[Liste-CICMA] Un-QUÉBEC-VERMONT NUMBER THEORY (17/03/2016, Bryden Cais)

Guillermo Martinez-Zalce martinez at crm.umontreal.ca
Tue Mar 15 10:29:41 EDT 2016


******************************************************************

SÉMINAIRE QUÉBEC-VERMONT NUMBER THEORY

******************************************************************

DATE :
Le jeudi 17 mars 2016 / Thursday, March 17, 2016

HEURE / TIME :
14 h - 15 h 30 / 2:00 p.m. - 3:30 p.m.

CONFERENCIER(S) / SPEAKER(S) :
Bryden Cais (University of Arizona, Tucson)

TITRE / TITLE :
Un-QVNTS: Kisin modules and crystalline cohomology

LIEU / PLACE :
McGill University, Burnside Hall salle BH 920

RESUME / ABSTRACT :
The theory of Kisin modules provides a powerful classification of stable lattices in (crystalline) p-adic Galois representations via certain semi-linear algebra structures over power series rings. On the other hand, the integral p-adic etale cohomology of a smooth and proper scheme over the ring of integers in a p-adic field provides a stable lattice in a (crystalline) p-adic Galois representation,  and so has a Kisin module attached to it. In this case, it is natural to ask if the associated Kisin module can be described in terms of the cohomologyof the scheme. In this talk, I will answer this question in the affirmative for abelian schemes (and more generally for p-divisible groups), and speculate on what happens in general. This is joint work with Tong Liu.


******************************************************************
Responsable(s) :
Henri Darmon (darmon at math.mcgill.ca)
Andrew Granville (andrew at dms.umontreal.ca)
Dimitris Koukoulopoulos (koukoulo at dms.umontreal.ca)
******************************************************************

******************************************************************

http://www.dms.umontreal.ca/~qvnts/QVNTSinfo.html


More information about the Liste-cicma mailing list