tr>
<tr>
<td>((\epsilon, y_0))</td>
<td>(\frac{1}{\epsilon} + a + b)</td>
</tr>
<tr>
<td>((0, 1))</td>
<td>(\frac{1}{\epsilon} - a - b)</td>
</tr>
<tr>
<td>((\epsilon, y_1))</td>
<td>(\frac{1}{\epsilon} + a + b)</td>
</tr>
</tbody>
</table>

Table 1. Quotient of the eigenvalue in \(y \) by the eigenvalue in \(x \) for each singular point

\[y = 1 \]
\[y = y_1 \]
\[y = 0 \]
\[y = y_0 \]
\[x = 0 \]
\[x = \epsilon \]

Figure 9. Phase plane if \(\epsilon \) and \(\frac{1}{\epsilon} + a + b \in \mathbb{R} \), \(\epsilon > 0 \)

\[y = y_1 \]
\[y = y_0 \]
\[x = \epsilon \]
\[x = 0 \]

Figure 10. Phase plane if \(\epsilon \) and \(\frac{1}{\epsilon} + a + b \in \mathbb{R} \), \(\epsilon < 0 \)
Remark 26. By summing the quotient of the eigenvalues at the corresponding saddle and node, we get the formal invariant of the saddle-node at \((0,0)\) (resp. at \((0,1)\)), which is \(1 - a - b\) (resp. \(a + b - 1\)).

The curves \(y - \rho_k(x, \epsilon) = 0\) for \(k = i, j\) appearing in the first integral (85) are solution curves (trajectories) of the Riccati system, more precisely analytic invariant manifolds of two of the singular points when \(\epsilon \in S^\pm\). For example, for \(\epsilon \in S^+\), \(y = \rho_2(x, \epsilon)\) is the invariant manifold of the singular point \((0,1)\) and \(y = \rho_3(x, \epsilon)\) is the invariant manifold of \((\epsilon, y_0)\) (see Figure 11).

![Figure 11. Invariant manifolds \(y = \rho_2(x, \epsilon)\) and \(y = \rho_3(x, \epsilon)\), case \(\epsilon \in \mathbb{R}^+\)](image)

Indeed,

\[
\rho_2(x, \epsilon) = x(\epsilon - x) \frac{w'_2(x)}{w_2(x)} - ax
\]

\[
= 1 - \frac{\epsilon}{\epsilon} + \{\epsilon(a + b - 1) + 1\} \frac{\epsilon}{\epsilon} - ax + x(1 - \frac{\epsilon}{\epsilon}) \left(\frac{1-a+b}{1+b} \frac{1}{2F_1(1-a,1-b,1+\frac{1}{2};\frac{1}{2})}\right)
\]

and \(\rho_2(0, \epsilon) = 1\). Similarly,

\[
\rho_3(x, \epsilon) = x(\epsilon - x) \frac{w'_3(x)}{w_3(x)} - ax
\]

\[
= x(\epsilon - x) \frac{a^b \left(2F_1(1+a,b+\frac{1}{2},1-\frac{1}{2})\right)}{2^a F_1(1+a,1+b,1+\frac{1}{2};\frac{1}{2})} - ax
\]

and \(\rho_3(\epsilon, \epsilon) = y_0\).

The divergence of \(g(x)\) correspond to a nonanalytic center manifold at \((0,0)\) for \(\epsilon = 0\). When we unfold on \(S^+\) (resp. \(S^-\)), the invariant manifold of \((\epsilon, y_0)\) (resp. \((0,0)\)) is necessarily ramified at \((0,0)\) (resp. \((\epsilon, y_0)\)) for small \(\epsilon\) (see Figure 12). In the particular case when \(1 - \frac{1}{\epsilon} \in -\mathbb{N}\) (resp. \(a + b + \frac{1}{2}\) with \(\epsilon\) small, then \((0,0)\) (resp. \((\epsilon, y_0)\)) is a resonant node. Then necessarily in this case it is non linearisable (the resonant monomial is nonzero) which in practice yields logarithmic terms in the first integral.

Besides, if \(g(x)\) is convergent, the invariant manifold \(y = \rho_3(x)\) (after unfolding in \(S^+\), keeping \(a\) and \(b\) fixed) is not ramified at \((0,0)\) (recall that if \(a \in -\mathbb{N}\) or \(b \in -\mathbb{N}\), i.e. if \(g(x)\) is convergent, then \(w_3(x)\) is a polynomial). This correspond to Figure 13, an exceptional case.

The divergence of \(k(x)\) has a similar interpretation with the pair of singular points coming from the unfolding of the saddle-node at \((0,1)\). If \(k(x)\) is divergent then, when we unfold in \(S^+\) (resp. \(S^-\)) the invariant manifold of \((0,1)\) (resp. \((\epsilon, y_1)\)) is necessarily ramified at \((\epsilon, y_1)\) (resp. \((0,1)\)). As before, this implies that \((\epsilon, y_1)\) (resp. \((0,1)\)) is non linearisable as soon as it is a resonant node.
The general description of this parametric resurgence phenomenon is described in [6]. We are now ready to continue the proof of Proposition 14.

End of the proof of Proposition 14. Let U be the domain

$$\tag{93} U = \{\text{domain of } H^0(x) \setminus \{0\} \},$$

as in Figure 2. To prove that we have uniform convergence of H^{\pm} on any compact subset of U, we use the fact that we can relate the solutions of the hypergeometric equation (4) to solutions of the Riccati system (84) with an invertible transformation obtained by composing (72) and (83). For the system (84), we can look for a center manifold and its unfolding as the invariant weak manifold of one of the singular points, as in [6]. For $\epsilon \in S^+$, this is the case with $y = \rho_2(x, \epsilon)$ (the invariant manifold of the singular point $(0, 1)$) and $y = \rho_3(x, \epsilon)$ (the invariant manifold of (ϵ, y_0)). In the limit, they converge respectively to the center manifold of $(0, 1)$, which is $y = \rho_2(x, 0)$, and to the center manifold of $(0, 0)$, which is $y = \rho_3(x, 0)$. The proof of the convergence uses the uniqueness of these invariant manifolds and the fact that if we restrict ourselves to a neighborhood of the origin independent of ϵ, they are squeezed below cones in the regions $|y-1| < |x|$ and $|y-y_1(\epsilon)| < |x-\epsilon|$ respectively (details in [6]). Let $\epsilon \in S^+$, let K be a compact subset of U and let us take the radius of S^+ sufficiently small so that K does not contain the point $x = \epsilon$. The family $\{\rho_3(x, \epsilon)\}_{\epsilon \in S^+}$ is bounded on K. Denoting $w_3(x)$ by $w_3(x, \epsilon)$ and using (92), this implies that the families $\left\{ \frac{w_3'(x, \epsilon)}{w_3(x, \epsilon)} \right\}_{\epsilon \in S^+}$ and $\left\{ w_3(x, \epsilon) = e^{\int_x^\epsilon \frac{w_3'(x, \epsilon)}{w_3(x, \epsilon)} \, dx} \right\}_{\epsilon \in S^+}$ are also bounded on K. The solution $w_3(x, \epsilon)$ converges pointwise on the domain of $H^0(x)$, so we have the uniform convergence on the compact subset K. \hfill \Box

5. Directions for further research

The hypergeometric equation corresponds to a particular Riccati system. The study of this system allowed us to describe how divergence in the limit organizes...
the system in the unfolding. Similar phenomena are expected to occur in the more general cases where solutions at the confluence are 1-summable or even k-summable.

References

[7] Schäfke, Reinhard, Über das globale analytische Verhalten der Lösungen der über die Laplace-transformation zusammenhängenden Differentialgleichungen tx′ = (A+tB)x und (s−B)x′ = (ρ−A)x, Dissertation, Essen, 1979.

Département de mathématiques et de statistique, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal (Québécois), H3C 3J7, Canada
E-mail address: lambert@dms.umontreal.ca, rousseac@dms.umontreal.ca