[Liste-CICMA] SÉMINAIRE QUÉBEC-VERMONT NUMBER THEORY (14/01/2016, Louis-Pierre Arguin, Peter Cho)

Guillermo Martinez-Zalce martinez at crm.umontreal.ca
Tue Jan 12 11:04:29 EST 2016


******************************************************************

SÉMINAIRE QUÉBEC-VERMONT NUMBER THEORY

******************************************************************

DATE :
Le jeudi 14 janvier 2016 / Thursday, January 14, 2016

HEURE / TIME :
10 h 30 - 12 h / 10:30 a.m. - 12:00 p.m.

CONFERENCIER(S) / SPEAKER(S) :
Louis-Pierre Arguin (CUNY-Baruch)

TITRE / TITLE :
Maxima of the Riemann zeta function on the critical line, and branching random walks


LIEU / PLACE :
McGill University, Burnside Hall salle BH920

RESUME / ABSTRACT :
A recent conjecture of Fyodorov, Hiary & Keating states that the maxima of the Riemann zeta function on a bounded interval of the critical line behave similarly to the maxima of a specific class of Gaussian fields, the so-called log-correlated Gaussian fields. These include important examples such as branching random walks and the 2D Gaussian free field. In this talk, we will highlight the connections between the number theory problem and the probabilistic models. We will outline the proof of the conjecture in the case of a randomized model of the zeta function. We will discuss possible approaches to the problem for the function itself.
This is joint work with D. Belius (Zurich) and A. Harper (Cambridge).

******************************************************************

DATE :
Le jeudi 14 janvier 2016 / Thursday, January 14, 2016

HEURE / TIME :
14 h - 15 h 30 / 2:00 p.m. - 3:30 p.m.

CONFERENCIER(S) / SPEAKER(S) :
Peter Cho (UNIST  and U. Waterloo)

TITRE / TITLE :
Extreme values of Dedekind zeta functions

LIEU / PLACE :
Concordia University, Library Building, 9th floor

RESUME / ABSTRACT :
In a family of $S_{d+1}$-fields ($d=2,3,4$), we obtain the true upper and lower bound of the residues of Dedekind zeta functions except for a density zero set. For $S_5$-fields, we need to assume the strong Artin conjecture. We also show that there exists an infinite family of number fields with the upper and lower bound, resp. This is a joint work with Henry Kim


******************************************************************
Responsable(s) :
Henri Darmon (darmon at math.mcgill.ca)
Andrew Granville (andrew at dms.umontreal.ca)
Dimitris Koukoulopoulos (koukoulo at dms.umontreal.ca)
******************************************************************

******************************************************************

http://www.dms.umontreal.ca/~qvnts/QVNTSinfo.html


More information about the Liste-cicma mailing list