Nonlinear Continuous Deformation of an Image Based on a Set of Intersecting Straight Lines

Company

Matrox

Coordinator

Dominique Orban
Département de mathématiques et génie industriel
École Polytechnique de Montréal

Team common language

French

References

1. Jorge Nocedal and Stephen Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2nd ed., 2006, XXII, ISBN: 978-0-387-30303-1.
2. Dimitri P. Bertsekas, Nonlinear Programming, 2nd Edition, 1999, ISBN: 1-886529-00-0.
3. Z. Zhang, A Flexible New Technique for Camera Calibration, Technical Report MSR-TR-98-71, Microsoft Research, 1998.
4. O. Faugeras, Three-Dimensional Computer Vision, MIT Press, 1993 (Chapter 2).

Abstract

Let I be a closed area within the plane, i.e., an image, which can be assumed to be a rectangle. Let D_{i} be a set of equidistant points belonging to a straight line and included in I. Let $A=\left\{D_{i} \mid i=1,2, \ldots, M\right\}$ be a collection of M straight lines. Some of the intersection points of lines in A may belong to I. Finally, let $g(x, y)$ be a function from the plane into itself representing a nonlinear, continuous and smooth deformation of I. Given $g(A)$, i.e., the image under g of the union of all the D_{i}, the problem is to find a method for estimating g.

The function g to be estimated represents the nonlinear image deformation produced by the lens of a camera. There are several simple models of this deformation (see references nos. 3 and 4 above). We are looking, however, for a solution independent of the lens type, although certain assumptions may be made. In general, the points belonging to a given straight line will be neither colinear, nor equidistant, after having been "transformed" by g. One may retain the assumption that the points belonging to a straight line D_{i} will belong to a convex segment after their transformation. One may also assume that g is radially symmetric with respect to a point that is not known a priori. Note that the original coordinates of the points are unknown; only the incidence relation between points and lines is known.

The difficulty lies in trying to control the behaviour of the function g near the points where two lines D_{i} and D_{j} intersect, or, more precisely, near a pair of points close to one another but that do not belong to the same

line. The naive approach consists in estimating the deformation separately for each line; this approach can produce a solution that is not consistent near the intersection points. For the same reason, computing the average of the deformations does not yield a valid solution in general. Our suggestion is to define a cost measure, for instance an elastic energy, to constrain the function g.

