Recent publications (since 2010)

Vestislav Apostolov

Peer-reviewed journal articles:
  • Apostolov, V., Calderbank, D. M. J., Gauduchon, P., « Ambitoric geometry I: Einstein metrics and extremal ambikähler structures », Journal für die Reine und Angewandte Mathematik (XXXX), accepted.
  • Apostolov, V., Rollin, Y., « ALE scalar-flat Kähler metrics on non-compact weighted projective spaces », Mathematische Annalen (XXXX), accepted.
  • Apostolov, V., Dloussky, G., « Locally conformally symplectic structures on compact non-Kähler complex surfaces », International Mathematics Research Notices, 2016:9 (2016), 2717–2747.
  • Apostolov, V., Jakobson, D., Kokarev, G., « An extremal eigenvalue problem in Kähler geometry », Journal of Geometry and Physics, 91 (May 2015), 108–116.
  • Apostolov, V., Huang, H., « A splitting theorem for extremal Kähler metrics », Journal of Geometric Analysis, 25:1 (January 2015), 149–170.
  • Apostolov, V., Calderbank, D. M. J., Gauduchon, P., « Ambitoric geometry II: Extremal toric surfaces and Einstein 4-orbifolds », Annales scientifiques de l'École normale supérieure. Quatrième série, 48:5 (2015), 1075–1112.
  • Apostolov, V., Bailey, M., Dloussky, G., « From conformally Kähler to bi-Hermitian structures on non-Kähler complex surfaces », Mathematical Research Letters, 22:2 (2015), 317–336.
  • Apostolov, V., Calderbank, D. M. J., Gauduchon, P., Tønnesen-Friedman, C. W., « Extremal Kähler metrics on projective bundles over a curve », Advances in Mathematics, 227:6 (August 2011), 2385–2424.
Research reports:
  • Apostolov, V., Maschler, G., « Conformally Kähler, Einstein–Maxwell geometry », arXiv:1512.06391, December 2015.
  • Apostolov, V., Calderbank, D. J. M., Gauduchon, P., « Ambikähler geometry, ambitoric surfaces and Einstein 4-orbifolds », arXiv:1010.0992, October 2010, 43 p.
Steven Patrick Boyer

Peer-reviewed journal articles:
  • Boileau, M., Boyer, S. P., Rolfsen, D., Wang, S., « One-domination of knots », Illinois Journal of Mathematics (XXXX), accepted.
  • Boileau, M., Boyer, S. P., « Graph manifolds $\mathbb{Z}$-homology 3-spheres and taut foliations », Journal of Topology, 8:2 (June 2015), 571–585.
  • Boileau, M., Boyer, S. P., Cebanu, R., Walsh, G. S., « Knot complements, hidden symmetries and reflection orbifolds », Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série 6, 24:5 (2015), 1179–1201.
  • Boyer, S. P., Gordon, C. M., Zhang, X., « Dehn fillings of knot manifolds containing essential once-punctured tori », Transactions of the American Mathematical Society, 366:1 (January 2014), 341–393.
  • Boyer, S., Gordon, C. M., Zhang, X., « Characteristic submanifolds theory and toroïdal Dehn filling », Advances in Mathematics, 230:4-6 (August 2012), 1673–1737.
  • Boileau, M., Boyer, S., « On character varieties, sets of discrete characters, and non-zero degree maps », American Journal of Mathematics, 134:2 (April 2012), 285–347.
  • Boileau, M., Boyer, S. P., Cebanu, R., Walsh, G., « Knot commensurability and the Berge conjecture », Geometry & Topology, 16:2 (2012), 625–664.
  • Boyer, S. P., Gordon, C. M., Watson, L., « On L-spaces and left-orderable fundamental groups », Mathematische Annalen, 356:4 (July 2011), 1213–1245.
  • Boileau, M., Boyer, S., Reid, A., Wang, S., « Simon’s conjecture for two-bridge knots », Communications in Analysis and Geometry, 18:1 (January 2010), 121–143.
Other journal articles:
  • Boileau, M., Boyer, S. P., Cebanu, R., Walsh, G. S., « Commensurability of knots and the Berge conjecture », Oberwolfach Reports, 7 (2010), 2155–2158.
Research reports:
  • Boyer, S. P., Clay, A., « Slope detection, foliations in graph manifolds, and L-spaces », arXiv:1510.02378, October 2015.
  • Boyer, S. P., Clay, A., « Foliations, orders, presentations, L-spaces and graph manifolds », arXiv:1401.7726, January 2014, 50 p.
Abraham Broer

Book chapters:
  • Broer, A., « On Chevalley–Shephar–Todds theorem in positive characteristic », in Symmetry and Spaces, H. E. A. Campbell, A. G. Helminck, H. Kraft, D. Wehlau, eds., Progress in Mathematics, Vol. 278, Boston, MA, Birkhäuser, 2010.
Peer-reviewed journal articles:
  • Broer, A., Reiner, V., Smith, L., Webb, P., « Extending the coinvariant theorems of Chevalley, Shephard–Todd and Springer », Proceedings of the London Mathematical Society. Third Series, 103:5 (November 2011), 747–785.
  • Broer, A., « Invariant theory of abelian transvection groups », Canadian Mathematical Bulletin / Bulletin canadien de mathématiques, 53:3 (September 2010), 404–411.
  • Broer, A., Chuai, J., « Modules of covariants in modular invariant theory », Proceedings of the London Mathematical Society. Third Series, 100:3 (May 2010), 705–735.
Virginie Charette

Peer-reviewed journal articles:
  • Charette, V., Francoeur, D., Lareau Dusseault, R., « Fundamental domains in the Einstein Universe », Topology and its Applications, 174 (September 2014), 62–80.
  • Charette, V., Kim, Y., « Foliations of Minkowski 2+1 spacetime by crooked planes », International Journal of Mathematics, 25:9 (August 2014), 1450088, 25p.
  • Charette, V., Drumm, T. A., Goldman, W. M., « Finite-sided deformation spaces of complete affine 3-manifolds », Journal of Topology, 7 (February 2014), 225–246.
  • Burelle, J.-P., Charette, V., Drumm, T. A., Goldman, W. M., « Crooked Halfspaces », L'Enseignement Mathématique. IIe Série, 60:1/2 (2014), 43–78.
  • Charette, V., Drumm, T. A., Lareau Dusseault, R., « Equidistant hypersurfaces of the bidisk », Geometriae Dedicata, 163:1 (April 2013), 275–284.
  • Charette, V., Drumm, T. A., Goldman, W. M., « Affine deformations of a three-holed sphere », Geometry & Topology, 14:3 (2010), 1355–1382.
Peer-reviewed conference proceedings:
  • Charette, V., Drumm, T. A., Goldman, W. M., « Stretching three-holed spheres and the Margulis invariant », in In the Tradition of Ahlfors–Bers. V, 4th Ahlfors–Bers Colloquium (Newark, NJ, 2008), M. Bonk, J. Gilman, H. Masur, Y. Minsky, M. Wolf, eds., Contemporary Mathematics, Vol. 510, Providence, RI, Amer. Math. Soc., 2010, 61–70.
Octav Cornea

Peer-reviewed journal articles:
  • Charette, F., Cornea, O., « Categorification of Seidel’s representation », Israel Journal of Mathematics, 211:1 (February 2016), 67–104.
  • Biran, P., Cornea, O., « Lagrangian cobordism and Fukaya categories », Geometric and Functional Analysis, 24:6 (December 2014), 1731–1830.
  • Biran, P., Cornea, O., « Lagrangian cobordism I », Journal of the American Mathematical Society, 26:2 (April 2013), 295–340.
  • Biran, P., Cornea, O., « Lagrangian topology and enumerative geometry », Geometry & Topology, 16:2 (2012), 963–1052.
  • Cornea, O., de Rezende, K. A., da Silveira, M. R., « Spectral sequences in Conley’s theory », Ergodic Theory and Dynamical Systems, 30:4 (August 2010), 1009–1054.
Research reports:
  • Biran, P., Cornea, O., « Lagrangian Cobordism II », Université de Montréal, arXiv:1304.6032, April 2013, 95pp p.
Pengfei Guan

Book chapters:
  • Guan, P., Zhang, X., « A Geodesic equation in the space of sasakian metrics », in Geometry and Analysis, No1, Lizhen Ji, eds., Advanced Lectures in Mathematics Vol. 17, Somerville, MA, International Press of Boston, 2011.
Peer-reviewed journal articles:
  • Guan, P., Ren, C., Wang, Z., « Global $C^2$-estimates for convex solutions of curvature equations », Communications on Pure and Applied Mathematics, 68:8 (August 2015), 1287–1325.
  • Guan, P., Li, J., « A mean curvature type flow in space forms », International Mathematics Research Notices, 2015:13 (2015), 4716–4740.
  • Guan, P., Xu, L., « Convexity estimates for leve sets of quasiconcave solutions to fully nonlinear elliptic equations  », Journal für die Reine und Angewandte Mathematik, 680 (April 2013), 41–67.
  • Guan, P., Phong, D. H., « Partial legendre transforms of nonlinear equations », Proceedings of the American Mathematical Society, 140:11 (November 2012), 3831–3842.
  • Guan, P., Phong, D. H., « A maximum rank problem for degenerate elliptic fully nonlinear equations », Mathematische Annalen, 354:1 (September 2012), 147–168.
  • Guan, P., Zhang, X., « Regularity of the geodesic equation in the space of Sasakian metyrics », Advances in Mathematics, 230:1 (May 2012), 321–371.
  • Guan, P., Li, Y. Y., Li, J., « Hypersurfaces of prescribed curvature measures », Duke Mathematical Journal, 161:10 (2012), 1927–1942.
  • Bian, B., Guan, P., Ma, X.-N., Xu, L., « A constant rank theorem for quasiconcave solutions of fully nonlinear partial differential equations », Indiana University Mathematics Journal, 60:1 (2011), 101–119.
  • Guan, P., Ma, X.-N., Trudinger, N., Zhu, X., « A form of Alexandrov–Fenchel inequality », Pure and Applied Mathematics Quarterly, 6:4, In honor of Joseph J. Kohn (October 2010), 999–1012.
  • Bian, B., Guan, P., « A structural condition for microscopic convexity principle », Discrete and Continuous Dynamical Systems. Series A, 28:2 (October 2010), 789–807.
Peer-reviewed conference proceedings:
  • Guan, P., Shen, X. S., « A rigidity theorem for hypersurfaces in higher dimensional space forms  », in Analysis, Complex Geometry, and Mathematical Physics: in Honor of Duong H. Phong, Analysis, Complex Geometry, and Mathematical Physics: A Conference in Honor of Duong H. Phong (New York, 2013), P. M. N. Feehan, J. Song, B. Weinkove, R. A. Wentworth, eds., Contemporary Mathematics, Vol. 644, Providence, RI, Amer. Math. Soc., 2015, 61–65.
  • Guan, P., « Remarks on the homogenous complex Monge–Ampère equation », in Complex Analysis, Conference in Complex Analysis 2008 (Fribourg, 2008), P. Ebenfelt, N. Hungerbühler, J. J. Kohn, N. Mok, E. J. Straube, eds., Trends in Mathematics, Basel, Birkhäuser, 2010, 175–185.
John Harnad

Monographs and books:
  • Harnad, J. (EDT), Random matrices, random processes and integrable systems, CRM Series in Mathematical Physics, New York, Springer, 2011.
Book chapters:
  • Harnad, J., Orlov, A. Y., « Convolution symmetries of integrable hierarchies, matrix models and $\tau$-functions », in Random Matrix Theory Interacting Particle Systems and Integrable Systems, Percy Deift, Peter Forrester, ed., Mathematical Sciences Research Institute Publications, Vol. 65, Cambridge, Cambridge Univ. Press, 2014.
Peer-reviewed journal articles:
  • Harnad, J., Balogh, F., Dinis da Fonseca, T., « Finite-dimensional KP $\tau$-functions. I. Finite Grassmannians », Journal of Mathematical Physics, 55:8 (August 2014), 083517, 32 p.
  • Harnad, J., Orlov, A. Y., « Determinantal identity for multilevel systems and finite determinantal point processes », Analysis and Mathematical Physics, 2:2 (June 2012), 105–121.
  • Harnad, J., van de Leur, J., Orlov, A. Y., « Multiple sums and integrals as neutral BKP tau functions », Theoretical and Mathematical Physics, 168:1 (July 2011), 951–962.
  • Harnad, J., Enolskii, V., « Schur function expansions of KP $\tau$ functions associated to algebraic curves », Russian Mathematical Surveys, 66:4 (2011), 767–807.
Peer-reviewed conference proceedings:
  • Harnad, J., Orlov, A. Y., « Convolution symmetries of integrable hierarchies, matrix models and $\tau$-functions », in Random Matrix Theory, Interacting Particle Systems and Integrable Systems, Random Matrix Theory, Interacting Particle Systems and Integrable Systems (Berkeley, 2010), P. Deift, P. Forrester, ed., Mathematical Sciences Research Institute Publications, Vol. 65, Cambridge, Cambridge Univ. Press, 2014, 247–276.
Research reports:
  • Alexandrov, A., Chapuy, G., Eynard, B., Harnad, J., « Weighted Hurwitz numbers and topological recursion: An overview », Centre de recherches mathématiques, CRM-3356, October 2016.
  • Harnad, J., Ortmann, J., « Semiclassical asymptotics of quantum weighted Hurwitz numbers », Centre de recherches mathématiques, CRM-3357, October 2016.
  • Harnad, J., « Multispecies quantum Hurwitz numbers », Centre de recherches mathématiques, CRM-3344, April 2015, 17 p.
  • Harnad, J., « Multispecies weighted Hurwitz numbers », Centre de recherches mathématiques, CRM-3345, April 2015, 11 p.
  • Harnad, J., « Weighted Hurwitz numbers and hypergeometric $\tau$-functions: an overview », Centre de recherches mathématiques, CRM-3346, April 2015.
Jacques Hurtubise

Book chapters:
  • Charbonneau, B., Hurtubise, J., « The Nahm transform for calorons », in The Many Facets of Geometry, J.-P. Bourguignon, O. Garcia-Prada, S. Salamon, eds., Oxford, Oxford Univ. Press, 2010.
Peer-reviewed journal articles:
  • Hurtubise, J., Lambert, C., Rousseau, C., « Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of poincaré rank k », Moscow Mathematical Journal, 14:2 (April 2014), 309–338.
  • Biswas, I., Garcia-Prada, O., Hurtubise, J., « Pseudo-real principal Higgs bundles on compact Kähler manifolds », Annales de l'Institut Fourier, 64:6 (2014), 2527–2562.
  • Biswas, I., Dhillon, A., Hurtubise, J., « Automorphisms of the quot schemes associated to compact riemann surfaces », International Mathematics Research Notices (December 2013), 16p.
  • Bhosle, U., Biswas, I., Hurtubise, J., « Grassmannian framed sheaves and generalized parabolic structures », International Journal of Mathematics, 24 (2013), 13500900, 49 p.
  • Hurtubise, J., Murray, M., « Loop groups and holomorphic bundles », The Quarterly Journal of Mathematics, 64:1 (2013), 189–220.
  • Biswas, I., Hurtubise, J., Raina, A. K., « Rank one connections on abelian varieties, II », International Journal of Mathematics, 23:12 (December 2012), 1250125, 6 p.
  • Biswas, I., Hurtubise, J., « Real projective structures on a real curve », Indagationes Mathematicae. New Series, 23:3 (September 2012), 341–360.
  • Biswas, I., Hurtubise, J., Stasheff, J., « A construction of the universal connection », Forum Mathematicum, 24:2 (February 2012), 365–378.
  • Biswas, I., Hurtubise, J., « Principal bundles over a real algebraic curve », Communications in Analysis and Geometry, 20:5 (2012), 957–988.
  • Biswas, I., Hurtubise, J., « Universal vector bundle over the reals », Transactions of the American Mathematical Society, 363:12 (December 2011), 6531–6548.
  • Biswas, I., Hurtubise, J., Raina, A. K., « Rank one connections on abelian varieties », International Journal of Mathematics, 22:11 (November 2011), 1529–1543.
  • Biswas, I., Hurtubise, J., « Projective structure and Higgs bundles on surfaces », International Journal of Geometric Methods in Modern Physics, 8:2 (March 2011), 367–379.
  • Charbonneau, B., Hurtubise, J., « Singular Hermitian–Einstein monopoles on the product of a circle and a Riemann surface », International Mathematics Research Notices, 2011:1 (2011), 175–216.
  • Biswas, I., Huisman, J., Hurtubise, J., « The moduli space of stable vector bundles over a real algebraic curve », Mathematische Annalen, 347:1 (2010), 201–233.
Clément Hyvrier

Peer-reviewed journal articles:
  • Hyvrier, C., « Langragian circle actions », Algebraic & Geometric Topology, 16 (2016), 1309–1342.
  • Hyvrier, C., « On symplectic uniruling of Hamiltonian fibrations », Algebraic & Geometric Topology, 12 (2012), 1145–1163.
  • Hyvrier, C., « A product formula for gromov-Written invariants », Journal of Symplectic Geometry, 10:2 (2012), 247–324.
Dmitry Jakobson

Monographs and books:
  • Albin, P., Jakobson, D., Rochon, F. (EDT), Geometric and Spectral Analysis 630, Contemporary Mathematics, Vol. 630, Providence, RI, Amer. Math. Soc., 2014.
  • Jakobson, D., Nonnenmacher, S., Polterovich, I. (EDT), Spectrum and Dynamics 52, CRM Proceedings & Lecture Notes, Vol. 52, Providence, RI, Amer. Math. Soc., 2010.
Peer-reviewed journal articles:
  • Jakobson, D., Safarov, Y., Strohmaier, A., Colin de Verdière, Y., « The semiclassical theory of discontinuous systems and ray-splitting billiards », American Journal of Mathematics, 137:4 (August 2015), 859–906.
  • Apostolov, V., Jakobson, D., Kokarev, G., « An extremal eigenvalue problem in Kähler geometry », Journal of Geometry and Physics, 91 (May 2015), 108–116.
  • Jakobson, D., Ng, T., Stevenson, M., Suzuki, M., « Conformally covariant operators and conformal invariants on weighted graphs », Geometriae Dedicata, 174 (February 2015), 339–357.
  • Chen, L., Jakobson, D., « Gaussian free fields and KPZ relation in R4 », Annales Henri Poincaré, 15:7 (July 2014), 1245–1283.
  • Jakobson, D., Canzani, Y., Toth, J. A., « On the distribution of perturbations of propagated Schrödinger eigenfunctions », Journal of Spectral Theory, 4:2 (2014), 283–307.
  • Canzani, Y., Gover, A. R., Jakobson, D., Ponge, R., « Conformal invariants from nodal sets. I. Negative eigenvalues and curvature prescription  », International Mathematics Research Notices, 2014:9 (2014), 2356–2400.
  • Canzani, Y., Jakobson, D., Wigman, I., « Scalar curvature and Q-curvature of random metrics », Journal of Geometric Analysis, 24 (2014), 1982–2019.
  • Canzani, Y., Gover, A. R., Jakobson, D., Ponge, R., « Nullspaces of conformally invariant operators. Applications to Qk-curvature », Electronic Research Announcements in Mathematical Sciences, 20 (March 2013), 43–50.
  • Jakobson, D., Naud, F., « On the critical line of convex co-compact hyperbolic surfaces », Geometric and Functional Analysis, 22:2 (April 2012), 352–368.
  • Aïssiou, T., Jakobson, D., Macià, F., « Uniform estimates for the solutions of the Schrödinger equation on the torus and regularity of semiclassical measures », Mathematical Research Letters, 19:3 (2012), 589–599.
  • Canzani, Y., Jakobson, D., Wigman, I., « Scalar curvature and $Q$-curvature of random metrics », Electronic Research Announcements in Mathematical Sciences, 17 (July 2010), 43–56.
  • Jakobson, D., Naud, F., « Lower bounds for resonances of infinite-area Riemann surfaces », Analysis & PDE, 3:2 (2010), 207–225.
Research reports:
  • Clarke, B., Jakobson, D., Kamran, N., Silberman, L., Taylor, J., Canzani, Y., « The manifold of metrics with a fixed volume form  », McGill, arXiv:1309.1348, September 2013.
André Joyal

Peer-reviewed journal articles:
  • Joyal, A., Kock, J., « Coherence for weak units », Documenta Mathematica, 18 (2013), 71–110.
  • Joyal, A., Kock, J., « Feynman graphs, and nerve theorem for compact symmetric multicategories », Electronic Notes in Theoretical Computer Science, 270:2 (February 2011), 105–113.
  • Kock, J., Joyal, A., Batanin, M., Mascari, J.-F., « Polynomial functors and opetopes », Advances in Mathematics, 224:6 (August 2010), 2690–2737.
Niky Kamran

Monographs and books:
  • Reid, N. M., Adem, A., Bierstone, E., Campbell, E., Dean, C. R., Genest, C., Kamran, N., Kuske, R., Lewis, M., Ivanoff, G., Thompson, A.-M., Solutions for a Complex Age: Long Range Plan for Mathematical and Statistical Science Researchin Canada: 2013-2018, 2012.
Book chapters:
  • Gómez-Ullate, D., Kamran, N., Milson, R., « On orthogonal polynomials spanning a non-standard flag », in Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Primitivo B. Acosta-Humànez, Federico Finkel, Niky Kamran, Peter J. Olver, eds., Contemporary Mathematics, Vol. 563, Providence, RI, Amer. Math. Soc., 2012.
Peer-reviewed journal articles:
  • Kahouadji, N., Kamran, N., Tenenblat, K., « Second-order equations and local isometric immersions of pseudo-spherical surfaces  », Communications in Analysis and Geometry, 24:3 (2016), 605–643.
  • Enciso, A., Kamran, N., « A singular initial-boundary value problem for nonlinear wave equations and holography in asymptotically anti-de Sitter spaces », Journal des mathématiques pures et appliquées. Neuvième série, 103:4 (April 2015), 1053–1091.
  • Farooqui, A., Kamran, N., Panangaden, P., « An exact expression for photon polarization in Kerr geometry », Advances in Theoretical and Mathematical Physics, 8:3 (2014), 657–684.
  • Gómez-Ullate, D., Kamran, N., Milson, R., « A conjecture on exceptional orthogonal polynomials  », Foundations of Computational Mathematics, 13:4 (August 2013), 615–666.
  • Enciso, A., Kamran, N., « Causality and the conformal boundary of AdS in real-time holography », Physical Review D. Particles, Fields, Gravitation, and Cosmology, 85 (5:10 2012), 106016, 6 p.
  • Daude, T., Kamran, N., « Local energy decay of massive Dirac fields in the 5D Myers–Perry metric », Classical and Quantum Gravity, 29:14 (July 2012), 145007, 38 p.
  • Chen, F., Dasgupta, K., Enciso, A., Kamran, N., « On the scalar spectrum of the Yp,q manifolds », Journal of High Energy Physics, 2012:9 (May 2012), Article 9, 36 p.
  • Gómez-Ullate, D., Kamran, N., Milson, R., « Two-step Darboux transformations and exceptional Laguerre polynomials », Journal of Mathematical Analysis and Applications, 387:1 (March 2012), 410–418.
  • Enciso, A., Kamran, N., « Spinor Green’s functions via spherical means on products of space forms », Journal of Geometry and Physics, 61:1 (January 2011), 180–190.
  • Gómez-Ullate, D., Kamran, N., Milson, R., « Exceptional orthogonal polynomials and the Darboux transformation », Journal of Physics A. Mathematical and Theoretical, 43:43 (October 2010), 434016, 16 p.
  • Enciso, A., Kamran, N., « Global causal propagator for the Klein–Gordon equation on a class of supersymmetric AdS backgrounds », Advances in Theoretical and Mathematical Physics, 14:4 (August 2010), 1183–1208.
  • Gómez-Ullate, D., Kamran, N., Milson, R., « An extension of Bochner's problem: exceptional invariant subspaces », Journal of Approximation Theory, 162:5 (May 2010), 987–1006.
Research reports:
  • Finster, F., Kamran, N., « Spinors on singular spaces and the topology of causal fermion systems », arXiv:1403.7885, March 2014.
  • Clarke, B., Jakobson, D., Kamran, N., Silberman, L., Taylor, J., Canzani, Y., « The manifold of metrics with a fixed volume form  », McGill, arXiv:1309.1348, September 2013.
François Lalonde

Peer-reviewed journal articles:
  • Lalonde, F., Teleman, A., « The g-areas and the commutator length », International Journal of Mathematics, 24:7 (June 2013), 1350057, 13 p.
  • Hu, S., Lalonde, F., « An example concerning Hamiltonian groups of self product I », African Diaspora Journal of Mathematics, 14:2 (2013), 227–233.
  • Hu, S., Lalonde, F., « An example concerning Hamiltonian groups of self product II », African Diaspora Journal of Mathematics, 14:2 (2013), 234–247.
  • Hu, S., Lalonde, F., Leclercq, R., « Homological Lagrangian monodromy », Geometry & Topology, 15:3 (September 2011), 1617–1650.
  • Hu, S., Lalonde, F., « A relative Seidel morphism and the Albers map », Transactions of the American Mathematical Society, 362 (2010), 1135–1168.
Steven Shin-Yi Lu

Book chapters:
  • Lu, S. S.-Y., « A physics colloquium at McGill that changed my life », in A Celebration of the Mathematical Legacy of Raoul Bott, P. R. Kotiuga, eds., CRM Proceedings & Lecture Notes, Vol. 50, Providence, RI, Amer. Math. Soc., 2010.
Peer-reviewed journal articles:
  • Lu, S. S.-Y., Zhang, D.-Q., « Positivity criteria for log canonical divisors and hyperbolicity », Journal für die Reine und Angewandte Mathematik (XXXX), accepted.
  • Kamenova, L., Lu, S. S.-Y., Verbitski, M., « Kobayashi pseudometric on hyperkähler manifolds », Journal of the London Mathematical Society. Second Series, 90:2 (July 2014), 436–450.
  • Lu, S. S.-Y., Winkelmann, J., « Quasiprojective varieties admitting Zariski dense entire holomorphic curves », Forum Mathematicum, 24:2 (February 2012), 399–418.
  • Heier, G., Lu, S. S.-Y., Wong, B., « On the canonical line bundle and negative holomorphic sectional curvature », Mathematical Research Letters, 17:6 (November 2010), 1101–1110.
  • Lu, S. S.-Y., Tu, Y., Zhang, Q., Zheng, Q., « On semistability of Albanese maps », Manuscripta Mathematica, 131:3-4 (October 2010), 531–535.
  • Lu, S. S.-Y., « On surfaces of general type with maximal Albanese dimension », Journal für die Reine und Angewandte Mathematik, 641 (April 2010), 163–175.
  • Couture, G., Hamzaoui, C., Lu, S. S.-Y., Toharia, M., « Patterns in the fermion mixing matrix, a bottom-up approach », Physica D. Nonlinear Phenomena, 81:3 (February 2010), 033010, 16 p.
Peer-reviewed conference proceedings:
  • Lu, S. S.-Y., « Holomorphic curves on irregular varieties of general type starting from surfaces », in Affine Algebraic Geometry, The Russell Festschrift (Montréal, 2009), D. Daigle, R. Ganong, M. Koras, eds., CRM Proceedings & Lecture Notes, Vol. 54, Providence, RI, Amer. Math. Soc., 2011, 205–220.
Mikaël Pichot

Peer-reviewed journal articles:
  • Graham, R., Pichot, M., « A free product formula for the sofic dimension  », Canadian Journal of Mathematics / Journal canadien de mathématiques, 67 (April 2015), 369–403.
  • Dykema, K., Kerr, D., Pichot, M., « Sofic dimension for discrete measured groupoids », Transactions of the American Mathematical Society, 366:2 (February 2014), 707–748.
  • Barré, S., Pichot, M., « Removing chambers in Bruhat–Tits buildings », Israel Journal of Mathematics, 202:1 (2014), 117–160.
  • Barré, S., Pichot, M., « An exotic group with the Haagerup property », Bulletin of the Belgian Mathematical Society. Simon Stevin, 20:3 (2013), 451–460.
  • Barré, S., Pichot, M., « Existence d'immeubles triangulaires quasi-périodiques », Mathematische Annalen, 350:1 (May 2011), 227–242.
  • Barré, S., Pichot, M., « The 4-strings braid group B$_4$ has Property RD and exponential mesoscopic rank », Bulletin de la Société Mathématique de France, 139:4 (2011), 479–502.
  • Kerr, D., Li, H., Pichot, M., « Turbulence, representations, and trace-preserving actions », Proceedings of the London Mathematical Society. Third Series, 100:2 (March 2010), 459–484.
  • Pichot, M., Vassout, S., « Le coût est un invariant isopérimétrique », Journal of Noncommutative Geometry, 4:3 (2010), 381–387.
Research reports:
  • Pichot, M., Barré, S., « Random groups and nonarchimedean lattices », arXiv:1308.2315, September 2014.
  • Graham, R., Pichot, M., « Universal entropy invariants », arXiv:1409.7113, September 2014.
  • Barré, S., Pichot, M., « La propriété de décroissance rapide pour le groupe de Wise », arXiv:1211.2428, November 2012.
  • Dykema, K., Kerr, D., Pichot, M., « Orbit equivalence and sofic approximation », arXiv:1102.2556, February 2011.
  • Pichot, M., Schick, T., Zuk, A., « Closed manifolds with transcendental L2-Betti numbers », arXiv:1005.1147, May 2010.
Iosif Polterovich

Monographs and books:
  • Jakobson, D., Nonnenmacher, S., Polterovich, I. (EDT), Spectrum and Dynamics 52, CRM Proceedings & Lecture Notes, Vol. 52, Providence, RI, Amer. Math. Soc., 2010.
Book chapters:
  • Bañuelos, R., Kulczycki, T., Polterovich, I., Siudeja, B., « Eigenvalue estimates for mixed Steklov problems », in Operator Theory and Its Applications, M. Levitin, D. Vassiliev, ed., American Mathematical Society Translations: Series 2, Vol. 231, Providence, RI, Amer. Math. Soc., 2010.
Peer-reviewed journal articles:
  • Polterovich, I., Sher, D., « Heat invariants of the Steklov problem », Journal of Geometric Analysis, 25:2 (April 2015), 924–950.
  • Elton, D. M., Levitin, M., Polterovich, I., « Eigenvalues of a one-dimensional Dirac operator pencil  », Annales Henri Poincaré, 15;12 (December 2014), 2321–2377.
  • Girouard, A., Parnovski, L., Polterovich, I., Sher, D. A., « The Steklov spectrum of surfaces: asymptotics and invariants », Mathematical Proceedings of the Cambridge Philosophical Society, 157:3 (November 2014), 379–389.
  • Kuznetsov, N., Kulczycki, T., Kwasnicki, M., Nazarov, A., Poborchi, S., Polterovich, I., « The legacy of Vladimir Andreevich Steklov », Notices of the American Mathematical Society, 61:1 (January 2014), 9–22.
  • Karpukhin, M., Kokarev, G., Polterovich, I., « Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces », Annales de l'Institut Fourier, 64:6 (2014), 2481–2502.
  • Artemev, A., Parnovski, L., Polterovich, I., « Inverse electrostatic and elasticity problems for checkered distibutions », Inverse Problems, 29:7 (July 2013), 075010, 16 p.
  • Polterovich, I., Girouard, A., « Upper bounds for Steklov eigenvalues on surfaces », Electronic Research Announcements in Mathematical Sciences, 19:7 (January 2012), 77–85.
  • Girouard, A., Polterovich, I., « On the Hersch–Payne–Schiffer inequalities for Steklov eigenvalues », Functional Analysis and its Applications, 44:2 (June 2010), 106–117.
  • Girouard, A., Polterovich, I., « Shape optimization for low Neumann and Steklov eigenvalues », Mathematical Methods in the Applied Sciences, 33:4, Complex-Analytic Methods (2010), 501–516.
Mark Powell

Peer-reviewed journal articles:
  • Borodzik, M., Powell, M., « Embedded morse theory and relative splitting of cobordisms of manifolds », Journal of Geometric Analysis, 26:1 (January 2016), 57–87.
  • Friedl, S., Powell, M., « Links not concordant to the hopf link », Mathematical Proceedings of the Cambridge Philosophical Society, 156:3 (May 2014), 425–459.
  • Choon Cha, J., Friedl, S., Powell, M., « Concordance of links with identical Alexander invariants », Bulletin of the London Mathematical Society, 46:3 (April 2014), 629–642.
  • Friedl, S., Powell, M., « Cobordisms to weakly splittable links », Proceedings of the American Mathematical Society, 142:2 (February 2014), 703–712.
  • Kasprowski, D., Powell, M., « Shrinking of toroidal decomposition spaces », Fundamenta Mathematicae, 227:3 (2014), 271–296.
  • Choon Cha, J., Powell, M., « Non-concordant links with homology cobordant zero framed surgery manifolds », Pacific Journal of Mathematics, 272:1 (2014), 1–33.
  • Choon Cha, J., Powell, M., « Covering link calculus and the bipolar filtration of topologically slice links », Geometry & Topology, 18 (2014), 1539–1579.
  • Jin Jang, H., Hoon Kim, M., Powell, M., « Smoothly slice boundary links whose derivative links have nonvanishing Milnor invariants », Michigan Mathematical Journal, 63:2 (2014), 423–446.
  • Friedl, S., Powell, M., « An injectivity theorem for casson-gordon type representations relating to the concordance of knots and links », Bulletin of the Korean Mathematical Society, 49:2 (March 2012), 395–409.
  • Balm, C. J., Friedl, S., Kalfagianni, E., Powell, M., « Cosmetic crossings and Seifert matrices », Communications in Analysis and Geometry, 20:2 (2012), 235–253.
  • Powell, M., « A second order algebraic knot concordance group », Algebraic & Geometric Topology, 12:2 (2012), 685–751.
Piotr Przytycki

Peer-reviewed journal articles:
  • Przytycki, P., « Arcs intersecting at most once », Geometric and Functional Analysis, 25:2 (April 2015), 658–670.
  • Hagen, M. F., Przytycki, P., « Cocompactly cubulated manifolds », Israel Journal of Mathematics, 207:1 (April 2015), 377–394.
  • Hensel, S., Przytycki, P., C. H. Webb, R., « 1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs », Journal of the European Mathematical Society (JEMS), 17:4 (2015), 755–762.
  • Przytycki, P., Wise, D. T., « Separability of embedded surfaces in 3-manifolds », Compositio Mathematica, 150:9 (September 2014), 1623–1630.
  • Przytycki, P., Wise, D. T., « Graph manifolds with boundary are virtually special  », Journal of Topology, 7:2 (2014), 419–435.
  • Hensel, S., Osajda, D., Przytycki, P., « Realisation and dismantlability », Geometry & Topology, 18:4 (2014), 2079–2126.
  • Przytycki, P., Wise, D. T., « Graph manifolds with boundary arre virtually special », Journal of Topology, 7:2 (2014), 419–435.
  • Elsner, T., Przytycki, P., « Square complexes and simplicial nonpositive curvature », Proceedings of the American Mathematical Society, 141:9 (September 2013), 2997–3004.
  • Przytycki, P., Schultens, J., « Contractibility of the Kakimizu complex and symmetric Seifert surfaces », Transactions of the American Mathematical Society, 364:3 (2012), 1489–1508.
  • Kopczynski, E., Pak, I., Przytycki, P., « Acute triangulations of polyhedra and Rn », Combinatorica, 32:1 (2012), 85–110.
  • Hensel, S., Przytycki, P., « The ending lamination space of the five-punctured sphere is the Noebeling curve  », Journal of the London Mathematical Society. Second Series, 84:1 (August 2011), 103–119.
  • Caprace, P.-E., Przytycki, P., « Bipolar Coxeter groups », Journal of Algebra, 338:1 (July 2011), 35–55.
  • Dahmani, F., Guirardel, V., Przytycki, P., « Random groups do not split », Mathematische Annalen, 349:3 (March 2011), 657–673.
  • Przytycki, P., Schmithuesen, G., Valdez, F., « Veech groups of loch ness monsters », Annales de l'Institut Fourier, 61:2 (2011), 673–687.
  • Caprace, P.-E., Przytycki, P., « Twist-rigid coxeter groups », Geometry & Topology, 14:4 (2010), 2243–2275.
Frédéric Rochon

Monographs and books:
  • Albin, P., Jakobson, D., Rochon, F. (EDT), Geometric and Spectral Analysis 630, Contemporary Mathematics, Vol. 630, Providence, RI, Amer. Math. Soc., 2014.
Peer-reviewed journal articles:
  • Rochon, F., « Polyhomogénéité des métriques asymptotiquement hyperboliques complexes le long du flot de Ricci », The Journal of Geometric Analysis, 25:3 (July 2015), 2103–2132.
  • Albin, P., Aldana Domingez, C. L., Rochon, F., « Compactness of relatively isospectral sets of surfaces via conformal surgeries », Journal of Geometric Analysis, 25:2 (April 2015), 1185–1210.
  • Gell-Redman, J., Rochon, F., « Hodge cohomology of some foliated boundary and foliated cusp metrics », Mathematische Nachrichten, 288:2-3 (February 2015), 206–223.
  • Albin, P., Aldana Domingez, C. L., Rochon, F., « Ricci flow and the determinant of the Laplacian on non-compact surfaces », Communications in Partial Differential Equations, 38:4 (March 2013), 711–749.
  • Albin, P., Rochon, F., « Some index formulae on the moduli space of stable parabolic vector bundles », Journal of the Australian Mathematical Society, 94:1 (2013), 1–37.
  • Rochon, F., Zhang, Z., « Asymptotics of complete Kähler metrics of finite volume on quasiprojective manifolds », Advances in Mathematics, 231:5 (December 2012), 2829–2952.
  • Rochon, F., « Pseudodifferential operators on manifolds with foliated boundaries », Journal of Functional Analysis, 262:3 (February 2012), 1309–1362.
  • Rochon, F., « On the uniqueness of certain families of holomorphic disks », Transactions of the American Mathematical Society, 363:2 (2011), 633–657.
Peer-reviewed conference proceedings:
  • Melrose, R., Rochon, F., « Eta forms and the odd pseudodifferential families index », in Perspectives in Mathematics and Physics, Perspectives in Mathematics and Physics (Cambridge, MA, 2009), T. Mrowka, S.-T. Yau, ed., Surveys in Differential Geometry, Vol. 15, Somerville MA, Int. Press, 2011, 279–322.
Research reports:
  • Hunsicker, E., Rochon, F., « Hodge cohomology of iterated fibred cusp metrics on Witt spaces », arXiv:1206.0984, June 2012.
  • Debord, C., Lescure, J.-M., Rochon, F., « Pseudodifferential operators on manifolds with fibred corners », arXiv:1112.4575, December 2011.
Peter Russell

Book chapters:
  • Russell, P., « Cancellation », in Automorphisms in Birational and affine geometry, Ivan Cheltsov, Yuri G. Prokhorov, Ciro Ciliberto, Mikhail Zaidenberg, Hubert Flenner, James McKernan, eds., Springer Proceedings in Mathematics & Statistics Vol. 79, Switzerland, Springer, 2014.
Peer-reviewed journal articles:
  • Kraft, H., Russell, P., « Families of gruop actions, generic isotriviality and linearization », Transformation Groups, 19:3 (September 2014), 779–792.
  • Gurjar, R. V., Koras, M., Miyanishi, M., Russell, P., « A homology plane of general type can have at most a cyclic quotient singularity », Journal of Algebraic Geometry, 23 (2014), 1–62.
  • Russell, P., Koras, M., « Separable forms of G_m-actions A^3 », Transformation Groups, 18:4 (2013), 1155–1103.
  • Gurjar, R. V., Koras, M., Miyanishi, M., Russell, P., « Affine normal surfaces with simply-connected smooth locus », Mathematische Annalen, 353:1 (May 2012), 127–144.
Other journal articles:
  • Russell, P., Sathaye, A., « Forty years of the epimorphism theorem, feature article », Newsletter of the European Mathematical Society 90 (December 2013), 12–17.
Peer-reviewed conference proceedings:
  • Russell, P., Koras, M., Gurjar, R. V., Masuda, K., Miyanishi, M., « A^1*-fibrations on affine threefolds », in Affine algebraic geometry, International conference on affine algebraic geometry Kayo Masuda, Hideo Kojima, Takashi Kishimoto, eds., World Scientific Monograph Series in Mathematics, Vol. 54, Osaka, Japan, World Sci. Publ., 2013, 62–102.
  • Russell, P., Koras, M., « Some properties of C* in C^2 », in Affine algebraic geometry, International conference on affine algebraic geometry Kayo Masuda, Hideo Kojima, Takashi Kishimoto, eds., World Scientific Monograph Series in Mathematics, Vol. 54, Osaka, Japan, World Sci. Publ., 2013, 160–197.
Marcin Krzysztof Sabok

Monographs and books:
  • Kanovei, V., Sabok, M. K., Zapletal, J., Canonical Ramsey Theory on Polish Spaces 202, Cambridge Tracts in Mathematics, Vol. 202, Cambridge, Cambridge Univ. Press, 2013.
Peer-reviewed journal articles:
  • Sabok, M. K., « Completeness of the isomorphism problem for separable C*-algebras », Inventiones Mathematicae, 204:3 (June 2016), 833–868.
  • Kwela, A., Sabok, M. K., « Topological representations », Journal of Mathematical Analysis and Applications, 422:2 (February 2015), 1434–1446.
  • Asperó, D., Friedman, S.-D., Mota, M. A., Sabok, M. K., « Baumgartner's conjecture and bounded forcing axioms », Annals of Pure and Applied Logic, 164:12 (December 2013), 1178–1186.
  • Pawlikowski, J., Sabok, M. K., « Decomposing Borel functions and structure at finite levels of the Baire hierarchy », Annals of Pure and Applied Logic, 163:12 (December 2012), 1748–1764.
  • Sabok, M. K., « Extreme amenability of abelian $L_0$ groups », Journal of Functional Analysis, 263:10 (November 2012), 2978–2992.
  • Sabok, M. K., « Forcing, games and families of closed sets », Transactions of the American Mathematical Society, 364:8 (August 2012), 4011–4039.
  • Sabok, M. K., « Complexity of Ramsey null sets », Advances in Mathematics, 230:3 (June 2012), 1184–1195.
  • Sabok, M. K., Zapletal, J., « Forcing properties of ideals of closed sets », The Journal of Symbolic Logic, 76:3 (September 2011), 1075–1095.
John A. Toth

Peer-reviewed journal articles:
  • Christianson, H., Hassell, A., Toth, J. A., « Exterior mass estimates and $L^2$ restriction bounds for Neumann data along hypersurfaces », International Mathematics Research Notices, 2015 (2015), 1638–1665.
  • El-Hajj, L. A., Toth, J. A., « Intersection bounds for nodal sets of planar neumann eigenfunctions with analytic curves », Journal of Differential Geometry, 100:1 (2015), 1–53.
  • Jakobson, D., Canzani, Y., Toth, J. A., « On the distribution of perturbations of propagated Schrödinger eigenfunctions », Journal of Spectral Theory, 4:2 (2014), 283–307.
  • Toth, J. A., Zelditch, S., « Quantum ergodic restriction theorems. : Manifolds without boundary », Geometric and Functional Analysis, 23:2 (April 2013), 715–775.
  • Eswarathasan, S., Toth, J. A., « Averaged pointwise bounds for deformations of Schrödinger eigenfunctions », Annales Henri Poincaré, 14:3 (April 2013), 611–637.
  • Christianson, H., Toth, J. A., Zelditch, S., « Quantum ergodic restriction for Cauchy data: Interior QUE and Restricted QUE », Mathematical Research Letters, 20:3 (2013), 465–475.
  • Toth, J. A., Zelditch, S., « Quantum ergodic restriction theorems. I: Interior hypersurfaces in domains with ergodic billiards », Annales Henri Poincaré, 13:4 (May 2012), 599–670.
  • Sogge, C., Toth, J. A., Zelditch, S., « About the blowup of quasimodes on Riemannian manifolds  », Journal of Geometric Analysis, 21:1 (January 2011), 150–173.
Johannes Walcher

Peer-reviewed journal articles:
  • Walcher, J., Jefferson, R., « Monodromy of inhomogeneous Picard–Fuchs equation », Communications in Number Theory and Physics, 8:1 (2014).
  • Laporte, G., Walcher, J., « Monodromy of an inhomogeneous Picard–Fuchs equation », SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 8 (2013), 056, 10 p.
  • Krefl, D., Walcher, J., « ABCD of beta ensembles and topological strings », Journal of High Energy Physics, 2012:11 (July 2012), Article 111, 27 p.
  • Herbst, M., Walcher, J., « On the unipotence of autoequivalences of toric complete intersection Calabi–Yau categories », Mathematische Annalen, 353:3 (July 2012), 783–802.
  • Elitzur, S., Oz, Y., Rabinovici, E., Walcher, J., « Open/closed topological $\mathbb{CP}^1$ sigma model revisited », Journal of High Energy Physics, 2012:101 (January 2012), 1201, 20 p.
  • Walcher, J., « On the arithmetic of D-brane superpotentials. Lines and conics on the mirror quintic », Communications in Number Theory and Physics, 6:2 (2012), 279–337.
  • Walcher, J., « On the arithmetic of D-brane superpotentials. Lines and conics on the mirror quintic », Communications in Number Theory and Physics, 6:2 (2012), 279–337.
  • Krefl, D., Walcher, J., « Extended holomorphic anomaly in gauge theory », Letters in Mathematical Physics, 95:1 (2011), 67–88.
  • Walcher, J., « Landau-Ginzburg models in real mirror symmetry », Annales de l'Institut Fourier, 61:7 (2011), 2865–2883.
  • Jockers, H., Mayr, P., Walcher, J., « On $\mathcal{N}=1$ 4d effective couplings for F-theory and heterotic vacua », Advances in Theoretical and Mathematical Physics, 14:5 (October 2010), 1433–1514.
  • Krefl, D., Pasquetti, S., Walcher, J., « The real topological vertex at work », Nuclear Physics B, 833:3 (July 2010), 153–198.
Peer-reviewed conference proceedings:
  • Schwarz, A., Vologodsky, V., Walcher, J., « Framing the Di-Logarithm (over Z) », in Procedings of the String-Math, 2012, 22pp.
Research reports:
  • Krefl, D., Walcher, J., « Shift versus extension in refined partition functions », arXiv:1010.2635, October 2010.
Liam Watson

Peer-reviewed journal articles:
  • Hom, J., Lidman, T., Watson, L., « The Alexander module, Seifert forms, and categorification », Journal of Topology (XXXX), accepted.
  • Li, Y., Watson, L., « Genus one open books with non-left-orderable fundamental group », Proceedings of the American Mathematical Society, 142:4 (April 2014), 1425–1435.
  • Lidman, T., Watson, L., « Nonfibered L-space knots », Pacific Journal of Mathematics, 267:2 (2014), 423–429.
  • Greene, J. E., Watson, L., « Turaev torsion, definite 4-manifolds, and quasi-alternating knots », Bulletin of the London Mathematical Society, 45:5 (October 2013), 962–972.
  • Watson, L., « New proofs of certain finite filling results via Khovanov homology », Quantum Topology, 4:4 (2013), 353–376.
  • Clay, A., Lidman, T., Watson, L., « Graph manifolds, left-orderability and amalgamation », Algebraic & Geometric Topology, 13:4 (2013), 2347–2368.
  • Clay, A., Watson, L., « Left-orderable fundamental groups and Dehn surgery », International Mathematics Research Notices, 2013:12 (2013), 2862–2890.
  • Watson, L., « Surgery obstructions from Khovanov homology », Selecta Mathematica. New Series, 18:2 (June 2012), 417–472.
  • Boyer, S. P., Gordon, C. M., Watson, L., « On L-spaces and left-orderable fundamental groups », Mathematische Annalen, 356:4 (July 2011), 1213–1245.
  • Clay, A., Watson, L., « On cabled knots, Dehn surgery, and left-orderable fundamental groups », Mathematical Research Letters, 18:6 (2011), 1085–1095.
  • Hedden, M., Watson, L., « Does Khovanov homology detect the unknot? », American Journal of Mathematics, 132:5 (October 2010), 1339–1346.
  • Watson, L., « A remark on Khovanov homology and two-fold branched covers », Pacific Journal of Mathematics, 245:2 (2010), 373–380.
Peer-reviewed conference proceedings:
  • Watson, L., « A surgical perspective on quasi-alternating links », in Low-Dimensional and Symplectic Topology, 2009 Georgia International Topology Conference (Athens, GA, 2009), Usher, M., ed., Proceedings of Symposia in Pure Mathematics, Vol. 82, Providence, RI, Amer. Math. Soc., 2011, 39–51.
Research reports:
  • Hanselman, J., Rasmussen, J., Watson, L., « Bordered Floer homology for manifolds with torus boundary via immersed curves
     », arXiv:1604.03466, April 2016.
  • Hanselman, J., Rasmussen, J., Rasmussen, S., Watson, L., « Taut foliations on graph manifolds », arXiv:1508.05911, August 2015.
  • Hanselman, J., Watson, L., « A calculus for bordered Heegaard Floer homology », arXiv:1508.05445, August 2015.
  • Hedden, M., Watson, L., « On the geography and botany of knot Floer homology », arXiv:1404.6913, April 2014.
  • Watson, L., « Khovanov homology and the symmetry group of a knot », arXiv:1311.1085, November 2013.
Daniel T. Wise

Monographs and books:
  • Wise, D. T., From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry 117, CBMS Regional Conference Series in Mathematics, Vol. 117, Providence, RI, Amer. Math. Soc., 2012.
Peer-reviewed journal articles:
  • Hsu, T., Wise, D. T., « Cubulating malnormal amalgams », Inventiones Mathematicae, 199:2 (February 2015), 293–331.
  • Hagen, M., Wise, D. T., « Cubulating hyperbolic free-by-cyclic groups: the general case », Geometric and Functional Analysis, 25:1 (February 2015), 134–179.
  • Wise, D. T., « Cubular tubular groups », Transactions of the American Mathematical Society, 366:10 (October 2014), 5503–5521.
  • Wise, D. T., « Cubular tubular groups », Transactions of the American Mathematical Society, 366:10 (October 2014), 5503–5521.
  • Przytycki, P., Wise, D. T., « Separability of embedded surfaces in 3-manifolds », Compositio Mathematica, 150:9 (September 2014), 1623–1630.
  • Hruska, G. C., Wise, D. T., « Finiteness properties of cubulated groups », Compositio Mathematica, 150:3 (March 2014), 453–506.
  • Przytycki, P., Wise, D. T., « Graph manifolds with boundary are virtually special  », Journal of Topology, 7:2 (2014), 419–435.
  • Przytycki, P., Wise, D. T., « Graph manifolds with boundary arre virtually special », Journal of Topology, 7:2 (2014), 419–435.
  • Lauer, J., Wise, D. T., « Cubulating one-relator groups with torsion », Mathematical Proceedings of the Cambridge Philosophical Society, 155:3 (November 2013), 411–429.
  • Martínez-Pedroza, E., Wise, D. T., « Coherence and negative sectional curvature in complexes of groups », Michigan Mathematical Journal, 62:3 (September 2013), 507–536.
  • Bigdely, H., Wise, D. T., « Quasiconvexity and relatively hyperbolic groups that split », Michigan Mathematical Journal, 62:2 (June 2013), 387–406.
  • Bigdely, H., Wise, D. T., « C (6) groups do not contain F2XF2 », Journal of Pure and Applied Algebra, 217:1 (January 2013), 22–30.
  • Wise, D. T., « The last incoherent Artin group », Proceedings of the American Mathematical Society, 141:1 (January 2013), 139–149.
  • Janzen, D., Wise, D. T., « Cubulating rhombus groups », Groups, Geometry, and Dynamics, 7:2 (2013), 419–442.
  • Polak, J., Wise, D. T., « Polygonal $\mathscr{VH}$ complexes », Publicacions Matemàtiques, 57:2 (2013), 421–428.
  • Polak, J., Wise, D. T., « Polygonal VH complexes », Publicacions Matemàtiques, 57:2 (2013), 421–428.
  • Wise, D. T., « Recubulating free groups », Israel Journal of Mathematics, 191:1 (October 2012), 337–345.
  • Wise, D. T., Bergeron, N., « A boundary criterion for cubulation », American Journal of Mathematics, 134:3 (June 2012), 843–859.
  • Haglund, F., Wise, D. T., « A combination theorem for special cube complexes », Annals of Mathematics. Second Series, 176:3 (2012), 1427–1482.
  • Martínez-Pedroza, E., Wise, D. T., « Local quasiconvexity of groups acting on small cancellation complexes », Journal of Pure and Applied Algebra, 215:10 (October 2011), 2396–2405.
  • Ollivier, Y., Wise, D. T., « Cubulating random groups at density less than 1/6 », Transactions of the American Mathematical Society, 363:9 (September 2011), 4701–4733.
  • Wise, D. T., « Morse theory, random subgraphs, and incoherent groups », Bulletin of the London Mathematical Society, 43:5 (May 2011), 840–848.
  • Bergeron, N., Haglund, F., Wise, D. T., « Hyperplane sections in arithmetic hyperbolic manifolds », Journal of the London Mathematical Society. Second Series, 83:2 (April 2011), 431–448.
  • Martínez-Pedroza, E., Wise, D. T., « Relative quasiconvexity using fine hyperbolic graphs », Algebraic & Geometric Topology, 11:1 (January 2011), 477–501.
  • Sageev, M., Wise, D. T., « Periodic flats in CAT(0) cube complexes », Algebraic & Geometric Topology, 11:3 (2011), 1793–1820.
  • Hsu, T., Wise, D. T., « Cubulating graphs of free groups with cyclic edge groups », American Journal of Mathematics, 132:5 (October 2010), 1153–1188.
  • Haglund, F., Wise, D. T., « Coxeter groups are virtually special », Advances in Mathematics, 224:5 (August 2010), 1890–1903.
  • McCammond, J., Wise, D. T., « Windmills and extreme 2-cells », Illinois Journal of Mathematics, 54:1 (2010), 69–87.
  • Hagen, M., Wise, D. T., « Special groups with an elementary hierarchy are virtually free-by-$\mathbb{Z}$ », Groups, Geometry, and Dynamics, 4:3 (2010), 597–603.
Home l Members
Postdoctoral fellows l Graduate students
Activities l Publications l Contact us l Links