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Abstract

A standard finite dimensional nonlinear control system is considered, along with a state constraint set S
and a target set Σ. It is proven that open loop S-constrained controllability to Σ implies closed loop S-
constrained controllability to the closed δ-neighborhood of Σ, for any specified δ > 0. When the target set
Σ satisfies a small time S-constrained controllability condition, conclusions on closed loop S-constrained
stabilizability ensue. The (necessarily discontinuous) feedback laws in question are implemented in the
sample-and-hold sense and possess a robustness property with respect to state measurement errors. The
feedback constructions involve the quadratic infimal convolution of a control Lyapunov function with
respect to a certain modification of the original dynamics. The modified dynamics in effect provide for
constraint removal, while the convolution operation provides a useful semiconcavity property.
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1 Introduction

We shall consider a control system of the form

ẋ(t) = f(x(t), u(t)) a.e., u(t) ∈ U. (1)

The state trajectory x(·) evolves in Rn and control functions u(·) are Lebesgue measurable functions u : R → U ,
where U ⊂ Rm is a compact control constraint set. We shall assume throughout that the above dynamics satisfy the
following standard hypotheses:

(F1) The function f : Rn × U → Rn is continuous and is locally Lipschitz in the state variable x, uniformly for
u ∈ U ; that is, for each bounded set Γ ⊂ Rn, there exists KΓ > 0 such that

‖f(x, u)− f(y, u)‖ ≤ KΓ‖x− y‖,

whenever (x, u) and (y, u) are in Γ× U .

(F2) The function f possesses linear growth; that is, there exist positive numbers c1, c2 such that

‖f(x, u)‖ ≤ c1‖x‖+ c2 ∀ (x, u) ∈ Rn × U.

(F3) The velocity set
f(x, U) := {f(x, u) : u ∈ U}

is convex for every x ∈ Rn.

Under (F1)-(F2), for every initial phase (τ, α) ∈ R × Rn and every control function u(·), there exists a unique
trajectory x(t) = x(t; τ, α, u(·)) defined for t ≥ τ and satisfying x(τ) = α.

Remark 1.1. Actually, for our purposes, (F2) could be replaced by the somewhat weaker hypothesis that f(Γ, U)
be bounded for any bounded set Γ ⊆ Rn. (See also §5.3 below with regard to this issue.) Assumption (F3) will be
needed below in order to have available a required sequential compactness property of trajectories. On the other
hand, in the absence of (F3), the results of this article could be framed in the context of relaxed controls.

A general problem of considerable theoretical as well as applied interest, and one which has received much attention
in recent years, is whether open loop asymptotic controllability of the origin implies closed loop stabilization. We need
not give precise definitions of these properties here, but roughly speaking, open loop asymptotic controllability
means that for every initial state in Rn, there exists a control function so that the resulting trajectory of (1) is driven
asymptotically to the origin, and that this property holds in a certain uniform and Lyapunov stable manner. Closed
loop stabilizability of the origin involves the existence of a feedback law k : Rn → U such that all solutions of the
ordinary differential equation

ẋ(t) = f(x(t), k(x(t))) (2)

asymptotically approach the origin, again, in a uniform and Lyapunov stable manner.
A minimal condition for the existence of classical solutions to the ordinary differential equation (2) is that the

feedback law k(·) be continuous on Rn\{0}. However, as was shown by Sontag and Sussman [34], even when
m = n = 1, such a feedback law k(·) need not exist. A further negative result in this regard was provided by
Brockett [4], who derived a topological condition on the dynamics which is necessary for the existence of a stabilizing
feedback law which is continuous on Rn, and exhibited an example violating this condition, in spite of its global open
loop controllability to the origin. In addition, Ryan [30] showed that Brockett’s necessary condition persists even
when Filippov solutions are considered. The upshot is that in addressing the above problem, due to the fact that
continuity of feedback laws cannot be expected, it is advantageous to work with an alternative solution concept for
(2), rather than the classical or Filippov ones. On the other hand, if nonautonomous feedbacks of the form k(t, x)
are allowed (and they are not, in our problem, which calls for a purely positional feedback law k(x)), then continuity
is not precluded; see Coron [15] and Coron and Rosier [16].

Clarke, Ledyaev, Sontag and Subbotin [8] obtained an affirmative answer to the above problem in terms of the
following ”sample-and-hold” solution concept for (2), where k(·) is in general discontinuous. Let an initial state
α ∈ Rn be specified. Then given a partition

π = {t0, t1, t2, . . .} (3)
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of [0,∞) (where t0 = 0), the associated π-trajectory x(·) on [0,∞) with x(0) = x(t0) = α is the curve satisfying
interval-by-interval dynamics as follows: Set x0 = α. Then on the interval [t0, t1], x is the classical solution of the
differential equation

ẋ(t) = f(x(t), k(x0)), x(t0) = x0, t ∈ (t0, t1). (4)

We then set x1 := x(t1), and restart the system on the next interval as follows:

ẋ(t) = f(x(t), k(x1)), x(t1) = x1, t ∈ (t1, t2). (5)

The process is continued in this manner through each interval. Note that x is the unique solution on [0,∞) of the
differential equation ẋ(t) = f(x(t), u(t)) satisfying x(τ) = α, with a certain piecewise constant control function u
determined by the control feedback k(x). The sample-and-hold solution procedure is sometimes referred to as “closed
loop system sampling”, and is the same as the “step-by-step” solution concept employed by Krasovskĭı and Subbotin
[23] in differential game theory. We refer the reader to the introduction in Clarke, Ledyaev, Rifford and Stern [7] for
more detail on the history of the problem, nonsmooth Lyapunov functions, Filippov solutions, and related topics.
Other references relevant to the present work are Sontag [33]), Clarke, Ledyaev, Stern and Wolenski [9], [11], and
Rifford [25], [26], and [27], Hermes [19], [20], Kokotovic and Sussman [22], Bacciotti [2], Ancona and Bressan [1], Teel
and Praly [35], and Kellett and Teel [21].

In the present article, we shall address a variant of the problem discussed above, in which a state constraint is
imposed; to the best of our knowledge, this is the first such endeavor. Specifically, for a given constraint set S ⊂ Rn

and target set Σ such that S ∩ Σ 6= ∅, we introduce the following definitions:

Definition 1.2. Open loop S-controllability to Σ holds provided that for any initial state α ∈ S, there exists a
control function u(·) and a time t(α) ≥ 0 such that

x(t) = x(t; 0, α, u(·)) ∈ S ∀ t ∈ [0, t(α)], (6)

and
x(t(α)) ∈ Σ. (7)

Note that the controllability property in the preceding definition is not an asymptotic one. On the other hand,
if open loop asymptotic S-controllability holds for a given target, then obviously open loop S-controllability to the
closed γ-neighborhood of Σ holds for every γ > 0.

Definition 1.3. Closed loop S-controllability to Σ holds provided that there exists a feedback law k : Rn → U along
with reals T1 > 0 and β > 0, such that the following holds: If

diam(π) := max{ti+1 − ti : i = 0, 1, . . .} ≤ β,

then for every α ∈ S, there exists t1(α) ∈ [0, T1] such that the π-trajectory associated with the ordinary differential
equation

ẋ(t) = f(x(t), k(x(t))

and initial condition x(0) = α, satisfies
x(t) ∈ S ∀ t ∈ [0, t1(α)], (8)

and
x(t1(α)) ∈ Σ. (9)

Our first main result (Theorem 4.1) asserts that when certain geometric conditions are imposed upon S, then
open loop S-controllability to Σ implies closed loop S-controllability to the closed δ-neighborhood of Σ, for any
specified δ > 0. No geometric assumptions are imposed upon the target set Σ, beyond nonemptiness of S ∩ Σ.

Definition 1.4. closed loop S-stabilizability to Σ holds provided that closed loop S controllability to Σ holds, with
(9) in Definition 1.3 fortified to

x(t) ∈ S ∩ Σ ∀ t ≥ t1(α). (10)
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In the second main result (Theorem 4.7), we impose a small time S-constrained controllability hypothesis, and
prove that in the presence of that hypothesis, open loop S-controllability to Σ implies closed loop S-stabilizability
to the closed δ-neighborhood of S, for any specified δ > 0. Our feedback constructions in these results involve the
quadratic infimal convolution of a control Lyapunov function with respect to a certain modification of the original
dynamics. The modified dynamics in effect provide for constraint removal, while the convolution operation provides
a useful semiconcavity property.

The layout of this article is as follows. In the next section, we will present preliminaries from nonsmooth analysis.
Then in §3, certain required geometric results pertaining to the constraint removal method in Clarke, Rifford and
Stern [12] are recalled. The main results are provided in §4, while §5 contains concluding comments, inlcuding a
robustness property with respect to state measurement error of the feedback laws constructed in §4.

2 Nonsmooth analysis background

Our general reference on nonsmooth analysis employed in this article is [11]. Other useful references are [9], Clarke
[5], [6], Loewen [24] and Vinter [36].

2.1 Notation and definitions

The Euclidean norm is denoted ‖ · ‖, and 〈 , 〉 is the usual inner product. The open unit ball in Rn is denoted B.
For a set Z ⊂ Rn, we denote by co(Z), cl(Z), bdry(Z), and int(Z) the convex hull, closure, boundary, and interior
of Z, respectively. We denote the closure of the complement of Z by Ẑ := cl{Rn\Z}. Given δ > 0, we denote
Zδ := Z + δB. For a closed set Z, the distance of a point u to Z is denoted

dZ(u) := min{‖u− x‖ : x ∈ Z}.

Let g : Rn → (−∞,∞] be an extended real valued function which is lower semicontinuous; that is, for each
x ∈ Rn, g(x) ≤ lim infy→x g(y). A vector ζ ∈ Rn is said to be a proximal subgradient (or P-subgradient) of g at a
point x such that g(x) < ∞ provided that there exists σ > 0 such that

g(y)− g(x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉 (11)

for all y near x; this is known as the proximal subgradient inequality. The set of all such vectors ζ is called the
P-subdifferential of g at x, denoted ∂P g(x). One can show that ∂P g(x) 6= ∅ for a dense subset of dom(g), the set of
points where g is finite. The limiting, or L-subdifferential is defined via limits as

∂Lg(x) := {lim ζi : ζi ∈ ∂P g(xi), xi → x, g(xi) → g(x)},

and for g locally L:ipschitz, the C-subdifferential is defined as ∂Cg(x) := co{∂Lg(x)}. For such g, one has the
containments

∂P g(x) ⊂ ∂Lg(x) ⊂ ∂Cg(x) ∀x ∈ Rn. (12)

2.2 Semiconcavity

Definition 2.1. Let U ⊂ Rn be open. Then a continuous function ϕ : U → R is semiconcave on U provided that
there exists c ≥ 0 such that for any x ∈ U

ϕ(x + h) + ϕ(x− h)− 2ϕ(x) ≤ c‖h‖2

whenever ‖h‖ is sufficiently small (depending on x).

Semiconcavity is an important regularity property in the theory of nonlinear partial differential equations, and
as first demonstrated by Rifford [26], [27], in Lyapunov theory as well. The following proposition summarizes some
useful equivalences involving semiconcavity,It is essentially known, following as it does from facts in Bardi and
Capuzzo-Dolcetta [3] and [11].

Proposition 2.2. For U ⊂ Rn open and ϕ : U → R locally Lipschitz, the following three properties are equivalent:

(i) ϕ is semiconcave on U .
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(ii) There exists c ≥ 0 such that
g(y) := ϕ(y)− c‖y‖2

is locally concave on U ; that is, for every x ∈ U , there exists rx > 0 such that x + rxB ⊂ U and g(·) is concave
on x + rxB.

(iii) There exists c ≥ 0 such that given x ∈ U , there exists rx > 0 for which

−ϕ(y) + ϕ(x) + c‖y − x‖2 ≥ 〈ζ, y − x〉 ∀ ζ ∈ ∂P (−ϕ)(x), ∀ y ∈ x + rxB. (13)

Furthermore, if ϕ is semiconcave on U , then at every x ∈ U one has

∂P (−ϕ)(x) = ∂L(−ϕ)(x) = ∂C(−ϕ)(x) = −∂Cϕ(x). (14)

Of particular use to us below will be the following.

Corollary 2.3. Suppose that U ⊂ Rn is open and that ϕ is semiconcave on U . Then for any open convex subset U ′

of U and any x, y ∈ U ′, one has

−ϕ(y) + ϕ(x) + c‖y − x‖2 ≥ 〈ζ, y − x〉 ∀ ζ ∈ ∂P (−ϕ)(x) (15)

and
ϕ(y)− ϕ(x) ≤ 〈ζ, y − x〉+ c‖y − x‖2 ∀ ζ ∈ ∂Lϕ(x), (16)

where c is as in (13).

3 State constrained tracking and constraint removal

Our methods will utilize recent results in Clarke, Rifford and Stern [12] (see also Clarke and Stern [13]), which dealt
with the construction of feedback control laws for a general class of state constrained optimal control problems, via
a constraint removal method. In that work, extra hypotheses were imposed upon S, so as to have available certain
geometric properties of inner approximations of S, given by

Sr := {x ∈ Rn : dŜ(x) ≥ r}.

for r ≥ 0; note that S0 = S. Inner approximations were studied in earlier work by Clarke, Ledyaev and Stern [10],
as well as in [12]. Several important properties verified in [12] regarding inner approximations will also be required
in the present article, and will be summarized in this section.

The augmented geometric hypotheses on S are now posited. We denote the lower Hamiltonian h : Rn ×Rn → R
by

h(x, p) := min
u∈U

〈f(x, u), p〉. (17)

(S1) S is a compact subset of Rn which is wedged at each x ∈ S; that is, NC
S (x), the Clarke normal cone to S at x,

is pointed. This means that NC
S (x) ∩ {−NC

S (x)} = {0}, or equivalently, int[TC
S (x)] 6= ∅ for each x ∈ S, where

TC
S (x) denotes the Clarke tangent cone to S at x. (We again refer the reader to [11] for the defintions and

properties of these geometric constructs.)

(S2) The following “strict inwardness” condition holds:

h(x, ζ) < 0 ∀ 0 6= ζ ∈ NC
S (x), ∀x ∈ bdry(S). (18)

• Hypotheses (S1)-(S2) will be assumed to hold in all that follows.

Remark 3.1.

(a) Any convex body (i.e. a convex set with nonempty interior) is wedged, but convexity is not required; for
example, the closed complement of a convex body is necessarily wedged. Wedgedness of S at x ∈ bdry(S) is
also referred to in the literature as epi-Lipschitzness at x, since the property amounts to S being locally linearly
homeomorphic to the epigraph of a Lipschitz function; see Rockafellar [28] and Clarke [5].
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(b) The set S is said to be weakly invariant provided that for any initial state α ∈ S, there exists a control function
u(·) such that

x(t) = x(t; 0, α, u(·)) ∈ S ∀ t ≥ 0.

This is equivalent to the proximal condition

h(x, ζ) ≤ 0 ∀ ζ ∈ NP
S (x), ∀x ∈ S; (19)

see [11]. Hence conditions (S1)-(S2) are sufficient for weak invariance.

3.1 State constrained trajectory tracking

Required properties of inner approximations are summarized in the following lemma. Part (a) asserts that for small
positive r, inner approximations Sr of S inherit weak invariance from S itself, while parts (b) and (c) provide
trajectory tracking properties relative to inner approximations, in a uniform manner with respect to r. Among
references involving state constrained tracking are the seminal results of Soner [31]; see also Forcellini and Rampazzo
[17] and Frankowska and Rampazzo [18]. Part (a) of the lemma is included in Corollary 3.4 of [12], while parts (b)
and (c) are provided by the proofs of Theorem 3.10 and Proposition 3.13 of [12], respectively.)

Lemma 3.2. There exists a constant r0 > 0 satisfying the following three properties:

(a) For every r ∈ [0, r0], the set Sr is nonempty and weakly invariant.

(b) Given T > 0, there exists a constant M(T ) > 0 such that for every r ∈ [0, r0], the following holds: Let α0 and
α1 be initial states in Sr, and let u0(·) be a control function producing a trajectory which satisfies

x(t; 0, α0, u0(·)) ∈ Sr ∀ t ∈ [0, T ]. (20)

Then there exists a control function u1(·) which produces a trajectory which satisfies

‖x(t; 0, α1, u1(·))− x(t; 0, α0, u0(·))‖ ≤ M(T )‖α1 − α0‖ ∀ t ∈ [0, T ] (21)

and
x(t; 0, α1, u1(·)) ∈ Sr ∀ t ∈ [0, T ]. (22)

(c) Given T > 0, there exists a constant W (T ) > 0 such that for any initial state α ∈ int(S), if r ∈ [0, r0] is such
that α ∈ Sr and u(·) is a control function such that

x(t; 0, α, u(·)) ∈ S ∀ t ∈ [0, T ], (23)

then there exists a control function ū(·) such that

‖x(t; 0, α, ū(·))− x(t; 0, α, u(·))‖ ≤ rW (T ) ∀ t ∈ [0, T ], (24)

and
x(t; 0, α, ū(·)) ∈ Sr ∀ t ∈ [0, T ]. (25)

3.2 Modified dynamics and constraint removal

It will be convenient to denote

F (x) := f(x,U) = {f(x, u) : u ∈ U}.

Let us recall that in view of Filippov’s lemma, an absolutely conhtinuous arc x(·) is a trajectory of the differential
inclusion

ẋ(t) ∈ F (x(t)) a.e. (26)

on a given time interval, if and only if for some control function u(·), x(·) is a trajectory of the original control system
(1).

We will require the following lemma, which summarizes certain technical facts from [12].
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Lemma 3.3. If r0 > 0 is sufficiently small, then for each r ∈ [0, r0], there exists a multifunction Fr with the following
properties.

(a) Fr(x) is a compact convex subset of Rn for every x ∈ Rn. Also,

Fr(x) = F (x) ∀x ∈ Sr, (27)

and
Fr(x) ⊂ F (x) ∀x ∈ S. (28)

(b) There exists K > 0 (independent of r) such that

Fr(x) ⊂ Fr(y) + K‖y − x‖B ∀x, y ∈ Rn;

that is, Fr(·) is globally Lipschitz of rank K.

(c) For every initial phase (τ, α) ∈ R× Rn, there exists a trajectory x(·) satisfying the differential inclusion

ẋ(t) ∈ Fr(x(t)) a.e. (29)

on [τ,∞), such that x(τ) = α.

(d) The set S is strongly invariant with respect to Fr; that is, for every initial state α ∈ S, every trajectory x(·) of
the differential inclusion (29) with x(0) = α satisfies x(t) ∈ S for all t ≥ 0.

(e) There exists ε0 > 0 such that for any α ∈ S + ε0B, there exists a trajectory x(·) of (29) with x(0) = α, such
that x(1) ∈ S.

(f) There exists C > 0 (independent of r) such that the following holds: For any α ∈ S\Sr, there exists a trajectory
of x(·) of (29) such that x(0) = α and

t(α) := sup{t : dŜ(x(t)) ≤ r} ≤ Cr. (30)

(g) There exists T2(r) > 0 such that if α ∈ S and uα ∈ U are such that f(α, uα) ∈ Fr(α), then the (unique) solution
xα(·) of the differential equation

ẋ(t) = f(x(t), uα), (31)

with x(0) = α, satisfies xα(t) ∈ S for all t ∈ [0, T2(r)].

According to (a) and (b), the multifunction Fr in the statement is globally Lipschitz and agrees with F on the
inner approximation Sr, and is contained in F (x) for other points x ∈ S. Part (c) of the lemma follows from the
standard existence theory for differential inclusions; observe that the usual “linear growth” condition is implied by
the global Lipschitz nature of Fr. Note that (d) provides for what we refer to as “constraint removal”, in the sense
that for any initial state x(0) ∈ S, the state constraint x(t) ∈ S ∀ t ≥ 0 is implicit for the differential inclusion (29).
Full details of the construction of Fr satisfying (a)-(d) and (f)-(g) are provided in [12]. We mention that part (e)
follows independently from that construction and a result on set attainability in [11].

4 Main results

Our first main result is the following.

Theorem 4.1. For any δ > 0, open loop S-controllability to Σ implies closed loop S-controllability to Σδ.

We shall require the following lemma.

Lemma 4.2. Assume that open loop S-controllability to Σ holds. Then for any γ > 0, there exists T3 = T3(γ) > 0
such that the following hold:

(a) For any initial state α ∈ S, there exists a control function u(·) such that for some t̄ = t̄(α, γ) ∈ [0, T3] one has

x(t) = x(t; 0, α, u(·)) ∈ S ∀ t ∈ [0, t̄ ] (32)

and
x(t̄) ∈ Σγ . (33)
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(b) There exists r(γ) ∈ (0, r0] such that if 0 ≤ r ≤ r(γ), then the following holds: For any initial state α ∈ S there
exist t̃ = t̃(α, γ) ∈ [0, T3 + Cr0] and a trajectory x(·) of the differential inclusion (29) satisfying x(0) = α, such
that

x(t) ∈ S ∀ t ∈ [0, t̃ ] (34)

and
x(t̃) ∈ Σ2γ . (35)

Proof: In order to prove part (a), note that open loop S-controllability to Σ implies that for given α ∈ S, there
exists t(α) ≥ 0 such that for some trajectory x(·) of the control system (1) with x(0) = α, one has x(t) ∈ S for all
t ∈ [0, t(α)] and x(t(α)) ∈ Σ. By the S-constrained tracking property (b) of Lemma 3.2, there exists Q(α) > 0 such
that the following holds: For each

α1 ∈ N(α) := {α + Q(α)B} ∩ S,

there exists a trajectory x1(·) of (1) with x1(0) = α1 such that x1(t) ∈ S for all t ∈ [0, t(α)] and x1(t(α)) ∈ Σγ . In
particular, using the notation of Lemma 3.2 (b), we can take

Q(α) =
γ

M(t(α))
.

The family of sets N(α) forms a relatively open cover of S, and since S is compact, we have a finite subcover
{N(αi)}k

i=1. It is readily noted that
T3 = max{t(αi) : 1 ≤ i ≤ k}

has the required properties.
As for part (b) of the assertion, consider any initial state α ∈ S, and note that by part (f) of Lemma 3.3, for

r ∈ [0, r0], there exists a trajectory x1(·) of differential inclusion (29) emanating from α such that α1 := x1(t1) ∈ Sr

for some t1 ∈ [0, Cr0]. Furthermore, by part (d) of that lemma (strong invariance), x1(t) ∈ S on the interval [0, t1].
By part (a) of the present lemma, there exists a trajectory x2(·) of the control system (1) such that x2(0) = α1 and
such that for some t2 ∈ [0, T3] one has x2(t) ∈ S for all t ∈ [0, t2], and x2(t2) ∈ Σγ . According to tracking property
(c) of Lemma 3.2, if r ∈ [0, r(γ)], where

r(γ) := min
{

r0,
γ

W (T3)

}
,

then there also exists a trajectory x3(·) of the control system (1) such that x3(0) = α1, x3(t) ∈ Sr for all t ∈ [0, t2], and
‖x3(t2)−x2(t2)‖ ≤ γ, implying x3(t2) ∈ Σ2γ . Now note that in view of (27), on the interval [0, t2], the trajectory x3(·)
is also a trajectory of the differential inclusion (29). The required trajectory x(·) of the assertion is the concatenation
of x1(·) and x3(·). �.

Assume that the hypotheses and notations of the preceding lemma are still in effect. For a given r ∈ [0, r(γ)], we
introduce the following modification of the multifunction Fr:

Fr,γ(x) :=


co{Fr(x) ∪B} if ‖x‖ ∈ Σ2γ

co{Fr(x)} ∪ [3γ−dΣ(x)]
γ B if x ∈ Σ2γ , x /∈ Σ3γ

Fr(x) if x /∈ Σ3γ

(36)

By part (b) of the preceding lemma and Lemma 3.3(e), any α ∈ S + ε0B is the start point of some trajectory of
the differential inclusion (29) which reaches the target Σ2γ at a time not exceeding T3 + Cr0 + 1. Hence the same is
true for the differential inclusion

ẋ(t) ∈ Fr,γ(x(t)) a.e. (37)

This is due to the fact that one has the obvious containment

Fr(x) ⊂ Fr,γ(x) ∀x ∈ Rn. (38)

Furthermore, since the values of the multifunction Fr,γ are compact convex subsets of Rn and since this multifunction
is globally Lipschitz, it follows from the standard theory of differential inclusions that the set of trajectories of (37)
on any compact time interval, emanating from a given start point, is nonempty and sequentially compact in the
uniform topology. Hence the minimum time τr,γ(α) to the target Σ2γ from any start point α ∈ S + ε0B is attained;
here

τr,γ(α) := min{t̃ ≥ 0 : x(t̃) ∈ Σ2γ , ẋ(t) ∈ Fr,γ(x(t)) a.e., x(0) = α}. (39)
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Note that in this minimum time problem, there is no state constraint imposed.
We go on to define, for r, γ as above, an extended real valued function Vr,γ : Rn → (−∞,∞] as

Vr,γ(α) :=
{

τr,γ(α) if α ∈ S + ε0B
∞ if α ∈ Rn\{S + ε0B}

(40)

Important properties of the Vr,γ are provided by the following lemma, which follows directly from the more general
result, Theorem 3 in [27].

Lemma 4.3. Let γ > 0, assume that the origin is open loop S-controllable to Σ, and that 0 < r ≤ r(γ). Then the
following properties hold:

(a) Vr,γ is Lipschitz on S + ε0B, where ε0 is as in Lemma 3.3(e).

(b) One has
min

v∈Fr,γ(x)
〈v, ζ〉 ≤ −1 ∀ ζ ∈ ∂P Vr,γ(x), ∀x ∈ {S + ε0B}\{Σ2γ}. (41)

Remark 4.4. Actually, (41) holds in equality form, but it is the stated inequality, which encapsulates weak decrease
of the “control Lyapunov function” Vr,γ , that is of interest to us; see [11] for a discussion of this property.

For λ > 0, the quadratic infimal convolution of (the lower semicontinuous extended real valued function) Vr,γ is
the function V λ

r,γ : Rn → R given by

V λ
r,γ := inf

y∈Rn
{Vr,γ(y) + λ‖y − x‖2}. (42)

This function, which is clearly majorized by Vr,γ , is locally Lipschitz on Rn. Furthermore, if x ∈ Rn is such that
∂P V λ

r,γ(x) 6= ∅, then there exists a point ȳ ∈ Rn such that the infimum in (42) is uniquely attained at ȳ and

∂P V λ
r,γ(x) ⊂ ∂P Vr,γ(ȳ). (43)

It can also be shown that in fact, ∂P V λ
r,γ(x) reduces to a singleton, the Fréchet derivative of V λ

r,γ at x, a fact we
will not require. These properties of quadratic infimal convolutions are all verified in the reference [11]. We shall in
addition require the following lemma concerning the function V λ

r,γ ; the hypotheses of Lemma 4.3 are assumed to still
be in effect.

Lemma 4.5. There exists λ(γ) > 0 such that if λ > λ(γ), then V λ
r,γ is semiconcave on the set S + ε0

2 B, and

min
v∈Fr,γ(x)

〈v, ζ〉 ≤ −1
2

∀ ζ ∈ ∂P V λ
r,γ(x), ∀x ∈ {S +

ε0

2
B}\{Σ3γ}. (44)

Proof: One has
0 ≤ V λ

r,γ(x) ≤ Vr,γ(x) ≤ T3 + Cr0 + 1 ∀x ∈ S + ε0B, ∀λ > 0.

Hence for any x ∈ S + ε0B and any given λ > 0, there exist points y ∈ Rn such that

Vr,γ(y) + λ‖y − x‖2 ≤ T3 + Cr0 + 2. (45)

Then

‖y − x‖ ≤
√

T3 + Cr0 + 2
λ

=: w(γ, λ), (46)

and therefore
V λ

r,γ(x) = min
y∈x+w(γ,λ)B

{Vr,γ(y) + λ‖y − x‖2}, (47)

or equivalently,
−V λ

r,γ(x) = max
y∈x+w(γ,λ)B

{−Vr,γ(y)− λ‖y − x‖2}. (48)

Now consider x ∈ S + ε0
2 B, and note that the condition

λ > λ̂(γ) := 4
(

T3 + Cr0 + 2
(ε0)2

)
(49)
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implies
x + w(γ, λ)B ⊂ S + ε0B. (50)

By Lemma 4.3(a), Vr,γ is Lipschitz on the ball x + w(γ, λ)B, and it follows from (48) that the function −V λ
r,γ is

λ-lower C2 on that ball, in the terminology of Rockafellar, who studied this class of functions in [29]. Furthermore, as
was shown in Clarke, Stern and Wolenski [14], this property implies that one has the uniform proximal subgradient
inequality given by

−V λ
r,γ(y) + V λ

r,γ(x) + λ‖y − x‖2 ≥ 〈ζ, y − s〉 ∀ ζ ∈ ∂P (−V λ
r,γ)(x), ∀ y ∈ x + w(γ, λ)B. (51)

According to Proposition 2.2(iii) (with c = λ), since (51) holds for every x ∈ S + ε0
2 B, it follows that the function

V λ
r,γ is semiconcave on that set, for every λ > λ̂(γ).

Now let x ∈ {S + ε0
2 B}\{Σ3γ}, and assume that

λ > λ̃(γ) := max
{

λ̂(γ) ,
T3 + Cr0 + 2

γ2

}
(52)

Then
x + w(γ, λ)B ⊂ {S + ε0B}\{Σ2γ}, (53)

and therefore by (41), for any y ∈ x + w(γ, λ)B one has

min
v∈Fr,λ(y)

〈v, ζ〉 ≤ −1 ∀ ζ ∈ ∂P Vr,λ(y). (54)

Suppose that ζ ∈ ∂P V λ
r,λ(x). Then by property (43) (in the present context), one has that ζ ∈ ∂P Vr,λ(ȳ) for some

ȳ ∈ x + w(γ, λ)B. In view of (54), there exists v̄ ∈ Fr,λ(ȳ) such that 〈v, ζ〉 ≤ −1. Let us denote by Kr,λ a (global)
Lipschitz constant for the multifunction Fr,λ. Then there exists v̂ ∈ Fr,λ(x) such that ‖v̄ − v̂‖ ≤ Kr,λw(γ, λ). Now
denote by K ′

r,λ a Lipschitz constant for Vr,λ on S +ε0B. then ‖ζ‖ ≤ K ′
r,λ, by a standard fact regarding norm bounds

on proximal subgradients of Lipschitz functions. We then obtain

〈v̂, ζ〉 ≤ 〈v̄, ζ〉+ Kr,λK ′
r,λw(γ, λ). (55)

It follows that 〈v̂, ζ〉 ≤ − 1
2 provided that

λ > λ̄(γ) :=
T3 + Cr0 + 2
4(Kr,λK ′

r,λ)2
.

Upon setting
λ(γ) := max{λ̃(γ) , λ̄(γ)},

(44) holds and the proof is completed. �.

Proof of Theorem 4.1: As in the preceding lemma, let us fix 0 < r ≤ r(γ) and λ > λ(γ), where γ > 0 has been
chosen a priori so that 4γ < δ.

• For ease of notation, from this point on we will denote V λ
r,γ = V .

Since
Fr,γ(x) = Fr(x) ∀x ∈ Rn\{Σ3γ}, (56)

the inequality (44) can be written as

min
v∈Fr(x)

〈v, ζ〉 ≤ −1
2

∀ ζ ∈ ∂P V (x), ∀x ∈ {S +
ε0

2
B}\{Σ3γ}. (57)

This proximal Hamilton-Jacobi inequality is in turn readily seen to be equivalent to the limiting version

min
v∈Fr(x)

〈v, ζ〉 ≤ −1
2

∀ ζ ∈ ∂LV (x), ∀x ∈ {S +
ε0

2
B}\{Σ3γ}. (58)

A feedback law k : R× Rn → U is now defined as follows.

• Let x ∈ Rn.

9



– If x ∈ S\{Σ4γ)}, arbitrarily choose ζ ∈ ∂LV (x), and then set k(x) = u ∈ U such that f(x, u) ∈ Fr(x) and

min
v∈Fr(x)

〈v, ζ〉 = 〈f(x, u), ζ〉.

– Otherwise take k(x) to be any element of U .

Remark 4.6. It is the L-subdifferential of V that features in the definition of the feedback, and not the P -
subdifferential. The advantage of this choice is that ∂LV (x) 6= ∅ for every x, whereas the possible emptiness of
∂P V (x) would be problematic in our ensuing construction. Also observe that in the construction of a π-trajectory
associated with the control feedback k(x), the choice of ζ ∈ ∂LV (xi) does not need to be “remembered” at the next
node xi+1, so in the case of an “on-line” procedure, it suffices to calculate an arbitrary L-subgradient when a given
state is reached.

Given an initial state
α ∈ S\{Σδ} ⊂ S\{Σ4γ},

and a partition
π = {t0 = 0, t1, t2, . . .}

of [0,∞), let us consider the π-trajectory x(·) associated with the ordinary differential equation ẋ(t) = f(x(t), k(x(t)),
where the initial node is x(t0) = x(0) = x0 = α. Our goal is to produce positive numbers β and T1 such that if
diam(π) ≤ β, then for every such α, there exists t1(α) ∈ [0, T1] such that

x(t) ∈ S ∀ t ∈ [0, t1(α)], (59)

and
x(t1(α)) ∈ Σ4γ ⊂ Σδ. (60)

Of course, if α ∈ S ∩ {Σ4γ}, then we can take t1(α) = 0.
We shall assume that

diam(π) ≤ T2(r), (61)

where T2(r) is as in Lemma 3.3(g). Then the π-trajectory satisfies

xi ∈ S\{Σ4γ)} =⇒ x(t) ∈ S ∀ t ∈ [ti, ti+1], (62)

since Fr,γ(xi) = Fr(xi).
By Lemma 4.5, V is semiconcave on S + ε0

2 B, and therefore Corollary 2.3 yields

V (y)− V (x) ≤ 〈ζ, y − x〉+ λ‖y − x‖2 ∀ ζ ∈ ∂LV (x) ∀x, y ∈ U ′, (63)

for every open convex set U ′ ⊂ S + ε0
2 B. Let

M := max{‖f(x, u)‖ : x ∈ S + ε0B , u ∈ U}. (64)

In order to be able to apply (63) to the evolving π-trajectory, we will assume (further to (61)) that

diam(π) ≤
min{γ, ε0

2 }
M

=: ρ. (65)

This together with (62) yields the implication

xi ∈ S\{Σ4γ} =⇒ x(t) ∈ xi + ρB ⊂ S\{Σ3γ} ∀ t ∈ [ti, ti+1]. (66)

Let us further consider the evolution of the π-trajectory. Pick ζ0 ∈ ∂LV (x0). Then by (63) and (66), for t ∈ [t0, t1]
one has

V (x(t))− V (x0) ≤ 〈ζ0, x(t)− x0〉+ λ‖x(t)− x0‖2

= 〈ζ0,

∫ t1

t0

f(x(s), k(x0)ds〉+ λ‖x(t)− x0‖2.
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For ease of notation, let us abbreviate K = Kr,λ, which we recall denotes a Lipschitz constant for V = Vr,γ on
S + ε0B. We also denote by K̂ = KΓ a Lipschitz constant for f as in (F1), with Γ = S + ε0B. Then, bearing (58),
(66) in mind, one has

V (x1)− V (x0) ≤ −1
2
(t− t0) + (KMK̂ + λM)(t1 − t0)2. (67)

Now pick ζ1 ∈ ∂LV (x1). Upon repeating the above steps on the interval [t1, t2] and combining this with (67), we
obtain

V (x2)− V (x0) ≤ −1
2
(t2 − t0) + (KMK̂ + λM)[(t1 − t0)2 + (t2 − t1)2, (68)

which readily yields

V (x2)− V (x0) ≤
[
−1

2
+ (KMK̂ + λM) diam(π)

]
(t2 − t0). (69)

Continuing this process, we arrive at

V (xi)− V (x0) ≤
[
−1

2
+ (KMK̂ + λM) diam(π)

]
(ti − t0). (70)

Let us assume that
diam(π) ≤ 1

4(KMK̂ + λM)
=: β1 (71)

Then due to (70),

V (xi)− V (x0) ≤ −1
4
(ti − t0). (72)

It is readily noted that V = V λ
r,γ ≡ 0 on Σ2γ . Then since V is continuous on S + ε0B, it follows from (72) that

x(·) must enter Σ4γ at a time not exceeding

T1 := 4 max{V (x) : x ∈ S + ε0B} ≤ 4(T3 + Cr0 + 1). (73)

Upon taking
β := min{T2(r), ρ, β1}, (74)

the proof of the theorem is completed. �

Theorem 4.7, below, provides a strengthening of the conclusion of Theorem 4.1 from S-constrained controllability
to S-constrained stabilizability, when an S-constrained small time controllability hypothesis is posited. The need for
strengthened hypotheses is well understood and illustrated by the following example. Consider

S = {x ∈ R2 : 1 ≤ ‖x‖ ≤ 2, }, Σ = {(2, 0)},

where the dynamics are given by the bilinear system (a perturbed harmonic oscillator)

ẋ(t) =
(

0 1
−1 0

)
x(t) + u(t)x(t), U = [−1, 1].

It is easy to check that all the hypotheses of Theorem 4.1 hold, including open loop S-controllability, but closed loop
S-stabilization does not hold.

Theorem 4.7. Let open loop S-controllability to Σ hold, and let δ > 0 be given. Further assume that there exists
ε1 > 0 such that the S-constrained minimum time function τ : S → R to the target Σ,

τ(α) := min{t̃ ≥ 0 : x(t̃) ∈ Σ, ẋ(t) ∈ F (x(t)) a.e., x(t) ∈ S ∀ t ∈ [0, t̃], x(0) = α}, (75)

is continuous on S ∩ {Σε1}. Then closed loop S-stabilizability to Σδ holds for every δ > 0.

We remark that in view of sequential compactness of trajectories of the differential inclusion (26) on any compact
time interval, the minimum in (75) is indeed attained, for any α ∈ S.

The proof of Theorem 4.7 is actually a continuation of the proof of Theorem 4.1. There we showed that if
diam(π) ≤ β, then for any startpoint α ∈ S, the π trajectory associated with our feedback k(·) enters Σ4γ not later
than time T1, and is contained in S until its entry into Σ4γ .

In the present proof, we will specialize (but not violate the definition of) the feedback k(·) from the proof of
Theorem 4.1, as follows:
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• Let x ∈ Rn.

– If x ∈ S\{Σ4γ)}, arbitrarily choose ζ ∈ ∂LV (x), and then set k(x) = u ∈ U such that f(x, u) ∈ Fr(x) and

min
v∈Fr(x)

〈v, ζ〉 = 〈f(x, u), ζ〉.

– If x ∈ S ∩ {Σ4γ}, choose k(x) = u ∈ U such that f(x, u) ∈ Fr(x).

– Otherwise (i.e. when x /∈ S), take k(x) to be any element of U .

We shall require the following consequence of S-constrained trajectory tracking.

Lemma 4.8. There exists r̂(γ) > 0 such that if 0 < r < r̂(γ), the following holds: For any α ∈ S ∩ {Σ
ε1
2 }, there

exists a trajectory of the differential inclusion (29) (ẋ(t) ∈ Fr(x(t))) such that x(0) = α and x(τ(α)) ∈ Σ2γ .

Proof: Let α ∈ S ∩ {Σ
ε1
2 }. In view of Lemma 3.3(f), there exists a trajectory of (29) (necessarily S-constrained

by part (d) of that lemma) such that x(0) = α and x(t′) ∈ Sr for some time t′ = t′(α) ∈ [0, Cr]. We now denote
α′ = x(t′). If r is small enough, then α′ ∈ S ∩ {Σε1}, for any α as above.

Let u(·) be a control function such that

x(t; 0, α′, u(·)) ∈ S ∀ t ∈ [0, τ(α′)]

and
x(τ(α′); 0, α′, u(·)) ∈ Σ.

that is, u(·) is optimal in the S-constrained minimum time problem with target Σ and startpoint α′ ; recall that we
are presently assuming open loop S-controllability to Σ. In view of the tracking result given by Lemma 3.2(c), there
exists a trajectory x̄(·) of (29) such that x̄(0) = α′, x̄(t) ∈ Sr for all t ∈ [0, τ(α′)], and

x̄(τ(α′)) ∈ Σ + rW (T̃ )B, (76)

where T̃ is an upper bound on (the continuous function) τ(·) on S. It follows that

x̃(t′ + τ(α′)) ∈ Σ + rW (T̃ )B, (77)

where x̃(·) denotes the concatenation of the trajectories x(·) and x̄(·) of differential inclusion (29); it is therefore a
trajectory of (29), and as such, remains in S. One has

‖x̃(t′ + τ(α′))− x̃(τ(α)‖ ≤ Mt′ + M‖τ(α′)− τ(α)‖, (78)

where M is as in (64), although any norm bound on F (x) = f(x, U) over S will do. Now, 0 < t′ < Cr, τ(·) is
continuous on S ∩{Σε1} (where both α and α′ lie when r is sufficiently small), and ‖α−α′‖ ≤ MCr. It then follows
from (77) and (78) that x̃(τ(α)) ∈ Σ2γ if r is sufficiently small, independently of α ∈ S. �

Completing the proof of Theorem 4.7: In view of the definitions of the functions Vr,γ , V = V λ
r,γ , the preceding

lemma, and (38), one has
V (α) ≤ Vr,γ(α) ≤ τ(α) ∀α ∈ S ∩ {Σ

ε1
2 }. (79)

In view of the small time controllability hypothesis and (79), γ > 0 can be taken small enough (say 0 < γ ≤ γ̂) to
ensure that

V (α) <
4γ

M
∀α ∈ S ∩ {Σ5γ}. (80)

Let us now reconsider the π-trajectory x(·) generated by the feedback k(·), emanating from an arbitrary α ∈ S.
We choose

0 < γ ≤ max{δ

6
, γ̂},

λ > λ(γ),

0 < r < max{r(γ), r̂(γ)}

and
diam(π) ≤ β := min{T2(r), ρ, β1}.
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We know that x(·) enters Σ4γ not later than time T1. Denote by ti∗ the first node after the π-trajectory enters Σ4γ .
(If α ∈ Σ4γ , then i∗ = 1.) Since M diam(π) ≤ γ (by the bound involving ρ),

x(t) ∈ Σ5γ ∀ t ∈ [ti∗ , ti∗+1]. (81)

In view of (80),
V (x(ti∗+1)) ≤

γ

4M
. (82)

Then similarly to the proof of Theorem 4.1, x(·) re-enters Σ4γ not later than time ti∗+1 + γ
M , and consequently,

from time ti∗+1 until this re-entry, one has ‖x(t) − x(ti∗+1‖ ≤ γ. Hence, from time ti∗ until re-entry to Σ4γ , the
π-trajectory remains in Σ6γ ⊂ Σδ. The above arguments show that for any α ∈ S, after the π-trajectory enters
Σ4γ ⊂ Σδ, it thereafter remains in Σδ. During its evolution, the π-trajectory never leaves S, since it is a trajectory
of (29); recall Lemma 3.3(d). �.

5 Concluding remarks

5.1 Robustness

It transpires that the feedback law in Theorem 4.7 possesses a robustness property with respect to state measurement
errors which are small in an appropriate sense, and when the partition in the discretization scheme has the additional
requirement of being “reasonably uniform”, an insight first brought to light in [7].

The perturbed system under study is modeled by

ẋ(t) = f(x(t), k̃(x(t) + p(t))), (83)

where the function p(·) represents the observational error present in applying the feedback law.
Given a partition π of of [0,∞], the π-trajectory xπ obtained in the model (83) is the curve satisfying the following

interval-by-interval dynamics: Upon setting x0 = α, on the interval [t0, t1], xπ is the classical solution of

ẋπ(t) = f(xπ(t), k̃(x0 + p0)), xπ(t0) = x0, t ∈ (t0, t1). (84)

We then set x1 := xπ(t1), and restart the process on the next interval:

ẋπ(t) = f(xπ(t), k̃(x1 + p1)), xπ(t1) = x1, t ∈ (t1, t2), . (85)

Here the continuous function xπ(t) is the actual state of the system at time t, and the values xi + pi correspond to
the inexact measurements used to generate the piecewise constant control function in the scheme.

We have the following robust version of Theorems 4.1 and 4.7. The result allows for erroneous measurements of
the state giving values exterior to S, while the π-trajectory that is generated remains in S.

Theorem 5.1. Let δ > 0 be given, and assume that open loop S-controllability to Σ holds. Then there exists a
feedback law k̃ : Rn → U and positive reals T1 and β such that the following hold:

(a) For every b ∈ (0, β), there exists E(b) > 0 with the property that for any partition π of [0, T ] having

b

2
≤ ti+1 − ti ≤ b ∀ i = 0, 1, . . . , (86)

the error bounds
‖pi‖ < E(δ) ∀ i = 0, 1, . . . , (87)

imply that for any initial state α ∈ S, the π-trajectory xπ in the model above, with xπ(0) = α, satisfies

x(t′) ∈ Σ (88)

for some t1(α) ∈ [0, T1], and
xπ(t) ∈ S ∀ t ∈ [0, t1(α)]. (89)

(b) If the S-constrained small time controllability hypothesis of Theorem 4.7 is posited, then the conclusions of part
(a) can be strengthened by replacing (89) with

xπ(t) ∈ S ∩ Σ ∀ t ≥ t1(α). (90)
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For each x ∈ Rn, choose s(x) ∈ projS(x). Then the feedback law featuring in the theorem is simply given by

k̃(x) := k(s(x)) ∀x ∈ Rn, (91)

where k(·) is the feedback law from Theorem 4.7
The proof of Theorem 5.1 follows from arguments similar to those employed in §4.2 of [12]. There a finite time

optimal control problem was studied, but the technique needed to extend the proofs of Theorems 4.1 and 4.7 to
the above robust versions, is provided there. The fact that partitions with sufficiently small diameter are required
in Theorems 4.1, 4.7 and 5.1 is to be expected, since this is what is needed in order for the decrease property (as
manifested by proximal Hamilton-Jacobi inequalities) to come to bear in a sample-and-hold scheme such as ours.
On the other hand, as was pointed out in [12], [7] and Sontag [33] (with the latter two references dealing with
robust feedback stabilization via a shell-based approach), the near-uniformity of partitions posited in condition (86)
precludes a possible “chattering phenomenon” which could otherwise occur in the presence of state measurement
errors.

5.2 S-restricted dynamics

Suppose that the function f in the dynamics (1) is only defined for state values x ∈ S, where S is the state constraint
set in the problem we have studied. In many problems arising in economics and engineering, for example, such a
restricted definition is quite reasonable, since the dynamics might not make sense or break down when x /∈ S. So
suppose that f(x, u) is only defined on S ×U , while corresponding versions of (F1)-(F3) hold. In this situation, it is
possible to now extend f from S × U to Rn × U in a suitable way.

Let fi denote the ith component function of f , i = 1, 2, . . . , n. For each fixed u ∈ U , define a function x → f̂i(x, u)
on Rn as follows.

f̂i(x, u) = min
y∈S

{fi(y, u) + K‖y − x‖}.

It is not difficult to show that x → f̂i(x, u) agrees with fi(x, u) on S, and is globally Lipschitz of rank K. We extend
f by componentwise by setting fi(x, u) = f̂i(x, u) for every (x, u) ∈ Rn×U . The resulting function f : Rn×U → Rn

satisfies (F1)-(F3), as required. Note that the velocity sets f(x,U) need not be convex for x /∈ S, but this poses no
difficulty; in particular the tracking results in Lemma 3.2 still hold, as was pointed out in [12].

5.3 The case of unbounded S

The main results in this article (as well as [12]) have been stated for the case of compact S. It is worth noting
that if compactness of S is relaxed to mere closedness, corresponding versions can be framed. In particular, in the
corresponding versions of Definitions 1.2 and 1.3, the open and closed loop controllability properties to target Σ are
provided not for any α ∈ S, but for any α in a specified bounded subset of S. In order to show that this is valid, the
essential task (and a somewhat routine one) is to obtain appropriately localized versions of the tracking properties
in Lemma 3.2 as well as Lemma 3.3 on modified dynamics; we omit these details. Note, however, that in carrying
this out, (F2) is required, unlike the weakened version of this condition mentioned in Remark 1.1.
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tions. Birkhäuser, Boston, 1997.

[4] R. W. Brockett. Asymptotic stability and feedback stabilization. In Differential Geometric Control Theory
(pages 181-191). R. W. Brockett, R. S. Millman, and H. J. Sussmann (Eds.), 1983.

[5] F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley-Interscience, New York, 1983. Republished as Vol.
5 of Classics in Applied Mathematics, S.I.A.M., Philadelphia, 1990.

[6] F. H. Clarke. Methods of Dynamic and Nonsmooth Optimization, volume 57 of CBMS-NSF Regional Conference
Series in Applied Mathematics. S.I.A.M., Philadelphia, 1989.

14



[7] F. H. Clarke, Yu. S. Ledyaev, L. Rifford, and R. J. Stern. Feedback stabilization and Lyapunov functions.
S.I.A.M. J. Control Optim., 39:25–48, 2000.

[8] F. H. Clarke, Yu. S. Ledyaev, E. D. Sontag, and A. I. Subbotin. Asymptotic controllability implies control
feedback stabilization. I.E.E.E. Trans. Automatic Control, 42:1394, 1997.

[9] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Qualitative properties of trajectories of control
systems: a survey. J. Dyn. Control Sys., 1:1–48, 1995.

[10] F.H. Clarke, Yu. S. Ledyaev, and R. J. Stern. Complements, approximations, smoothings and invariance prop-
erties. J. Convex Anal., 4:189–219, 1997.

[11] F.H. Clarke, Yu. S. Ledyaev, R.J. Stern, and P.R. Wolenski. Nonsmooth Analysis and Control Theory. Graduate
Texts in Mathematics, volume 178, Springer-Verlag, New York, 1998.

[12] F. H. Clarke, L. Rifford and R. J. Stern. Feedback in state constrained optimal control. ESAIM:COCV, 7:97-133,
2002.

[13] F. H. Clarke and R. J. Stern. Inner approximation of state constrained optimal control problems. In Advances
in Convex Analysis and Global Optimization (pages 1-11), N. Hadjisavvas and P. M. Pardalos (Eds.). Kluwer
Academic, Dordrecht, 2001.

[14] F. H. Clarke, R. J. Stern, and P. R. Wolenski. Proximal smoothness and the lower-C2 property. J. Convex
Anal., 2:117-145, 1995.

[15] J.-M. Coron. Global asymptotic stabilization for controllable systems without drift. Math. Cont. Sig. Sys.,
5:295-312, 1992.

[16] J.-M. Coron and L. Rosier. A relation between continuous time-varying and discontinuous feedback stabilization.
J. Math. Syst. Estim. Contr., 4:67-84, 1994.

[17] F. Forcellini and F. Rampazzo. On nonconvex differential inclusions whose state is constrained in the closure of
an open set. Applications to dynamic programming. Differential and Integral Equations, 12:471–497, 1999.

[18] H. Frankowska and F. Rampazzo. Filippov’s and Filippov-Wazewski’s theorems on closed domains. J. Diff. Eq.,
161:449-478, 2000.

[19] H. Hermes. Discontinuous vector fields and feedback control. In Differential Equations and Dynamic Systems,
J. K. Hale and J. P. LaSalle (eds.), Academic Press, New York, 1967.

[20] H. Hermes. Resonance, stabilizing feedback controls, and regularity of Hamilton-Jacobi-Bellman equations.
Math. Control Signals Systems, 9:59-72, 1996.

[21] C. M. Kellett and A. R. Teel. Uniform asymptotic controllability to a set implies locally Lipschitz control-
Lyapunov function. In Proc. Conf. Decision and Control (Sydney). IEEE Publications, 2000.

[22] P. V. Kokotovic and H. J. Sussmann. A positive real condition for stabilization of nonlinear systems. Systems
Control Letters, 13:125–134, 1989.
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