[Liste-CICMA] SÉMINAIRE QUÉBEC-VERMONT NUMBER THEORY (16/10/2014, Sary Drappeau, Stephan Ehlen)

Guillermo Martinez-Zalce martinez at crm.umontreal.ca
Tue Oct 14 16:23:59 EDT 2014


IMPORTANT: PLEASE NOTE THE NEW  SCHEDULE AND ADDRESS OF THE SESSIONS, TO BE HELD AT ROOM 6214, PAV. ANDRÉ AISENSTADT, UNIVERSITÉ DE MONTRÉAL


******************************************************************

SÉMINAIRE QUÉBEC-VERMONT NUMBER THEORY

******************************************************************

DATE :
Le jeudi 16 octobre 2014 / Thursday, October 16, 2014

HEURE / TIME :
10 h 30 - 12 h / 10:30 a.m. - 12:00 p.m.

CONFERENCIER(S) / SPEAKER(S) :
Sary Drappeau (Université de Montréal)

TITRE / TITLE :
Divisors of friable numbers

LIEU / PLACE :
CRM, Université de Montréal, Pav. André Aisenstadt, 2920 chemin de la Tour, salle 6214

RESUME / ABSTRACT :
A classical result of Deshouillers, Dress and Tenenbaum asserts that, on average, divisors of integers are distributed according to the arcsine law (relative to the logarithmic scale). When one looks instead at integers having only relatively small prime factors compared to their size (so-called friable or smooth numbers), the problem has a different structure as it expectedly exhibits a gaussian behaviour. We will describe previous works on this question due to Basquin, and some progress involving the two-variable saddle-point method.

******************************************************************

HEURE / TIME :
14 h - 15 h 30 / 2:00 p.m. - 3:30 p.m.

CONFERENCIER(S) / SPEAKER(S) :
Stephan Ehlen (McGill University)

TITRE / TITLE :
Lattices with many Borcherds products

LIEU / PLACE :
CRM, Université de Montréal, Pav. André Aisenstadt, 2920 chemin de la Tour, salle 6214

RESUME / ABSTRACT :
We obtain an asymptotic formula for the dimension of the space of cusp forms for the Weil representation associated with a finite quadratic module. As a corollary, we prove that there are only finitely many isometry classes of even lattices L of signature (2,n) such that the space of cusp forms of weight (2+n)/2 for the Weil representation attached to the discriminant form of L is trivial. We also develop an efficient algorithm which allows us to compute a list of these lattices. The space of cusp forms of weight (2+n)/2 for L is the space of obstructions for Borcherds singular theta correspondence, which I will briefly explain in the talk.

(joint work with J. H. Bruinier and E. Freitag) 



******************************************************************
Responsable(s) :
Henri Darmon (darmon at math.mcgill.ca)
Andrew Granville (andrew at dms.umontreal.ca)
Dimitris Koukoulopoulos (koukoulo at CRM.UMontreal.CA)
******************************************************************

******************************************************************

http://www.dms.umontreal.ca/~qvnts/QVNTSinfo.html
-------------- section suivante --------------
Une pi?ce jointe non texte a ?t? nettoy?e...
Nom: non disponible
Type: text/html
Taille: 3376 octets
Desc: non disponible
Url: http://www.crm.umontreal.ca/pipermail/liste-cicma/attachments/20141014/5808f18c/attachment.txt 


More information about the Liste-cicma mailing list