Segmentation and territorial smoothing in property & casualty insurance ratemaking

The Ninth Montreal Industrial Problem Solving Workshop

Problem presented by: Desjardins Insurance

August 23, 2019
In property and casualty insurance ratemaking, the **geospatial** location is one of the most critical factors for risk segmentation purposes.

The fundamental goal of the workshop was to develop a statistical model allowing to incorporate a geospatial component, among other rating variables, for risk segmentation purposes, with the important business constraint that the model produce a **smoothed map of risk levels across territories**.
Review of the problem

- The current method consists of a 4 step modelling process:
 - GLM → XGBOOST → MRF → GLM
- This approach is complex and lacks robustness
- Work was needed to find alternative approaches
Overview of approaches

- There are numerous other ways in which geographic information can be incorporated into a model.
- We focused on three methods:
 1. Geographically Weighted Poisson Regression
 2. Poisson Kriging
 3. Fused Lasso for Poisson GLMs
Due to the size of the data and its format (i.e. categorical), various processing were involved in rendering the data usable.
Introduction

Overview of Methods
- Geographically Weighted Poisson Regression
- Poisson Kriging
- Fused Lasso Poisson Regression

Conclusion
Geographically Weighted Poisson Regression

- Wish to predict number of claims Y of a given client
- Develop local GLM model for $Y \sim \text{Poiss}(\lambda)$ at each point x
- Points nearby x have a greater influence in describing λ
- Appropriate choices may yield smooth parameters
Geographically Weighted Poisson Regression

- Model via

\[
\log \lambda(x) = \hat{\beta}(x)^T \Phi(x)
\]

where \(\hat{\beta}(x) \) is a local parameter estimator and \(\Phi(x) \) are the features at \(x \)

- Estimators \(\hat{\beta}(x) \) are found from a minimization problem

\[
\hat{\beta}(x) = \arg\min_\beta - \sum_{i \in \text{Training}} w(x, x_i) \log \Pr(Y_i = y_i|x_i, \beta(x))
\]

- Choose \(w(x, y) = \exp\left(-\frac{||x-y||^2}{2\alpha^2}\right) \) where \(\alpha \) is a hyperparameter

Segmentation and Territorial Smoothing
Geographically Weighted Poisson Regression

- \(\lambda(x) \) depends on \(\alpha \): select \(\alpha \) by cross-validation
- For some penalty, seek to minimize

\[
G(\alpha) = \sum_{i \in \text{Validation}} P_i
\]

- Tried

\[
P_i = -\log L_i = \lambda_i - y_i \log \lambda_i + \log(y_i!)
\]

\[
P_i = D_i = y_i \log(y_i/\lambda_i) - (y_i - \lambda_i)
\]

(negative log likelihood and deviance)
Geographically Weighted Poisson Regression

- Use one-hot encoding: categorical data become binary
- Use first 10 Principal Components to speed up computation
 \((\approx 52\% \text{ of variance explained})\)
Geographically Weighted Poisson Regression

Negative log likelihood and deviance give similar results
Geographically Weighted Poisson Regression

Plot of $\log \lambda$ over space:
Geographically Weighted Poisson Regression

Can consider model selection and possible further smoothing of regression parameters e.g.

$$\hat{\beta}(x) = \arg\min_{\beta} - \sum_{i \in \text{Training}} w(x, x_i) \log P(Y_i = y_i|x_i, \beta(x)) + \xi \|\beta(x)\|_2$$
Geographically Weighted Poisson Regression

- Compare non-regularized vs L^2-regularized $\hat{\beta}$’s:
Geographically Weighted Poisson Regression

Pros:
- Global: everything done within a single model
- Spatial smoothness
- Flexibility

Cons:
- Timing: to cross-validate over 20 α-values, with 10 PC, averaging 10 random batches of 0.1% of data takes 8600 s!
- Forces spatial dependence across all rating factors
- Flexibility
1 Introduction

2 Overview of Methods
 - Geographically Weighted Poisson Regression
 - Poisson Kriging
 - Fused Lasso Poisson Regression

3 Conclusion
Kriging is used to interpolate spatial attributes and predict the number of claims made per exposure unit at unsampled locations.

Data aggregation based on location

Assume given $S(\cdot), Y_i, i = 1, 2, \ldots n$, follows Poisson distribution, where $S(\cdot) = \{S(x) : x \in D\}$ is a Gaussian random field.
Model via

\[\log \lambda(x) = S(x) \] \hspace{1cm} (1)

where

\[S(x) = \mu(x) + \epsilon(x) \]

\[\mu(x) = \beta^T f(x) \] is a deterministic function of location \(x \)

\[\epsilon(\cdot) \] is Gaussian random field with mean \(-C_\epsilon(0)/2\) and covariance function

\[C_\epsilon(s - u) = \sigma^2 \exp(-\frac{||s-u||^2}{\phi}) \]
Estimation

β — OLS by GLM

σ^2, ϕ — semivariogram model
Semivariogram function

$$\gamma(s - u) = \frac{1}{2} \text{var}(Y(s) - Y(u)) \quad (2)$$

which describes the spatial covariance as function of distance. Observations that are geographically closer are more similar than observations that are further apart.

Empirical semivariogram function

$$\hat{\gamma}(h) = \frac{1}{2N_h} \sum_{i=1}^{N_h} [Y(x_i + h) - Y(x_i)]^2 \quad (3)$$

N_h represents the number of pairs of data points that are h away.
Next we use weighted least squares to fit through the variogram to get the spatial correlation for unsampled locations.
Prediction

\[Y(u_{\alpha}) = \sum_{i=1}^{k} \rho_i(u_{\alpha}) Y(u_i) \] \hspace{1cm} (4)

where \(Y(u_i) \) is the count observed at location \(u_i \) and \(\rho_i(u_{\alpha}) \) are the kriging weights to be found. The kriging weights \(\rho \) are found using the parameters obtained from the empirical variogram model.
Introduction

Methods

Conclusion

Geographically Weighted Poisson Regression
Poisson Kriging
Fused Lasso Poisson Regression

Segmentation and Territorial Smoothing
Poisson Kriging

Pros:

- Simplification of the original method
- Parameter κ available for modifying the level of smoothing

Cons:

- Hard to apply to Poisson distribution, even harder for Gamma and Tweedie. Need large data for a good model.
- Very slow and RAM demanding, 2 hours for 5000 observations and 25gb of RAM. (Almost impossible higher than that)
- Hard to give user-specified weights to the observations.
Introduction

Overview of Methods
- Geographically Weighted Poisson Regression
- Poisson Kriging
- Fused Lasso Poisson Regression

Conclusion
Where did we Drew our Inspiration?

- Fused Lasso Linear Regression.
 - $y_1, \ldots, y_n \in \mathbb{R}$: data points from a dependent variable.
 - $x_1, \ldots, x_n \in \mathbb{R}^p$: data points from covariates.
 - Objective function:

$$\min_\beta \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \leq t_1 \quad \text{and} \quad \sum_{j=2}^{p} |\beta_j - \beta_{j-1}| \leq t_2,$$

where $\beta := (\beta_1, \ldots, \beta_p)$.
Two Considerations

1. Poisson regression instead:
 - replace \((y_i - x_i^T \beta)^2\) by \(-\log \Pr(Y_i = y_i)\),
 - where \(Y_i \sim \mathcal{P}(\lambda_i)\) with \(\lambda_i := \exp(x_i^T \beta)\).

2. Intuitive when there is a natural order in the categorical location variable:

Figure: A modified version of Canada to illustrate the idea
For each location, we thus identify the “nearest” (with respect to the other geo-demographic covariates) neighbour:

- replace $\sum_{j=2}^{p} |\beta_j - \beta_{j-1}| \leq t_2$ by $\sum_{j=1}^{p} |\beta_j - \beta_j^*| \leq t_2$.
Figure: Maps with different values for t_1 and t_2
Fused Lasso Poisson Regression

Pros

- Fits the business needs.
- Intuitive.
- Simple and easy to interpret.
- Global: does everything at once.
Fused Lasso Poisson Regression

Cons and Room for Improvements

- Location variable with a lot of values (e.g. 200,000) implies that we need to create 200,000 dummy variables!
 - Solution: aggregate nearest neighbours and find new nearest neighbours (and repeat until the size is reasonable).

- Room for improvements:
 - Use Mahalanobis distance instead of euclidean distance to identify nearest neighbours (some correlations are strong).
 - No time to tune t_1 and t_2 (should be done using cross-validation).
Conclusion

- All methods provide interesting alternatives to the current methods
- All methods were difficult to scale to large data
The Team

Delphine Boursicot, Maxime Comeau, Philippe Gagnon, Charles Gauvin, Rachel Han, Bastien Ferland-Raymond, Michael Lindstrom, Nassim Razaaly, Juliana Schulz, Junwei Shen, Tony Wong, Ramin Eghbalzadeh
The Team
Thank you to all the sponsors who helped organize this workshop!