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Abstract

We consider biorthogonal polynomials that arise in the study of a generalization of two-matrix Hermitean
models with two arbitrary polynomial potentials V1(x), V2(y) of any degree, with arbitrary complex
coefficients. A compatible sequence of fundamental systems is constructed for the system of ODEs satisfied
by consecutive subsequences (“windows”), of lengths equal to the degrees of the potentials, within the dual
sequences of biorthogonal polynomials. The (Stokes) sectorial asymptotics of the fundamental systems are
derived through saddle-point integration and the Riemann-Hilbert problem characterizing the differential
and recursion equations is deduced.





1 Introduction

In [4, 5] the differential systems satisfied by sequences of biorthogonal polynomials associated to 2-matrix models
were studied, together with the deformations induced by changes in the coefficients of the potentials determining
the orthogonality measure. For ensembles consisting of pairs of N × N hermitian matrices M1 and M2, the U(N)
invariant probability measure is taken to be of the form:

1
τN

dµ(M1,M2) :=
1
τN

exp
1
~
tr (−V1(M1)− V2(M2) +M1M2)dM1dM2 . (1-1)

where dM1dM2 is the standard Lebesgue measure for pairs of Hermitian matrices and the potentials V1 and V2

are chosen to be polynomials of degrees d1 + 1, d2 + 1 respectively. The overall positive small parameter ~ in the
exponential is taken of order N−1 when considering the large N limit, but in the present context it will just play the
role of Planck’s constant in the string equation. Using the Harish-Chandra-Itzykson-Zuber’s formula, one can reduce
the computation of the corresponding partition function to an integral over only the eigenvalues of the two matrices

τN :=
∫ ∫

dµ(M1,M2) ∝
∫ N∏

i=1

dxidyi∆(x)∆(y)e−
1
~
∑N

j=1 V1(xj)+V2(yj)−xjyj , (1-2)

and then express all spectral statistics in terms of the associated biorthogonal polynomials, in the same spirit as
orthogonal polynomials are used in the spectral statistics of one-matrix models. In this context, what is meant by
biorthogonal polynomials is a pair of sequences of monic polynomials

πn(x) = xn + · · · , σn(y) = yn + · · · , n ∈ N (1-3)

which are mutually dual with respect to the associated coupled measure∫
R

∫
R
dxdy πn(x)σm(y)e−

1
~ (V1(x)+V2(y)−xy) = hnδmn, (1-4)

on the product space.
In this work, we use essentially the same definition of orthogonality, but extend it to the case of polynomials V1

and V2 with arbitrary (possibly complex) coefficients, and the contours of integration are no longer restricted to the
real axis, but may be chosen as curves in the complex plane starting and ending at ∞, chosen so that the integrals
are convergent. The orthogonality relations determine the two families uniquely, if they exist [15, 5].

It was shown in [4, 5] that the finite consecutive subsequences of lengths d2 + 1 and d1 + 1 respectively, within
the sequences of dual quasi-polynomials:

ψn(x) =
1√
hn

πn(x)e−
1
~ V1(x) ; φn(y) =

1√
hn

σn(y)e−
1
~ V2(y) , (1-5)

beginning (or ending) at the points n = N , satisfy compatible overdetermined systems of first order differential
equations with polynomial coefficients of degrees d1 and d2, respectively, as well as recursion relations relating
consecutuve values of N . In fact, certain quadruples of Differential–Deformation–Difference equations (DDD for
short) were derived for these “windows” as well as for their Fourier Laplace transforms, in which the deformation
parameters were taken to be the coefficients of the potentials V1 and V2. It was also shown in [4, 5] that these systems
are Frobenius compatible and hence admit joint fundamental systems of solutions.

In the present work we explicitly construct such fundamental systems in terms of certain integral transforms
applied to the biorthogonal polynomials. The main purpose is to derive the Riemann–Hilbert problem characterizing
the sectorial asymptotic behaviour at x =∞ or y =∞.

The ultimate purpose of this analysis is to deduce in a rigorous way the double–scaling limits N →∞, ~N = O(1)
of the partition function and spectral statistics, for which the corresponding large N asymptotics of the biorthogonal
polynomials are required. (See [14, 25] and references therein for further background on 2-matrix models, and
[11, 16, 17, 18, 15] for other more recent developments.) The study of the large N limit of matrix integrals is of
considerable interest in physics, because many physical systems with a large number of strongly correlated degrees
of freedom (quantum chaos, mesoscopic conductors, . . .) seem to have the same statistical properties as the spectra
of random matrices. Also, the large N expansion of a random matrix integral (if it exists) is expected to be the
generating fuctional of discretized surfaces, thus random matrices provide a powerful tool for studying statistical
physics on a random surface. (The 2-matrix model was first introduced in this context, as the Ising model on a
random surface [25]).
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It has been understood for some time that the 1-matrix model is not general enough, since it cannot represent
all models of statistical physics (e.g., it contains only the (p, 2) conformal minimal models). In order to recover the
missing conformal models ((p, q) with p and q integers), it is necessary to introduce at least a two-matrix model [11].
The 1-matrix model is actually strictly included in the 2-matrix model, since if one takes d2 = 1, and integrates the
gaussian matrix M2 out, one sees that the 1-matrix model follows, and hence may be seen as a particular case.

It should also be mentioned that most of the results about the 2-matrix model (in particular those derived in
the present work) can be easily extended to multi-matrix models (see appendix of [4]) without major modifications.
Indeed the multi-matrix model is not expected to be very different from the 2-matrix case [11] (in particular, it
contains the same conformal models).

The present paper is organized as follows: in Section 2, we set up the necessary formalism for biorthogonal poly-
nomials, beginning with the systems of differential and recursion relations they satisfy, recalling the main definitions
and results of [4]. We then derive the fundamental systems of solutions to the overdetermined systems for the “win-
dows” of biorthogonal polynomials in two ways; one by exploiting the recursion matrices Q,P for the biorthogonal
polynomials, which satisfy the string equation, and another by giving explicit integral formulas for solutions and
showing their independence when taken over a suitably defined homology basis of inequivalent integration paths.

In Section 3 we use saddle-point integration methods to deduce the asymptotic form of these fundamental systems
of solutions within the various Stokes sectors. and from these, to deduce the Stokes matriuces and jump disconinuities
at∞. The full formulation of the matrix Riemann-Hilbert problem characterizing these solutions is given in Theorem
3.1.

Publication remark: This work was completed substantially in its present form in the winter of 2001-2002, and
the results were presented, in preliminary version, at the AMS regional meeting in Montreal, May 2002, as well as
at the meeting on Random Matrices at the Courant Institute, June 2002. While completing editorial corrections to
the the present version, we received the preprint [24], where results along similar lines are obtained for the case of
cubic potentials. In the interests of timely dissemination, we have chosen to post the present version in electronic
data base form, although further editorial revisions may still follow before final publication.

2 Setting

The notation and setting follows essentially [4], with some minor modifications that we will point out in due course.
In order to mantain the paper as self–contained as possible we recall the main points of [4].
Let us fix two polynomials which we will refer to as the “potentials”,

V1(x) = u0 +
d1+1∑
K=1

uK

K
xK , V2(y) = v0 +

d2+1∑
J=1

vJ

J
yJ . (2-1)

Using these potentials we define a bimoment functional i.e. a pairing between polynomials of x and y by means of
the following formula (

π, σ
)

:=
∫ ∫

dxdy e−
1
~ (V1(x)+V2(y)−xy)π(x)σ(y) . (2-2)

The contours of integration in the x and y plane have not been specified yet: in order to have convergent integrals
we must define two suitable contours of integration Γx,Γy in the x and y complex plane respectively. In fact there
are precisely d1 (homological) independent choices of for the contours Γx and d2 for the contours Γy as follows from
the specialization to polynomial potentials of [7]. The necessary and sufficient condition for the convergence of these
integrals is that the contours approach ∞ in such a way that

<(V1(x)) −→
x→∞

∞ ←−
y→∞

<(V2(y)) (2-3)

Let us define the sectors

S(y)
k :=

{
y ∈ C , arg(y) ∈

(
ϑy +

(2k − 1)π
2(d2 + 1)

, ϑy +
(2k + 1)π
2(d2 + 1)

)}
, (2-4)

ϑy := − arg(vd2+1)/(d2 + 1) , k = 0, . . . , 2d2 + 1 .

S(x)
k :=

{
x ∈ C , arg(x) ∈

(
ϑx +

(2k − 1)π
2(d1 + 1)

, ϑx +
(2k + 1)π
2(d1 + 1)

)}
, (2-5)

ϑx := − arg(ud1+1)/(d1 + 1) , k = 0, . . . , 2d1 + 1 .
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We define the contours Γ(k)
y coming from ∞ within the sector S(y)

2k−2 and returning to infinity in the sector S(y)
2k

(similar definition for the Γ(k)
x contours). Note that, since there are no singularities in the finite region of the y-plane

for the differentials we are considering, we have

d2∑
k=0

Γ(k)
y = 0 =

d1∑
k=0

Γ(k)
x , homologically . (2-6)

Therefore there are only d2 (homologically) linearly independent contours Γ(k)
y (and d1 contours Γ(k)

x ).
We define two sequences of monic polynomials πn(x), σn(y) of degree n such that they are biorthogonal w.r.t. the

pairing (
πn, σm

)
κ :=

∑
i = 1, ..., d1
j = 1, ..., d2

κij

∫
Γ

(i)
x ×Γ

(j)
y

dx ∧ dy πn(x)e−
1
~ (V1(x)+V2(y)−xy)σm(y) = hnδnm , (2-7)

πn(x) = xn + ... ;σn(y) = yn + ... , (2-8)

where the d1 × d2 matrix κij is generic in such a way that all the principal minors of the bimoment matrix are
nondegenerate. We will denote the integral operator as follows for brevity∑

i = 1, . . . , d1
j = 1, . . . , d2

κij

∫
Γ

(i)
x ×Γ

(j)
y

:=
∫

κΓ

. (2-9)

The aforementioned nondegeneracy condition that ensures the existence of the biorthogonal polynomials is given by

det
[(
xi, yj

)
κ

]
i,j=0,...,N−1

=: ∆N (κ) 6= 0 ∀N ∈ N . (2-10)

Since all ∆N (κ) are homogeneous polynomials in the κijs of degree N + 1, they are all simultaneously nonzero for
generic values of the parameters κ.
We introduce the quasipolynomials and the corresponding wave-vectors

ψn(x) =
1√
hn

πn(x)e−
1
~ V1(x) ; φn(y) =

1√
hn

σn(y)e−
1
~ V2(y) ;

Ψ∞(x) := [ψ0(x), ..., ψn(x), ...]t ; Φ∞(y) := [φ0(y), ..., φn(y), ...]t . (2-11)

In matrix notation the biorthogonality reads∫
κΓ

dx ∧ dy e
xy
~ Ψ∞(x)Φ∞t(y) = 1 (2-12)

where 1 denotes the semiinfinite unit matrix.
We denote the Fourier-Laplace transforms of one or the other semiinfinite wave-vectors along the relevant paths by

Ψ∞
(j)(y) :=

∫
Γ

(j)
x

dx e
xy
~ Ψ∞t(x) , j = 1, . . . , d1 (2-13)

Φ∞
(k)(x) :=

∫
Γ

(k)
y

dy e
xy
~ Φ∞t(y) , k = 1, . . . , d2. (2-14)

The recurrence relations for the biorthogonal polynomials are encompassed by the matrix equations

xΨ∞(x) = QΨ∞(x) ; ~∂xΨ∞(x) = −PΨ∞(x) ; (2-15)
yΦ∞(y) = P tΦ∞(y) ; ~∂yΦ∞(y) = −QtΦ∞(y) . (2-16)

where the two matrices P and Q are the finite band size matrices (see [14, 16, 4] for a simple proof of this)

Q :=


α0(0) γ(0) 0 0 · · ·
α1(1) α0(1) γ(1) 0 · · ·

...
. . . . . . . . . . . .

αd2(d2) αd2−1(d2) · · · α0(d2) γ(d2)

0
. . . . . . . . . . . .

 (2-17)
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P :=



β0(0) β1(1) · · · βd1(d1) · · ·

γ(0) β0(1) β1(2)
. . . βd1(d1+1)

0 γ(1) β0(2)
. . . . . .

0 0 γ(2) β0(3)
. . .

...
. . . . . . . . . . . .


(2-18)

satisfying the string equation
[P,Q] = ~1 . (2-19)

For the dual sequences of Fourier–Laplace transforms, a simple integration by parts of Eqs. 2-15, 2-16 gives

xΦ∞
(j)(x) = Φ∞

(j)(x)Q ; ~∂xΦ∞
(j)(x) = Φ∞

(j)(x)P ; j = 1, . . . , d2 (2-20)
yΨ∞

(k)(y) = Ψ∞
(k)(y)P t ; ~∂yΨ∞

(k)(y) = Ψ∞
(k)(y)Qt ; k = 1, . . . , d1 . (2-21)

Notice that integration by parts is allowed due to the exponential decay of the integrand along the chosen contours.
We recall the definition of dual windows

Definition 2.1 We call a window of size d1 + 1 or d2 + 1 any subset of d1 + 1 or d2 + 1 consecutive elements of
type ψn, φ

n
, φn or ψ

n
, with the notations

ΨN := [ψN−d2 , . . . , ψN ]t , N ≥ d2, ΦN := [φN−d1 , . . . , φN ]t , N ≥ d1 (2-22)
ΨN := [ψN−1, . . . , ψN+d1−1]t , N ≥ 0, ΦN := [φN−1, . . . , φN+d2−1]t , N ≥ 1 (2-23)

ΨN
(j) := [ψ(j)

N−d2
, . . . , ψ(j)

N
] N ≥ d2, ΦN

(k) := [φ(k)

N−d1
, . . . , φ(k)

N
] , N ≥ d1 (2-24)

ΨN (j) := [ψ(j)

N−1
, . . . , ψ(j)

N+d1−1
] , N ≥ 1, ΦN (k) := [φ(k)

N−1
, . . . , φ(k)

N+d2−1
] , N ≥ 1 . (2-25)

Notice the difference in the positioning of the windows for the vectors constructed from the ψn’s and the φn’s (and
the different notation we are using as opposed to the one in [4], where ΦN now would be rather ΦN+1) and the fact
that the barred quantities are defined to be row vectors while the unbarred ones are column vectors.

Definition 2.2 The two pairs of windows (ΨN , ΦN ) and (ΦN , ΨN ) of dimensions d2 + 1 and d1 + 1 respectively,
will be called dual windows and are defined for N ≥ d2 and N ≥ d1 respectively.

We also recall that by using the finite-band recurrence relations in Eqs. 2-15,2-16 , and Eqs. 2-20, 2-21 one can
define the notions of folding on the finite windows above [4]. This way one can express four polynomial ODEs for
the two pairs of dual windows which are obtained as the folding of the differential recurrence relation

~∂xΨN (x) = −DN
1 (x)ΨN (x) ; ~∂xΦN(k)(x) = ΦN(k)(x)DN

1 (x) , k = 1, . . . , d2, N > d2; (2-26)
~∂yΦN (y) = −DN

2 (y)ΦN (y) ; ~∂yΨN(j)(y) = ΨN(j)(y)DN
2 (y) , j = 1, . . . , d1, N > d1. (2-27)

We point out that the windows ΦN(k) and ΨN(j) for different k, j satisfy all the same ODEs (2-26, 2-27) because they
all satisfy the same x and ∂x recurrence relations (Eqs. 2-20, 2-21).

In [4] it was shown that there exists a natural nondegenerate pairing between any pair of solutions ΨN (x) and
ΦN (x) to Eqs. 2-26 (similarly for Eqs. 2-27);(

ΦN ,ΨN

)
N

:= ΦN (x)
N

A ΨN (x) , (2-28)

which is a constant in x. In other words the matrices DN
1 and DN

1 are conjugate to each other by means of the

matrix
N

A (Theorem 4.1 in [4])

N

ADN
1 (x) = DN

1 (x)
N

A ,
N

A :=


0 0 0 0 −γ(N−1)

αd2(N) · · · α2(N) α1(N) 0
0 αd2(N+1) · · · α2(N+1) 0
0 0 αd2(N+2) · · · 0
0 0 0 αd2(N+d2−1) 0

 . (2-29)

The (d2 + 1)× (d2 + 1) matrix
N

A is the only nonzero block in the commutator
[
ΠN−1

0 , Q
]
, where ΠN−1

0 denotes the
semiinfinite sparse matrix equal to the identity in the principal minor of dimension N (a “canonical” projector). In

the following it is convenient to use the same notation
N

A both for the finite matrix or the semiinfinite one.
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It was proven also in [4] (Thm. 4.1) that one can choose the windows ΨN and ΦN as joint solution also of the
PDEs arising from the infinitesimal change of the coefficients of the two potentials (deformation equations): this way
the pairing becomes independent of all deformation parameters and of N .

2.1 Fundamental solutions of the D1 and D1 systems

In this section we will explicitly construct solutions of the pair of dual ODEs defined by the matrices D1 and D1:
we leave to the reader the very simple formulation of the following statements for the other pair.

It is clear that if we have d2 + 1 linearly independent solutions of the recurrence relations (2-15, 2-20) we obtain
a fundamental system for each of the ODEs in Eqs. (2-26) by taking suitable windows; it will be shown in a moment
that this is not possible, inasmuch as the relations (2-20) have precisely only d2 solutions while relations (2-15) have
only one. However we can find the “missing” solutions by a small “perturbation” of the initial conditions in the
recurrence relations7; the corresponding solutions will satisfy the same recursions relations for n big enough, thus
providing us with the desired solutions of each of the systems (2-26).

Proposition 2.1 The semiinfinite systems {
xΨ∞(x) = QΨ∞(x)

~∂xΨ∞(x) = −PΨ∞(x) (2-30)

{
xΦ∞(x) = Φ∞(x)Q

~∂xΦ∞(x) = Φ∞(x)P (2-31)

have 1 and d2 solutions respectively (similar statement for Φ∞, Ψ∞, Eqs. 2-16 and 2-21).

Proof. The compatibility is guaranteed by the string equation [P,Q] = ~. Recalling that(
P − V ′1(Q)

)
≥0

=
(
Q− V ′2(P )

)
≤0

= 0 (2-32)

we have

0 = [(P − V ′1(Q))Ψ∞]0 = −~ψ′0(x)− V ′1(x)ψ0(x) (2-33)
0 = [Φ∞ (Q− V ′2(P ))]0 = xφ

0
(x)− V ′2(~∂x)φ

0
(x) . (2-34)

Thus we have only one solution of the first equation and d2 solutions for the second. Using the x recursion relation
for the ψ sequence we can build all the rest of the sequence starting from the (unique) ground state ψ0(x). Using
the ∂x recursion relation we can build the rest of the φ

n
sequence starting from φ

0
. Q.E.D.

Up to multiplicative constants the ψ solution is exactly the solution given by the quasipolynomials, while the
different φ solutions are precisely the d2 different Fourier–Laplace transforms of the quasipolynomials φn(y); indeed
φ

0
(x) can be expressed by

φ
0
(x) ∝

∫
Γ

dy e
1
~ (xy−V2(y)) , (2-35)

where Γ is any of the contours Γ(k)
y or a linear combination of them.

We now consider a modified system in order to find the other solutions

Proposition 2.2 The semiinfinite systems{
xΨ∞(x) = QΨ∞(x)−W2(−~∂x)F (x)

~∂xΨ∞(x) = −PΨ∞(x) + F (x) (2-36)

{
xΦ∞(x) = Φ∞(x)Q+ U(x)

~∂xΦ∞(x) = Φ∞(x)P + U(x)W1(x)
(2-37)

W1(x) :=
V ′1(Q)− V ′1(x)

Q− x
; W2(~∂x) :=

V ′2(P )− V ′2(~∂x)
P − ~∂x

; (2-38)

F (x) := [f(x), 0, 0, · · ·]t ; U(x) := [u(x), 0, 0, · · ·] (2-39)

have both d2 + 1 solutions for the unknowns (f(x), Ψ∞(x)) and (u(x), Φ∞(x))
7This is not new in the context of orthogonal polynomials, where there exist the orthogonal polynomials of the second kind, see e.g.

[10, 27]
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Proof. The compatibility of these systems is not obvious; we have

~Ψ∞ = [~∂x, x]Ψ∞ = ~∂x (QΨ∞ −W2(−~∂x)F )− x (−PΨ∞ + F ) = (2-40)
= Q (−PΨ∞ + F )− ∂xW2(−~∂x)F + P (QΨ∞ −W2(−~∂x)F ) + xF = (2-41)

= [P,Q]Ψ∞ +QF − (~∂x + P )
V ′2(P )− V ′2(−~∂x)

P + ~∂x
F (x) + xF = (2-42)

= ~Ψ∞ +
(
Q− V ′2(P )

)
F +

(
x− V ′2(−~∂x)

)
F (2-43)

Given that only the first entry of F is nonzero and that Q − V ′2(P ) is strictly upper-triangular, the second term
vanishes. Last term gives the following ODE for the first entry of F (x)

V ′2(−~∂x)f(x) = xf(x). (2-44)

Each solution of Eq. 2-44 gives a compatible system. We label such solutions f (α) with α = 0, . . . , d2, f (0) ≡ 0 being
the trivial solution.
For each such solution we can now solve for Ψ. First of all one can prove by induction that

QkΨ∞ = xkΨ∞ +
Qk − xk

Q− x
W2(−~∂x)F. (2-45)

Next we compute as for the previous proposition

0 = [(P − V ′1(Q))Ψ∞]0 =
[
−~∂xΨ∞ + F − V ′1(x)Ψ∞ −

V ′1(Q)− V ′1(x)
Q− x

W2(−~∂x)F
]
0

= (2-46)

= −~ψ′0(x)− V ′1(x)ψ0(x) + [1−W1(x)W2(−~∂x)]00 f(x) (2-47)

That is ψ0(x) must solve that first order ODE’s: considering the fact that there are d2 + 1 choices for the function
f(x) = f (α)(x) we correspondingly obtain d2 + 1 independent solutions Ψ(α)(x) to the system.

We consider now the second system (2-38). The compatibility gives

~Φ∞ = [~∂x, x]Φ∞ = ~∂x (Φ∞Q+ U)− x (Φ∞P + UW1(x)) = (2-48)
= (Φ∞P + UW1(x))Q+ ~∂xU − (Φ∞Q+ U)P − UW1(x)x = (2-49)

= Φ∞[P,Q]− UP + U
V ′1(Q)− V ′1(x)

Q− x
(Q− x) + ~∂xU = (2-50)

= ~Φ∞ − U
(
P − V ′1(Q)

)
+
(

~∂x − V ′1(x)
)
U(x) (2-51)

Given that only the first entry of U is nonzero and that P − V ′1(Q) is strictly lower-triangular, the second term
vanishes. The last term gives the following ODE for the first entry of U(x), that is

~u′(x) = V ′1(x)u(x) ⇒ u(x) = ce
1
~ V1(x) . (2-52)

Of course the compatibility is guaranteed also if we take the trivial solution.
We next consider the solutions Φ∞; by a computation similar to the previous we have

0 =
[
Φ∞

(
Q− V ′2(P )

)]
0

=

[
xΦ∞ − U − V ′2(~∂x)Φ∞ + UW1(x)

V ′2(P )− V ′2(~←−∂ x)

P − ~←−∂ x

]
0

= (2-53)

=
(
x− V ′2(~∂x)

)
φ0(x)− [1−W1(x)W2(~∂x)]00 u(x) (2-54)

Therefore we have the d2 solutions corresponding to the case u(x) ≡ 0 (which give the solutions of the “unmod-
ified” recurrence relations, i.e. the Fourier–Laplace transforms of the quasipolynomials) and the extra solutions
corresponding to the nontrivial solution u(x) = ceV1(x). We denote this last by Φ∞

(0) and in general Φ∞
(α). Q.E.D.

We will give explicit integral representations for the d2 + 1 solutions in the next section.
With the solutions Ψ∞(α), Φ∞

(β), α, β = 0, . . . , d2 we can construct the (d2 + 1)× (d2 + 1) modified kernels

KN(α,β)
11 (x, x′) :=

N−1∑
n=0

φ(α)

n
(x)ψ(β)

n (x′) = Φ∞
(α)(x)ΠN−1

0 Ψ∞(β)(x′) . (2-55)

We can obtain also the following modified Christoffel–Darboux formulæ
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Proposition 2.3 [Christoffel–Darboux Kernels]

(x− x′)KN(α,β)
11 (x, x′) = (2-56)

=
(
Φ∞

(α)(x)Q+ δα0U(x)
)
ΠN−1

0 Ψ∞(β)(x′)− Φ∞
(α)(x)ΠN−1

0

(
QΨ∞(β)(x′)−W2(−~∂′x)F (β)(x′)

)
= (2-57)

= −Φ∞
(α)(x)

[
ΠN−1

0 , Q
]
Ψ∞(β)(x′) + δα0u(x)ψ

(β)
0 (x′) + Φ∞

(α)(x)ΠN−1
0 W2(−~∂′x)F (β)(x′) (2-58)

We recall that the commutator of the finite band size matrix Q with the projector ΠN−1
0 gives a sparse semiinfinite

matrix which correspond to the Christoffel–Darboux kernel matrix
N

A. As a corollary we obtain the pairing between
the solutions of the systems (2-26) by setting x = x′

Corollary 2.1 (
ΦN(α),ΨN

(β)

)
N

:= ΦN(α)(x)
N

A ΨN
(β)(x) = Φ∞

(α)(x)
[
ΠN−1

0 , Q
]
Ψ∞(β)(x) =

= δα0u(x)ψ
(β)
0 (x) + Φ∞

(α)(x)ΠN−1
0 W2(−~∂x)F (β)(x) (2-59)

We know that this is a constant (in x) if N > d2 [4]; but if N > d2 the projector in the second term is irrelevant
because the vector W2(−~∂x)F (β)(x) has only the first d2 + 1 nonzero entries and hence we have(

ΦN(α),ΨN
(β)

)
N

= δα0u(x)ψ
(β)
0 (x) + Φ∞

(α)(x)
V ′2(P )− V ′2(−~∂x)

P + ~∂x
F (β)(x) , N > d2 (2-60)

If α 6= 0 then Φ∞
(α)(x)P = ~∂xΦ∞

(α)(x) and hence we have

Φ∞
(α)(x)

N

A Ψ∞(β)(x) = Φ∞
(α)(x)

V ′2(~←−∂ x)− V ′2(−~−→∂ x)

~←−∂ x + ~−→∂ x

F (β)(x) = (2-61)

=
V ′2(~∂x′)− V ′2(−~∂x)

~∂x′ + ~∂x
φ(α)

0
(x′)f (β)(x)

∣∣∣∣
x′=x

, N > d2, α 6= 0. (2-62)

In this expression φ
0

and f are kernel solutions of a pair of adjoint differential equations

(V ′2(~∂x)− x)φ(α)

0
(x) = 0 , (V ′2(−~∂x)− x)f (β)(x) = 0 , (2-63)

and the last expression in Eq. 2-62 is nothing but the bilinear concomitant of the pair (which is a constant in our
case).

For β = 0 then we have

Φ∞
(α)(x)

N

A Ψ∞(0)(x) = δα0u(x)ψ
(0)
0 (x) = δα0ce

1
~ V1(x) 1√

h0

e−
1
~ V1(x) = δα0

c√
h0

. (2-64)

2.2 Explicit Integral representations

Proposition 2.4 The d2 + 1 semiinfinite wave-vectors Φ∞
(j) and Ψ∞(j) with components defined by

φ(0)

n
(x) = e

1
~ V1(x)

∫
κΓ

ds ∧ dy
e−

1
~ (V1(s)−sy)φn(y)

x− s
, (2-65)

φ(k)

n
(x) =

∫
Γ

(k)
y

dy e
xy
~ φn(y) , k = 1, . . . , d2 (2-66)

ψ(k)
n (x) =

∫
Γ̃

(k)
y

dy e
1
~ (V2(y)−yx)

∫
κΓ

dz ∧ dt
e−

1
~ (V2(t)−zt)ψn(z)

t− y
, k = 1, . . . , d2 (2-67)

ψ(0)
n (x) = ψn(x) =

1√
h0

πn(x)e−
1
~ V1(x) , (2-68)

n = 0, 1, . . . ,∞ ,

are the solutions of the modified systems (2-36, 2-38).
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In this proposition the contours Γ̃(k)
y are defined similarly to the contours Γ(k)

y except for the requirement that
<(V2(y))→ −∞ as y →∞, y ∈ Γ̃(k)

y .

Remark 2.1 We point out that the we would have solutions even by choosing any admissible contour (or linear combination
of) in Eqs. 2-66, 2-67; we will use this arbitrariness later.

Remark 2.2 The functions φ(0)

n
(x) are piecewise analytic functions in each connected component Cx \

⋃d1
j=1 Γ

(j)
x .

Proof.
For each of the four kind of sequences we define the semiinfinite wave-vectors

Φ∞
(j) := [φ(j)

0
, φ(j)

1
, . . .] , j = 0, . . . , d2 ; Ψ∞(k) := [ψ(k)

0 , ψ
(k)
1 , . . .]t k = 0, . . . , d2 . (2-69)

There is nothing to prove for Φ∞
(j) for j > 0 and for Ψ∞(0) as these are the Fourier-Laplace transforms and the

quasipolynomials respectively and satisfy the corresponding unmodified systems (2-30, 2-31).
Let us consider Φ∞

(0): we first check the x recurrence relation

xφ(0)

n
(x) = e

1
~ V1(x)

∫
κΓ

ds ∧ dy

[
(x− s)e− 1

~ (V1(s)−sy)φn(y)
x− s

+
e−

1
~ (V1(s)−sy)s φn(y)

x− s

]
=

= δn0

√
h0e

1
~ V1(x) − e

1
~ V1(x)

∫
κΓ

ds ∧ dy
e−

1
~ (V1(s)+sy) φ′n(y)

x− s
=

= δn0

√
h0e

1
~ V1(x) +

d2∑
l=−1

αj(n+ j)φ(0)

n+j
(x) .

In matricial form we have

xΦ∞
(0) = [

√
h0e

1
~ V1(x), 0, . . .] + Φ∞

(0)Q =: U + Φ∞
(0)Q . (2-70)

It is easy to prove by induction that

xkΦ∞
(0) = U

xk −Qk

x−Q
+ Φ∞

(0)Qk . (2-71)

Let us now look at the ∂x differential recurrence; after shifting the derivative on s inside the integral, integrating by
parts and using Eq. 2-71, we get

~∂xΦ∞
(0)(x) = U

V ′1(x)− V ′1(Q)
x−Q

+ Φ∞
(0)(x)P . (2-72)

This proves that the given integral expression is indeed the extra solution to Eq. 2-38.
As for the ψ(k)

n solutions we compute

~∂xψ
(k)
n (x) = −

∫
Γ̃

(k)
y

dy y e
1
~ (V2(y)−yx)

∫
κΓ

dz ∧ dt
e−

1
~ (V2(t)−zt)ψn(z)

t− y
= (2-73)

=
∫

Γ̃
(k)
y

dy e
1
~ (V2(y)−yx)

∫
κΓ

dz ∧ dt e−N(V2(t)−zt)ψn(z) + (2-74)

−
∫

Γ̃
(k)
y

dy e
1
~ (V2(y)−yx)

∫
κΓ

dz ∧ dt
e−

1
~ (V2(t)−zt) t ψn(z)

t− y
= (2-75)

= δn0f
(k)(x) +

∫
Γ̃

(k)
y

dy e
1
~ (V2(y)−yx)

∫
κΓ

dz ∧ dt
e−

1
~ (V2(t)−zt)ψ′n(z)

t− y
= (2-76)

= δn0f
(k)(x)−

d1∑
j=−1

βj(n+ j)ψ(k)
n+j(x) , (2-77)

f (k)(x) :=
√
h0

∫
Γ̃

(k)
y

dy e
1
~ (V2(y)−xy) . (2-78)

Which, in matrix notation reads
~∂xΨ∞(k)(x) = −PΨ∞(k)(x) + F (k)(x) . (2-79)
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We leave to the reader the check that the x-multiplication equation holds as in Eq. 2-36. Q. E. D.

For completeness we recall that the matrices P,Q satisfy the following deformation equations (in [4] the matrix
that now is denoted by P was denoted by −P )

∂uK
Q = −

[
Q,UK

]
, ∂vJ

Q =
[
Q,VJ

]
(2-80)

∂uK
P = −

[
P,UK

]
, ∂vJ

P =
[
P,VJ

]
(2-81)

where

UK := − 1
K

{[
QK
]
>0

+
1
2
[
QK
]
0

}
, VJ := − 1

J

{[
P J
]
<0

+
1
2
[
P J
]
0

}
. (2-82)

Here the subscript < means the part of the matrix below the main diagonal and the subscript 0 denotes the diagonal.
These equations have the following consequences on the wave-vectors

Lemma 2.1 The wave-vectors Ψ∞
(0)(x) (i.e. the quasipolynomials) and Φ∞

(k)(x), k = 1, . . . , d2 (i.e. the Fourier–Laplace
transform of the quasipolynomials φn(y)) satisfy the following deformation equations

∂uK Ψ∞
(0)(x) = UKΨ∞

(0)(x) , (2-83)

∂vJ Ψ∞
(0)(x) = −VJΨ∞

(0)(x) , (2-84)

∂uK Φ∞
(k)(x) = −Φ∞

(k)(x)UK , (2-85)

∂vJ Φ∞
(k)(x) = Φ∞

(k)(x)VJ , (2-86)

Proof. It follows straigforwardly from the two equations (2-80, 2-81) together with the fact that the Fourier–Laplace
transform commutes with the differentiation w. r. t. the deformation parameters Q.E.D.

We also remark that the given integral expressions satisfy the following modified deformation equations

Proposition 2.5 The wave-vectors defined componentwise by Prop. 2.4 satisfy the following deformation equations

∂uK
Φ∞

(0)(x) = −Φ∞
(0)(x)UK +

1
K
U(x)

xK −QK

x−Q
(2-87)

∂vJ
Φ∞

(0)(x) = Φ∞
(0)(x)VJ (2-88)

∂uK
Ψ∞(k)(x) = UKΨ∞(k)(x) (2-89)

∂vJ
Ψ∞(k)(x) = −VJΨ∞(k)(x)− 1

J

P J − (−~∂x)J

P + ~∂x
F (k) , (2-90)

where the semiinfinite vector U(x) (not to be confused with the deformation matrix UK) is defined in eq. 2-70 and
the semiinfinite vectors F (k)(x), k = 1, . . . , d2 are defined in eqs. (2-78, 2-79).

Remark 2.3 In particular the sequences of functions defined in Prop. 2.4 satisfy identical deformation equations for N big
enough (N > d1 or N > d2 according to which system is under consideration), and hence the relevant windows satisfy the full
DDD equations specified in [4].

Proof. We recall that by induction one can prove that

xKΦ∞
(0)(x) = Φ∞

(0)(x)QK + U(x)
QK − xK

Q− x
(2-91)

(−~∂x)JΨ∞(k)(x) = P JΨ∞(k)(x)− P J − (−~∂x)J

P + ~∂x
F (k)(x) , (2-92)

where F (k)(x) is the same as in Eqs. (2-78, 2-79). As for the vJ deformation equations for Φ∞
(0) the proof follows

from Lemma 2.1 and from the fact that the integral transform defining this wave-vector does not depend on the vJ ’s.
On the contrary the uK deformations give (using again Lemma 2.1)

∂uK
Φ∞

(0)(x) = −Φ∞
(0)(x)UK +

1
K

Φ∞
(0)(x)

(
xK −QK

)
, (2-93)

from which the proof follows using eq. (2-91). Similarly there is nothing to prove for the uJ deformation of the
wave-vectors Ψ∞(k), while for the vJ deformations (using an integration by parts together with Lemma 2.1) one
obtains

∂vJ
Ψ∞(k)(x) = −VJΨ∞(k)(x) +

1
J

(
(−~∂x)J − P J

)
Ψ∞(k)(x) , (2-94)
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Figure 1: The SDC γ(solid) and γ̃ (line-dot-line) for a potential of degree 11.

and the proof now follows from eq. (2-92). Q.E.D.

As we were pointing out earlier, the choice of contours of integration in Eqs. (2-66, 2-67) is largely arbitrary.
In particular the choice of contours that diagonalizes the pairing (2-28) is linked to the notion of dual steepest
descent-ascent contours given hereafter.

Definition 2.3 The steepest descent contours (SDCs) and the dual steepest ascent contours (SACs) for integrals of
the form ∫

Γ

dy e−
1
~ (V2(y)−xy)H(y) ,

∫
Γ̃

dy e
1
~ (V2(y)−xy)H(y) , (2-95)

with H(y) at most of exponential type, are the contours γk and γ̃k respectively uniquely defined (as x→∞ within a
suitable sector) as follows

γk :=
{
y ∈ C; =(V2(y)− xy) = = (V2(yk(x))− xyk(x)) ,<(V2(y)) −→y →∞

y ∈ γk

+∞ .

}
, (2-96)

γ̃k :=
{
y ∈ C; =(V2(y)− xy) = = (V2(yk(x))− xyk(x)) ,<(V2(y)) −→y →∞

y ∈ γ̃k

−∞ .

}
, (2-97)

where yk(x) are the d2 branches of the solution to

V ′2(y) = x , (2-98)

which behave as (vd2+1)
− 1

d2 x
1

d2 as x→∞ in the sector, for the different determinations of the roots of x.
Their homology class is constant as x→∞ within the sector (see Fig. 1)

With this choice of contours of integration these particular solutions to the systems (2-36, 2-38) have the property
in the following proposition

Proposition 2.6 If we choose dual steepest descent-ascent contours defined as in Def. 2.3, γ̃k and γk for the integrals
in Eqs. 2-66, 2-67, then we have

Cαβ := ΦNα(x)
N

A ΨN
β(x) =


1 0

0 2iπ~1d2

 , N > d2 . (2-99)
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Proof.
For β = 0 the statement follows from Eq. 2-64 (where the constant c =

√
h0).

For α = 0 6= β by inspection of the exponential asymptotic behavior of the integrals (2-65–2-68) it is easy to conclude
that C0β = 0, β 6= 0.
Finally for k := α 6= 0 6= β =: j, Ckj equals the bilinear concomitant of the corresponding functions (Eq. 2-62). Let
us consider a fixed sector in the x plane and choose a basis of steepest descent contours γ̃k and γ̃k. We use formula
(2-62) with

f (j)(x) :=
√
h0

∫
γ̃j

dy e
1
~ (V2(y)−xy) , ϕ(k)

0
(x) :=

1√
h0

∫
γk

dy e−
1
~ (V2(y)−xy) . (2-100)

The respective asymptotic behaviors, computed by the saddle–point method, are

f (j)(x) '
√
h0e

1
~ (V2(yj(x))−xyj(x))

√
−2π~

V ′′2 (yj(x))
(
1 +O(λ−1)

)
(2-101)

ϕ(k)
0

(x) ' 1√
h0

e−
1
~ (V2(yk(x))−xyk(x))

√
2π~

V ′′2 (yk(x))
(
1 +O(λ−1)

)
, (2-102)

where yk(x) are the d2 solutions of V ′2(y) = x, which behave as the d2 roots of x for x → ∞ (within a specified
sector which is not relevant here). It is clear that the bilinear concomitant being a constant, it must vanish for j 6= k
since the exponential parts of the asymptotic behavior in Eqs. 2-101, 2-102 can not give a nonzero constant when
multiplied together.
For j = k then the bilinear concomitant is given by the integral

V ′2(~∂x′)− V ′2(−~∂x)
~∂x′ + ~∂x

ϕ(k)
0

(x′)f (k)(x)
∣∣∣∣
x′=x

= (2-103)

=
∫

γ̃k×γk

dy ∧ dy′ e
1
~ (V2(y)−V2(y

′)−x(y−y′))V
′
2(y)− V2(y′)
y − y′

' (2-104)

' e
1
~ (V2(yk(x))−xyk(x))

√
2π~

V ′′2 (yk(x))
· (2-105)

·e− 1
~ (V2(yk(x))−xyk(x))

√
−2π~

V ′′2 (yk(x))
(
1 +O(λ−1)

)
V ′′2 (yk(x)) = 2iπ~ (2-106)

This concludes the proof. Q.E.D.

Had we chosen the contours Γ̃(k)
y and Γ(k)

y rather than the steepest descent contours, then we would have had
a block–diagonal constant matrix for Cαβ . Notice that the pairing of these integrals is independent also of the
deformation parameters of V1, V2. As we know from [4], this can always be accomplished, but here we have explicitly
seen this occurring for the particular normalizations chosen in the integrals.

3 Asymptotic behavior at infinity and Riemann–Hilbert problem

Given the duality between the D1 and D1 ODEs

N

ADN
1 (x) ≡ DN

1 (x)
N

A , (3-1)

it is clear that the Stokes matrices around the irregular singularity at x =∞ can be computed for either one of these
systems. Since we have explicit integral representations of the fundamental solutions we can read the asymptotic
behavior off the solution itself. The solutions for the D1 system are simpler to analyze but in principle one could
consider the asymptotic behavior of the solutions to the D1 system given by taking the suitable windows in the
sequences (2-67, 2-68).

Proposition 3.1 [Formal Asymptotics] The system

d

dx
Φ(x) = Φ(x)DN

1 (x) , (3-2)

possesses a solution with a formal asymptotic behavior at x =∞ of the form

Φ(x) ∼ e
1
~ T (x)W xGY (x

1
d ) (3-3)
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where Y = Y0+O(x−1/d2) is a matrix–valued function analytic at infinity (Y0 is a diagonal invertible matrix specified
in the proof) and

T (x) :=
d2∑

j=0

d2tj
d2 − j + 1

x
d2+1−j

d2 Ωd2+1−j + V1(x)E (3-4)

W :=


1 0 · · · 0 0
0 ω ω2 · · · ωd2

0 ω2 ω4 · · · ω2d2

...
...

0 ωd2 ω2d2 · · · ωd2
2

 (3-5)

G := diag

(
−N,

N + 1
2 −

d2
2

d2
,
N + 3

2 −
d2
2

d2
, . . . ,

N − 1
2 + d2

2

d2

)
(3-6)

Ω := diag(0, ω, ω2, . . . , ωd2−1, ωd2) , ω := e
2iπ
d2 (3-7)

E := diag(1, 0, . . . , 0) (3-8)

t0 := (vd2+1)
− 1

d2 , (3-9)

t1 := − 1
d2

vd2

vd2+1
, (3-10)

tj :=
1

j − 1
res

y=∞

(
V ′2(y)

) j−1
d2 dy . j = 2, . . . , d2. (3-11)

Such formal asymptotics is the asymptotics of a real solution within the sectors Sk

Sk :=
{
x ∈ C , arg(x) ∈

(
ϑ+

(2k − 1)π
2(d2 + 1)

, ϑ+
(2k + 1)π
2(d2 + 1)

)}
, for d2 odd

Sk :=
{
x ∈ C , arg(x) ∈

(
ϑ+

kπ

(d2 + 1)
, ϑ+

(k + 1)π
(d2 + 1)

)}
, for d2 even (3-12)

ϑ := −arg(vd2+1)
d2

, k = 0, . . . , 2d2 + 1 , (3-13)

minus the contours
⋃

k Γ(k)
x used to define the pairing.

Proof.
In any given sector Sk of Eq. (3-13) we can choose a basis of steepest descent contours γ(k)

y , k = 1, . . . , d2; the
reason why these are the Stokes sectors and the proper construction of the steepest descent contours is delayed to
the discussion about the Stokes’ matrices in Sect. 3.1.1.
We Fourier-Laplace transform the quasipolynomials φn(y) along these contours in order to obtain the functions ϕ

n
(x).

Notice that they are not necessarily the same as the previously introduced φ(k)

n
(x) inasmuch as the steepest descent

contours do not all coincide with the contours Γ(k)
y defined previously. However they are suitable linear combinations

with integer coefficients of such φ(k)

n
(x) since the choice of the steepest descent contours is just a different basis in

the “homology” of the y-plane.
We then consider the asymptotic expansions (we set s2 := d2 + 1) for

ϕ(k)
n

(x) :=
∫

γ
(k)
y

dy e−~−1(V2(y)−xy)φn(y) . (3-14)

Asymptotically the main contribution is given at the critical point of the exponent V2(y)− xy corresponding to the
steepest descent contour γ(k)

y . That is we need to compute

V2(y)− xy
∣∣
V ′

2 (y)−x=0
(3-15)

asymptotically as x → ∞ within the specified sector. Let us solve the relation V ′2(y) − x = 0 in series expansion in
the local parameter at ∞ given by one determination of the d2-th root of x, λ := x

1
d2 .

vs2y
d2 + vd2y

d2−1 + . . . = V ′2(y) = λd2 (3-16)

y(λ) = λ
∞∑

j=0

tjλ
−j . (3-17)
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Then we have the formulas (recalling λ = (V ′2(y))
1

d2 )

t0 = (vs2)
− 1

d2 ,

t1 = res
λ=∞

y(λ)
dλ
λ

=
1
d2

res
y=∞

y
V ′′2 (y)
V ′2(y)

dy = − 1
d2

vd2

vs2

tj = res
λ=∞

λj−1

j − 1
y′(λ)dλ =

1
j − 1

res
y=∞

(
V ′2(y)

) j−1
d2 dy .

(3-18)

Let us denote by yk(x) the d2 solutions of the equation V ′2(y) = x which have been solved by series in the d2-th root
of x in Eq. 3-17 and 3-18. We then have, up to an additive constant and in a neighborhood of x =∞

V2(yk(x))− xyk(x) = −
∫ x

yk(x′)dx′ = −d2

∫ λk

y(λ′)λ′d2−1dλ′ = −
∞∑

j=0

d2tj
s2 − j

λs2−j
k . (3-19)

This formula is proven by taking the derivative (w.r.t. x) of both sides and using the defining equation for yk(x).
Notice that there is no logarithmic contribution since ts2 = 0. The different saddle critical points are computed by
replacing λ with ωkλ. Inserting into the integral representation of the functions ϕ(k)

n
(x)

ϕ(k)
n

(x) :=
1√
hn

∫
γ
(y)
k

dy e−N(V2(y)−xy)σn(y) ' (3-20)

' C√
hn

e
1
~
∫ x yk(x′)dx′σn(y(λk))

∫
R

e−
1
2~ V ′′

2 (y(λk))t2dt = (3-21)

=
C√
hn

e
∫ x yk(x′)dx′σn(y(λk))

√
2π~

V ′′2 (y(λk))
(3-22)

Differentiating V ′2(y(λk)) = λk
d2 we obtain the relation

V ′′2 (y(λk)) =
d2λk

d2−1

y′(λk)
(3-23)

where y′(λ) means differentiation w.r.t. λ.
Therefore we obtain

ϕ(k)
n

(x) ∼ e−~−1(V2(yk(x))−xyk(x))

'
√

2π~
hn

λk
n− d2−1

2 v
− 2n−1

2d2
s2︷ ︸︸ ︷

σn(yk(x))√
hn

√
2π~

V ′′2 (yk(x))
∼

∼
√

2π~
d2hn

e−~−1(V2(yk(x))−xyk(x))λk
n− d2−1

2 v
− 2n−1

2d2
s2 = (3-24)

=
C√
hn

e
1
~
∫ x yk(x′)dx′σn(y(λk))

√
2π~y′(λk)
d2λk

d2−1
= (3-25)

= C̃
vs2

−n+1
d2

√
hn

λk
n+

1−d2
2 exp

1
~

d2∑
j=0

d2tj
s2 − j

λk
s2−j

(1 +O
(
λ−1

))
, (3-26)

where the constant C̃ does not depend on n, λ (depends only and universally on the coefficients of V2(y)) and
λk := ωkλ.
The functions φ(0)

n (x) have the following asymptotic expansion as x→∞ in C \
⋃d1

k=1 Γ(k)
x

φ(0)
n (x) := e

1
~ V1(x)

∫
κΓ

ds ∧ dy
e−~−1(V1(s)−sy)φn(y)

(x− s)
'

' e
1
~ V1(x)

∞∑
k=0

x−k−1

∫
κΓ

ds ∧ dy ske−~−1V1(s)φ
n
(y) =

=
√
hnx

−n−1e~−1V1(x)
(
1 +O

(
x−1

))
. (3-27)

13



Now, the rows of the fundamental matrix Φ(x) are given by [ϕ(k)
N−1(x), . . . , ϕ

(k)
N+d2−1(x)], k = 1, . . . , d2 while first row

is given by [φ(0)
N−1, . . . , φ

(0)
N+d2−1]. Therefore the matrix of leading terms is given by

e
1
~ T (x)diag

(
C̃, 1, · · ·

)


hN−1v
N
d2
s2 x

−N · · · hN+d2−1v
N+d2

d2
s2 x−N−d2

λ1
N− 1

2−
d2
2 · · · λ1

N− 1
2+

d2
2

λ2
N− 1

2−
d2
2 · · · λ2

N− 1
2+

d2
2

... · · ·
...

λd2
N− 1

2−
d2
2 · · · λd2

N− 1
2+

d2
2


·

·diag

 C̃v
− N

d2
s2√
hN−1

, . . . ,
C̃v

−N+d2
d2

s2√
hN+d2−1

 . (3-28)

Notice that the determinant of the Vandermonde–like matrix is actully very simple: by computing it along the
first row one realizes that only the first and last minor are not zero. Indeed for all other minor the coeersponding
submatrix has the first and last column proportional. The first minor is a constant in x while the last is of order
x−d2 . Therefore we can write

hN−1vs2

N
d2 x−N · · · hN+d2−1vs2

N+d2
d2 x−N−d2

λ1
N− 1

2−
d2
2 · · · λ1

N− 1
2+

d2
2

λ2
N− 1

2−
d2
2 · · · λ2

N− 1
2+

d2
2

... · · ·
...

λd2
N− 1

2−
d2
2 · · · λd2

N− 1
2+

d2
2


=

=



hN−1vs2

N
d2 x−N 0 · · · 0

0 λ1
N+ 1

2−
d2
2 · · · λ1

N− 1
2+

d2
2

0 λ2
N− 1

2−
d2
2 · · · λ2

N− 1
2+

d2
2

... · · ·
...

0 λd2
N− 1

2−
d2
2 · · · λd2

N− 1
2+

d2
2


(1 +O(x−1)) = (3-29)

=



hN−1vs2

N
d2 x−N 0 · · · 0

0 λ1
N+ 1

2−
d2
2 · · · λ1

N− 1
2+

d2
2

0 λ2
N− 1

2−
d2
2 · · · λ2

N− 1
2+

d2
2

... · · ·
...

0 λd2
N− 1

2−
d2
2 · · · λd2

N− 1
2+

d2
2


(1 +O(x−1)) = (3-30)

=



1 0 · · · 0
0 ωN+ 1

2−
d2
2 · · · ωN− 1

2+
d2
2

0 (ω2)N+ 1
2−

d2
2 · · · (ω2)N− 1

2+
d2
2

... · · ·
...

0 1 · · · 1

 ·

·diag
(
hN−1vs2

N
d2 x−N , λN+ 1

2−
d2
2 , . . . , λN− 1

2+
d2
2

)
(1 +O(x−1)) (3-31)

When inserting this into the asymptotics we see that, up to factoring the constant invertible (diagonal) matrix on
the left

diag(1, C̃ωN+ 1
2−

d2
2 , C̃ω2(N+1/2−d2/2), · · · , C̃) (3-32)

which is irrelevant for the asymptotics and depends on N in a rather trivial manner, we obtain a solution with an
asymptotic behavior

Φ(x) ' exp
1
~

EV1(x) +
d2∑

j=0

d2tjλ
s2−j

d2 − j + 1
Ωs2−j

 ·W ·
14



Figure 2: The two possible choices for the domains of definition of φ(0)

n
in the case d1 = 7

·diag
(
hN−1vs2

N
d2 x−N , λN+ 1

2−
d2
2 , . . . , λN− 1

2+
d2
2

)
diag

(
vs2

− N
d2√

hN−1

, . . . ,
vs2

−N+d2
d2√

hN+d2−1

)
(1 +O(λ−1)) =

= e
1
~ T (x) ·W · diag

(√
hN−1x

−N ,
vs2

−N+1
d2 λN+ 1

2−
d2
2

√
hN

, . . . ,
vs2

−N+d2
d2 λN− 1

2+
d2
2√

hN+d2−1

)
(1 +O(λ−1)) =

= exp
(

1
~
WT (x)W−1

)
xGdiag

(√
hN−1,

vs2
−N+1

d2
√
hN

, . . . ,
vs2

−N+d2
d2√

hN+d2−1

)
(1 +O(λ−1)) (3-33)

where W is the block-diagonal matrix

W =


1 0 0 · · · 0
0 ω ω2 · · · ωd2

0 ω2 ω4 · · · ω2d2

...
...

0 1 · · · 1

 (3-34)

Notice that W−1ΩW is the permutation matrix (in the subblock)

3.1 Riemann Hilbert problem

In this section we analyze the Riemann–Hilbert problem that arises naturally for the solutions of the D1 system.
Recalling the expression for the sequence {φ(0)

n
(x)}n∈N (Eq. 2-65), it is clear that they are piecewise analytic functions

in each of the d1 + 1 connected domains of the x-plane minus the contours Γ(j)
x .

Remark 3.1 The sequence φ(0)

n
(x), µ = 0, . . . , d1 can be analytically continued to entire functions, since the contours Γ

(j)
x

can be deformed arbitrarily in the finite part of the x-plane. Therefore the “discontinuities” in the definition of the Hilbert
integral are just apparent and have an intrinsic meaning only when studying the asymptotic behavior at infinity.

We denote by Dµ the connected domain to the right of the contours Γ(µ)
x for µ = 1, . . . , d1 while D0 is the domain

to the left of all contours. By retracting the contours to rays Lµ from the origin, the domains Dµ become sectors in
the x–plane (see Fig. 2).

Let us denote by ΦN the piecewise analytic invertible matrix

ΦN(x) :=
[
ΦN(0),ΦN(1), . . . ,ΦN(d2)

]t
. (3-35)

The fact that this is an invertible matrix follows from the fact that the various ΦN(k) are linearly independent and
ΦN(0) is independent from them because it satisfies the same recurrence relation but with different initial (in n)
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conditions.
These matrices satisfy the Riemann-Hilbert problem

ΦN
+(x) =


1 2iπκµ,1 2iπκµ,2 · · · 2iπκµ,d2

0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . .

0 0 0 · · · 1

ΦN
−(x) , x ∈ Γ(µ)

x , µ = 1, . . . , d1 , (3-36)

where the subscripts +, − denote the limiting value from the right or from the left w.r.t. the orientation of the
contour. Equivalently we can shrink D0 by retracting the d1 contours to the origin in such a way that the d1 + 1
regions become sectors. Denoting by Lµ the ray which separates Dµ and Dµ+1, the corresponding RH problem then
reads:

ΦN
+(x)

∣∣∣∣
x∈Lµ

= GµΦN
−(x) :=


1 2iπJµ,1 2iπJµ,2 · · · 2iπJµ,d2

0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . .

0 0 0 · · · 1

ΦN
−(x) (3-37)

Jµ,j := κµ,j − κµ+1,j ;µ = 0, . . . , d1, j = 1, . . . , d2, κ0,j := κd1+1,j := 0 (3-38)

In order to formulate the complete RH problem we need to supplement the discontinuity data with the formal
asymptotic around the irregular singularity x =∞ and the Stokes matrices. In doing so one should be careful that
the lines Lµ for which the discontinuities are defined do not coincide with any of the Stokes’ lines. We can always
avoid this occurrence by perturbing the lines Lµ.

3.1.1 Stokes Matrices

The fundamental solution of the system D1 is constituted by d2 Fourier-Laplace tranforms φ(k)

n
(x), k = 1, . . . d2

and one Hilbert-Fourier-Laplace tranform φ(0)

n
(x). The asymptotic behavior of the d2 F-L transforms is analyzed by

means of the steepest descent method in each of the sectors Sk, k = 0, . . . 2d2 + 1 (3-13).
The computation is achieved by expressing the change of homology basis from the Γ(1)

y , . . . ,Γ(d2)
y contours to

the steepest descent contours8. In order to simplify the analysis of the Stokes matrices we point out that there
is no essential loss of generality in assuming V2(y) = yd2+1 1

d2+1 ; indeed, since we are concerned about topological
structures of the SDCs, as x → ∞ the d2 solutions of the equation V ′2(y) = x entering Def. 2.3 are distinct and
asymptotic to the d2 roots of x (up to a nonzero factor). The particular choice of the leading coefficient is also only
for practical purposes; should we choose a different coefficient we should appropriately rotate by ϑ = − arg(vd2+1)/d2

counterclockwise the pictures we are going to draw, but without any essential difference.
With this assumption, the Stokes phenomenon can be studied directly on the integrals∫

dy e−
1
~

(
yd+1
d+1 −xy

)
= |x| 1d

∫
dz exp

[
−Λ

(
zd+1

d+ 1
− eiαz

)]
; Λ :=

1
~
|x|

d+1
d , α := arg(x) , (3-39)

where, in order to avoid too many subscripts in the formulas to come, we have set d = d2. The integrals in (3-39)
can be written as ∫

dz exp
[
−Λ

(
zd+1

d+ 1
− eiαz

)]
=
∫

ds e−Λs dz
ds
, (3-40)

where z = Z(s) is the map inverse to

s = S(z) :=
zd+1

d+ 1
− eiαz , z = Z(s). (3-41)

The map z = Z(s) is a (d + 1)-fold covering of the s-plane branching around points (z, s) whose projection on the
s-plane are the d critical values

s(j)cr = s(j)cr (α) = − d

d+ 1
ei (d+1)α

d ωj , ω := e
2iπ

d , j = 0, . . . , d− 1. (3-42)

8 we suppress the subscript y from the steepest descent contours.
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In realizing this d + 1-fold covering, we take the branch-cuts on the s-plane to be the rays =(s) = =(s(j)cr ) =const,
extending to <(s) = +∞. As Λ→ +∞ the integrals (3-39) have leading asymptotic behavior that depends only on
the critical values of the map s(z) and on the homology class of the contour.
We now come back to the computation of the Stokes’ lines; by the definition of the SDC’s γk (Def. 2.3, with now
V2(y) = yd+1/(d+1)) their image in the s-plane are contours which come from <(s) = +∞ on one side of the branch-
cut (and on the appropriate sheet) and go back to <(s) = +∞ on the other side of the branch-cut (and on the same
sheet)9. The cuts on the s-plane may overlap only for those values of α = arg(x) for which the imaginary parts of
two different critical values s(i)cr (α) and s

(j)
cr (α) coincide: a straightforward computation yields the lines separating

the sectors Sk defined in Eqs. (3-13), which –under our inessential simplifying assumptions on V2(y)– now reads with
d2 replaced by d and ϑ = 0.

We need also the following

Definition 3.1 For a given sector S centered around a ray arg(x) = α0 with width A < π, the dual sector S∨ is
the sector centered around the ray arg(x) = α0 + π and with width π −A.

For x→∞ in each sector the SDCs are a constant integral linear combination of the contours Γ(k)
y ’s; when x crosses

the Stokes line between two adjacent sectors the homology of the SDC’s changes discontinuously.
We denote the SDCs relative to the sector Sk by γ

(k)
j , j = 0..d − 1 and the matrix of change of basis with Ck. In

matrix form we have
~γ(k) = Ck

~Γ , Ck ∈ GL(d,Z) . (3-43)

Our first objective is to compute these matrices Ck.
For each fixed generic (i.e. away from the Stokes’ lines) α we can construct a diagram (essentially a Hurwitz

diagram) which describes the sheet structure of the inverse map z = Z(s). We draw d + 1 identical ordered d-gons
each representing a copy of the s-plane and whose (labeled) vertices represent the projections of the d critical values
s
(j)
cr . Two vertices with the same label of two different d-gons are joined by a segment if the two sheets are glued

together along a horizontal branch-cut originating at the corresponding crtical value and going to <(s) = +∞. Since
all the branch-points of the inverse map are of order 2 there are at most two sheets glued along each cut.
Furthermore we give an orientation to the segments (represented by an arrow) with the understanding that this gives
an orientation to the corresponding SDC. The convention is that an arrow going from sheet j to sheet k means that
the SDC runs on sheet j coming from <(s) = +∞ below the cut and going back above the same cut (or, which is
“homologically” the same, a contour running on sheet k coming from +∞ above and returning to +∞ below the cut).

The diagram can be biunivocally associated to a matrix of size d × (d + 1) in which each row correspond to a
SDC and each column to a sheet. This matrix has a −1 in the (k, j) entry if the k-th SDC points to the j-th sheet,
a 1 if the k-th SDC originates on the j-th sheet or a 0 otherwise. Hence each line of the matrix has only one +1 and
one −1. The matrix corresponding to the diagram in the figure is

Q0 :=



1 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0
0 0 1−1 0 0 0 0 0 0 0 0
0 0 0 1−1 0 0 0 0 0 0 0
0 0 1 0 0−1 0 0 0 0 0 0
0 1 0 0 0 0−1 0 0 0 0 0
1 0 0 0 0 0 0−1 0 0 0 0
0 0 0 0 0 0 0 0−1 0 0 1
0 0 0 0 0 0 0 0 0−1 1 0
0 0 0 0 0 0 0 0 0 0−1 1
1 0 0 0 0 0 0 0 0 0 0−1



0 1 2 3 4 5 6 7 8 9 10 11
0
1
2
3
4
5
6
7
8
9
10

. (3-44)

As α = arg(x) ranges within a fixed sector Sk the diagram does not change topology and the corresponding matrix
Qk remains unchanged.

We can now describe how a given diagram changes when α = arg(x) crosses the line between two adjacent sectors
Sk and Sk+1 (counterclockwise); these lines correspond precisely to the values of α for which two distinct critical
values have the same imaginary parts (so that the cuts may overlap if they are on the same sheet); we leave to the
reader the simple check that these lines are precisely the boundaries of the Stokes sectors Sk.
As α increases by π/(d+ 1) from Sk to Sk+1 the d-gons rotate by π/d. In this process the connections between the
sheets change according to the following rule; if a the branch-point Pj on sheet r crosses the cut originating from a

9For the SAC’s we should perform cuts extending to <(s) = −∞ instead.
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Figure 3: Sheet structure in the case d = 11, α = 0. The contours depicted in figure are the SDC in the z plane.
The picture on the right represents the contours after incrementing α by 2π/12. Notice the labeling the contours.

different branch-point Ph on the same sheet (on the left of Pj on sheet r, and hence Pj crosses the cut from below as
it moves upwards) then the Pj (and its cut) jumps on the sheet s which is glued to sheet r along the cut originating
at Ph (see Fig. 4).
Diagrammatically the tip (or the tail) of the corresponding arrow moves from one d-gon to the one connected along
the vertex h.
In terms of the matrix Qk the j-th row reflects along the hyperplane orthogonal to the h-th row.
The corresponding SDCs γ(k)

j and γ(k)
h are related to the SDCs γ(k+1)

j and γ(k+1)
h by the following relation

γ
(k+1)
j = γ

(k)
j

γ
(k+1)
h = γ

(k)
h + εhjγ

(k)
j

(3-45)

where the incidence number εhj = εjh is 1 if the SDCs γ(k)
j , γ

(k)
h have the opposite orientation and −1 if they have

the same orientation. Alternatively the incidence number is just the (standard) inner product of the corresponding
rows h, j of the matrix Qk.

We denote by Mk the d×d matrix which expresses this change in the SDCs. One can then check that the matrices
Qk and Qk+1 are related by

Qk+1 = M t
k
−1
Qk . (3-46)

Therefore we can reconstruct the matrices Mk once we have an initial diagram representing the sheet structure.
Before constructing the initial diagram we want to point out that when α increases by 2π/(d+ 1) (i.e. we cross

two Stokes lines) the steepest descent (unoriented) contours are the same as the original ones but rotated by the
same amount clockwise.
That is the unoriented (i.e. forgetting the orientation of the SDCs) diagram is the same up to permuting cyclically
the labels of the (d+1) sheets and labels of the d cuts: notice that the critical points rotate by 2π

d(d+1) and the critical
values by 2π

d counterclockwise. Indeed we have

s

(
z;α+

π

d+ 1

)
=

zd+1

d+ 1
− eiαei π

d+1 z = s(ei π
d+1 z;α) . (3-47)
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Figure 4: The swapping of two critical values and the corresponding cuts.

As for the orientation of the SDC’s relative to the new labeling the d-th SDC passing through z
(d−1)
cr reverses its

orientation relative to the (oriented) SDCs obtained by just rotating the initial SDCs (see Figure 3).
This implies that the matrices Qk representing the diagrams in the various sectors and the Stokes’ matrices Mk

satisfy the recurrence relation

Sd+1 =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0

0 0
. . . 0

...
0 0 · · · 1 0

 ∈ GL(d+ 1,Z) , p :=


0 0 · · · 0 −1
1 0 · · · 0 0
0 1 · · · 0 0

0 0
. . . 0 0

0 0 · · · 1 0

 ∈ GL(d,Z) (3-48)

Qk+2 = p−1QkSd+1 , Mk+2 = p ·Mk · p−1 . (3-49)

Therefore it is necessary to compute just Q0, Q1 and M0,M1.
Notice that the wedge contours Γ(j)

y , j = 0, . . . , d are in one to one correspondence with the sheets of the map Z(s),
therefore the same argument proves that

P :=


−1 −1 · · · −1 −1

1 0 · · · 0 0
0 1 · · · 0 0

0 0
. . . 0 0

0 0 · · · 1 0

 ∈ GL(d,Z) (3-50)

Ck+2 = pCk P , (3-51)

Where both the matrices Sd+1 and P implement the cyclic group Zd+1 (although P is of size d × d): indeed the
matrix P is exactly the matrix implementing the generator of Zd+1 on the “wedge” contours, i.e. with the additional
constraint

∑d
i=0 Γi = 0.

We now describe how to obtain the initial diagram, for example how we got Figure 3.
We start by noticing that the “wedge” contours Γ(k)

y enclose the sector S2k−1 of width π/(d+1). It is an easy estimate
that the corresponding integrals are (more than) exponentially decreasing in the dual sector. Indeed∣∣∣∣∫

Γk

e−
1
~ (yd+1/(d+1)−xy)dy

∣∣∣∣ ≤ exp (|x|M)
∫

Γk

∣∣∣e− 1
~ yd+1/(d+1)

∣∣∣ dy (3-52)

where M is the supremum of <(xy) as y goes along Γ(k)
y . Now the contour Γ(k)

y can be deformed as to “skim” the
sector S2k−1 as close as we wish. Then the constant M is finite and negative if x lies within the dual sector S∨k and
in the region outside Γ(k)

y .
We now consider the case of odd d, leaving the easy generalization to even d’s to the interested reader. The main
(only) difference is that for odd d, α = arg(x) = 0 is not a Stokes’ line. Had we to study the case d even, then we
should take a convenient initial value of α (e.g. α = ε << 1 or α = π/2(d+ 1), which correspond to an anti–Stokes
line).

Let us focus on any of the SDCs attached to a critical value lying in the right s-plane. Since the real part of those
critical values is positive, the corresponding integrals decrease as exp(− d

d+1ω
jΛ), (Λ := 1

~ |x|
d+1

d ) that is are (more
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than) exponentially suppressed on the line x ∈ R+.
As we increase α the d-gons rotate by d+1

d α. It should be clear from the previous description of the change of
homology of the SDCs that the SDCs attached to such critical values do not change homology class while they
remain in the right s-plane: this is so because there are no branchpoints to their right.
Therefore the corresponding integrals are exponentially suppressed as long as α ranges in a corresponding sector of
width d

d+1π = π − 1
d+1π. By careful inspection of the anti-Stokes lines (i.e. the lines along which the integrals are

most decreasing) for these integrals one concludes that they coincide with appropriate Γ(k)
y in the left z-plane.

This argument proves that all “wedge” contours Γ(k)
y lying in the left plane are homological to SDCs (these are the

SDCs in the left z-plane in Figure 3).
We then take the first critical value lying in the right s-plane (in Figure 3, the SDC number 10). As we move α

so as to move this critical value to the right s-plane, the corresponding SDC can acquire a contribution only from the
first SDC in the left plane (number 9 in our example). As a consequence the corresponding integral is exponentially
suppressed in a sector of width π − 2 π

d+1 . Considering its anti-Stokes line and its linear independence from the
previously identified SDCs, we conclude that it must enclose two odd-numbered sectors S2k+1 and S2k+3 (in our
example this is contour 10). Proceeding this way we can easily identify the homology classes of all SDCs for α = 0.
The labelling of the sheets and the SDCs is largely arbitrary and the choice we have made in the example is just for
“aesthetic” reasons.

With these notation the basis of contours Γ(k)
y , k = 1, . . . d and the basis γ(0)

j , j = 0, . . . d− 1 are related by

~γ(k) = Ck
~Γ = Mk−1 · · ·M0C0

~Γ (3-53)

~γ(0) = C0
~Γ (3-54)

C0 :=



1 1 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1 1



↓1 ↓[
d
2 ]+1

↑1 ↑[ d
2 ]+3 ↑d

←
[

d
4

]

←
[
3d
4

]
+ 1

(3-55)

It is not difficult to give an explicit description of the matrices Q0, Q1 and M0,M1 but we will not give it here
for brevity: it is a lengthy but straightforward calculation which gives the matrices in the next Table (reported for
d = 2, . . . , 11) where one can clearly extrapolate the correct rule.

We now turn our attention to the Stokes matrices.
Consider the subblock of the fundamental system of solutions of the D1 ODE relative to the F–L. transforms; if we
denote by Y (x) the d2 × d2 such block whose rows are the integrals of ϕN (y) on the contours Γ(k)

y and by Yk(x) the
analog matrix obtained by integrating over the SDCs, we have

Yk(x) = CkY (x). (3-56)

The Stokes matrices are then given by

Sk := Yk+1Yk
−1 = Ck+1Ck

−1 = Mk . (3-57)

M0=

 1 0
0 1

M1=

 1 0
1 1

 ;d=2 (3-58)

M0=


1 −1 0
0 1 0
0 0 1

M1=


1 0 0
0 1 0
0 1 1

 ;d=3 (3-59)

M0=


1 −1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

M1=


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

 ;d=4 (3-60)
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M0=



1 0 −1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 1


M1=



1 −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 1


;d=5 (3-61)

M0=



1 0 −1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1 0 1


M1=



1 −1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 1 0 0 1


;d=6 (3-62)

M0=



1 0 0 −1 0 0 0
0 1 −1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 1


M1=



1 0 −1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 1 0 0 1


;d=7 (3-63)

M0=



1 0 0 −1 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 1


M1=



1 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1


;d=8 (3-64)

M0=



1 0 0 0 −1 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 1



M1=



1 0 0 −1 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 1



;d=9 (3-65)

M0=



1 0 0 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0 0 1



M1=



1 0 0 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0 1



;d=10 (3-66)

M0=



1 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 1



M1=



1 0 0 0 −1 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 0 1



;d=11 .(3-67)
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Figure 5: The structure of Stokes sectors and discontinuities for the case d1 = 7 and d2 = 11 and both leading
coefficients for the potential real and positive.

In order to complete the description of the Riemann–Hilbert problem we need to consider also the extra solution
obtained by Hilbert–Fourier-Laplace transform: in doing so we extend the previously computed Stokes matrices Mk

to the full fundamental system of d2 + 1 solutions by means of

M̂k :=
[

1 0
0 Mk

]
. (3-68)

Summarizing the whole discussion, we have proved the

Theorem 3.1 [Riemann–Hilbert Problem] Given the Stokes’ sectors Sk, k = 0, . . . , 2d2 + 1 around x = ∞ defined
in Eq. (3-13) and the d1 + 1 rays Lµ lying in the sectors S(x)

2µ , µ = 0, . . . , d1 and chosen as to avoid the Stokes lines
(see, e.g., Fig. 5), we formulate the following Riemann–Hilbert problem for the GLd2+1-valued piecewise analytic
function Φ(x)

Φ+(x) = Gµ Φ−(x) , x ∈ Lµ , (3-69)

with the Stokes matrices M̂k constructed in this paragraph and the formal asymptotic specified in Prop. 3.1.

4 Summary and comments on large N asymptotics in multi-matrix
models

A complete formulation of the Riemann–Hilbert problem characterizing fundamental systems of solutions to the
differential - recursion equations satisfied by biorthogonal polynomials associated to 2-matrix models with polynomial
potentials is provided in Theorem 3.1.The approach derived here can be straightforwardlly extended to the case of
biorthogonal polynomials associated to a finite chain of coupled matrices with polynomial potentials following the
lines outlined in the appendix of [4].

The Riemann-Hibert data, consisting essentially of the Stokes matrices at∞, are independent of both the integer
parameter N corresponding to the matrix size and the deformation parameters determining the potentials; that is, the
fundamental solutions constructed are solutions simultaneously to a differential-difference generalized isomonodromic

22



deformation problem. This provides a first main step towards a rigorous analysis of the N →∞, ~N = O(1) limit of
the partition function and the spectral statistics of coupled random matrices (as well as the question of universality in
the resulting Fredholm kernels, and hence the spectral statistics of 2-matrix models). Such an analysis should follow
similar lines to the methods that were previously successfully applied to ordinary orthogonal polynomials in the
1-matrix case [8, 19, 22, 23, 12, 13]. The main difference in the 2-(or more) matrix cases is that in the double–scaling
limit the functional dependence of the free energy on the eigenvalue distributions is not as explicit as in the 1-matrix
models [26, 21]. It is also clear that the hyperelliptic spectral curve that arises in the solution of the one-matrix
model has to be replaced by a different algebraic curve, which arises naturally in the spectral duality of the spectral
curves of [4], as was pointed out in [16].

In order determine the large N asymptotics with the help of the the RH problem, one should begin with an
ansatz that can be checked a posteriori against the given case. In the 1-matrix case [12, 13], this was provided by
means of hyperelliptic Θ-functions. The physical heuristics and the basic tools for generating such ansatz were also
given in [9, 16]. Much of of the heuristics can be extended to the 2-matrix model [6], and this will be the subject of
a subsequent work [3].
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