[Liste-CICMA] SÉMINAIRE QUÉBEC-VERMONT NUMBER THEORY (26/01/2017, Zhang Liu, Natalia Garcia Fritz)

Guillermo Martinez-Zalce martinez at crm.umontreal.ca
Mon Jan 23 09:31:45 EST 2017


******************************************************************

SÉMINAIRE QUÉBEC-VERMONT NUMBER THEORY

******************************************************************

DATE :
Le jeudi 26 janvier 2017 / Thursday, January 26, 2017

HEURE / TIME :
10 h 30 - 12 h / 10:30 a.m. - 12:00 p.m.

CONFERENCIER(S) / SPEAKER(S) :
Zhang Liu (CICMA)

TITRE / TITLE :
p-adic L-functions for Siegel modular forms

LIEU / PLACE :
McGill University, Burnside Hall salle BH920

RESUME / ABSTRACT :
We construct the p-adic standard L-functions for ordinary families of Hecke eigen-systems of the symplectic group Sp(2n,Q) using the doubling method. We explain the strategy for choosing the local sections of the Siegel Eisenstein series on the doubling group Sp(4n,Q), which allows p-adic interpolation and guarantees nonvanishing of the archimedean zeta integrals, and the corresponding local zeta integrals at p give the modified Euler factors at p as predicted by Coates for p-adic L-functions.


******************************************************************

DATE :
Le jeudi 26 janvier 2017 / Thursday, January 26, 2017

HEURE / TIME :
14 h - 15 h 30 / 2:00 p.m. - 3:30 p.m.

CONFERENCIER(S) / SPEAKER(S) :
Natalia Garcia Fritz (University of Toronto)

TITRE / TITLE :
From arithmetic undecidability to curves on surfaces.

LIEU / PLACE :
Concordia University, Library Building, 9th floor, room LB 921-4

RESUME / ABSTRACT :
This talk will consist of two parts. In the first one, we will present a relation between problems in Recursion Theory and problems in Number Theory. In particular we will show how an undecidability problem gives rise to the n-squares problem. In the second part, we will discuss how Vojta's solution to this problem (under the Bombieri-Lang conjecture) hints at a method for finding the curves of genus 0 or 1 in some surfaces of general type. We will also show new applications of this method.


******************************************************************
Responsable(s) :
Henri Darmon (darmon at math.mcgill.ca)
Eyal Z. Goren (eyal.goren at mcgill.ca)
Chantal David (cdavid at mathstat.concordia.ca)
******************************************************************

******************************************************************

http://www.dms.umontreal.ca/~qvnts/QVNTSinfo.html


More information about the Liste-cicma mailing list