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Abstract
Let I be a closed area within the plane, i.e., an image, which can be

assumed to be a rectangle. Let Di be a set of equidistant points belonging
to a straight line and included in I. Let A = {Di | i = 1, 2, . . . ,M} be a
collection of M straight lines. Some of the intersection points of lines in A
may belong to I. Finally, let g(x, y) be a function from the plane into itself
representing a nonlinear, continuous and smooth deformation of I. Given
g(A), i.e., the image under g of the union of all the Di, the problem is to find
a method for estimating g.

The function g to be estimated represents the nonlinear image deforma-
tion produced by the lens of a camera. There are several simple models of this
deformation (see references nos. 3 and 4 above). We are looking, however,
for a solution independent of the lens type, although certain assumptions
may be made. In general, the points belonging to a given straight line will
be neither colinear, nor equidistant, after having been “transformed” by g.
One may retain the assumption that the points belonging to a straight line
Di will belong to a convex segment after their transformation. One may also
assume that g is radially symmetric with respect to a point that is not known
a priori. Note that the original coordinates of the points are unknown; only
the incidence relation between points and lines is known.

The difficulty lies in trying to control the behaviour of the function g
near the points where two lines Di and Dj intersect, or, more precisely, near
a pair of points close to one another but that do not belong to the same
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line. The naive approach consists in estimating the deformation separately
for each line; this approach can produce a solution that is not consistent
near the intersection points. For the same reason, computing the average of
the deformations does not yield a valid solution in general. Our suggestion
is to define a cost measure, for instance an elastic energy, to constrain the
function g.
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