[Liste-CICMA] SÉMINAIRE QUÉBEC-VERMONT NUMBER THEORY (09/11/2017, Neha Prabhu, Bharathwaj Palvannan)
Guillermo Martinez-Zalce
martinez at crm.umontreal.ca
Mon Nov 6 11:06:53 EST 2017
******************************************************************
SÉMINAIRE QUÉBEC-VERMONT NUMBER THEORY
******************************************************************
DATE :
Le jeudi 9 novembre 2017 / Thursday, November 9, 2017
HEURE / TIME :
10 h 30 - 12 h / 10:30 a.m. - 12:00 p.m.
CONFERENCIER(S) / SPEAKER(S) :
Neha Prabhu (Queen's)
TITRE / TITLE :
Moments of the error term in the Sato-Tate law on average.
LIEU / PLACE :
McGill University, Burnside Hall salle BH920
RESUME / ABSTRACT :
The Sato-Tate theorem for non-CM elliptic curves and modular forms is known due to the dee work of Taylor et al. However, on averaging over appropriate families, an average Sato-Tate result is obtained relatively easily. Visualizing the average result as a theorem about the first moment, one can study the higher moments of the error term in the average theorems and obtain a central limit theorem under suitable hypothesis. The talk will comprise of describing the results obtained in the case of modular forms (joint with Kaneenika Sinha) and elliptic curves (joint with Stephan Baier).
******************************************************************
DATE :
Le jeudi 9 novembre 2017 / Thursday, November 9, 2017
HEURE / TIME :
14 h - 15 h 30 / 2:00 p.m. - 3:30 p.m.
CONFERENCIER(S) / SPEAKER(S) :
Bharatwaj Palvannan (University of Pensilvania)
TITRE / TITLE :
Codimension two cycles in Iwasawa theory and elliptic curves with supersingular reduction
LIEU / PLACE :
Concordia University, Library Building, 9th floor, room LB 921-4
RESUME / ABSTRACT :
A recent paper of Bleher, Chinburg, Greenberg, Kakde, Pappas, Sharifi and Taylor has initiated the topic of higher codimension Iwasawa theory. As a generalization of the classical Iwasawa main conjecture, they prove a relationship between analytic objects (two Katz's 2-variable p-adic L-functions) and algebraic objects (two ``everywhere unramified'' Iwasawa modules) involving codimension two cycles. The talk will describe an analogous result by considering the restriction, to an imaginary quadratic field K where a prime p splits, of an elliptic curve E defined over Q with good supersingular reduction at p. This is joint work with Antonio Lei.
******************************************************************
Responsable(s) :
Henri Darmon (darmon at math.mcgill.ca)
Adrian Iovita (adrian.iovita at concordia.ca)
Maksym Radziwill (maksym.radziwill at gmail.com)
******************************************************************
******************************************************************
http://www.dms.umontreal.ca/~qvnts/QVNTSinfo.html <http://www.dms.umontreal.ca/~qvnts/QVNTSinfo.html>
-------------- section suivante --------------
Une pi�ce jointe HTML a �t� nettoy�e...
URL: <http://www.crm.umontreal.ca/pipermail/liste-cicma/attachments/20171106/d814e252/attachment.html>
More information about the Liste-cicma
mailing list