Recent publications (since 2010)

Line Baribeau

Peer-reviewed journal articles:
  • Baribeau, L., Kamara, A. S., « A refined Schwarz lemma for the spectral Nevanlinna-Pick problem », Complex Analysis and Operator Theory, 8:2 (February 2014), 529–536.
Peer-reviewed conference proceedings:
  • Baribeau, L., « Hyperbolic derivatives determine a function uniquely », in Blaschke Products and Their Applications, J. Mashreghi, E. Fricain, ed., Fields Institute Communications, Vol. 65, New York, Springer, 2013, 187–192.
Abraham Boyarsky

Peer-reviewed journal articles:
  • Góra, P., Boyarsky, A., Li, Z., « Singular SRB measures for a non 1–1 map of the unit square », Journal of Statistical Physics, 165:2 (October 2016), 409–433.
  • Góra, P., Li, Z., Boyarsky, A., Proppe, H., « Toward a mathematical holographic principle », Journal of Statistical Physics, 156:4 (August 2014), 775–799.
  • Boyarsky, A., Góra, P., Li, Z., « Selections and their absolutely continuous invariant measures  », Journal of Mathematical Analysis and Applications, 413:1 (May 2014), 100–113.
  • Góra, P., Boyarsky, A., Eslami, P., « Metastable systems as random maps », International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 22:11 (November 2013), 1250279, 11 p.
  • Boyarsky, A., Li, Z., Góra, P., « A framework for interneural dynamics in a cerebral cortex center », International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 23:9 (September 2013), 1350151, 8 p.
  • Boyarsky, A., Góra, P., « Dynamical system solutions for homogeneous linear functional equations of higher order », Aequationes mathematicae, 85:3 (June 2013), 221–230.
  • Góra, P., Boyarsky, A., « Stochastic Perturbations and Ulam’s methods for W-shaped Maps », Discrete and Continuous Dynamical Systems. Series A, 33:5 (May 2013), 1937–1944.
  • Góra, P., Li, Z., Boyarsky, A., « Harmonic average of slopes and the stability of absolutely continuous invariant measure », Journal of Mathematical Analysis and Applications, 396:1 (June 2012), 1–6.
  • Góra, P., Li, Z., Boyarsky, A., Proppe, H., « Harmonic Averages and New Explicit Constants for Invariant Densities of Piecewise Expanding Maps of the Interval », Journal of Statistical Physics, 146:4 (February 2012), 850–863.
  • Li, Z., Góra, P., Boyarsky, A., Eslami, P., Proppe, H., « Family of piecewise expanding maps having singular measure as a limit of ACIMs », Ergodic Theory and Dynamical Systems, 33:1 (November 2011), 158–167.
  • Boyarsky, A., Góra, P., « A random map model for quantum interference », Communications in Nonlinear Science and Numerical Simulation, 15:8 (August 2010), 1974–1979.
  • Boyarsky, A., Góra, P., Proppe, H., « A model of the holographic principle: Randomness and additional dimension », Physics Letters A, 374:3-4 (January 2010), 435–438.
Francis H. Clarke

Monographs and books:
  • Clarke, F. H., Functional analysis, calculus of variations and optimal control 264, Graduate Texts in Mathematics, Vol. 264, London, Springer, 2013.
Peer-reviewed journal articles:
  • Clarke, F. H., « A general theorem on necessary conditions in optimal control  », Discrete and Continuous Dynamical Systems. Series A, 29:2 (February 2011), 485–503.
  • Clarke, F. H., Ledyaev, Y., de Pinho, M. d. R., « An extension of the Schwarzkopf multiplier rule in optimal control », SIAM Journal on Control and Optimization, 49:2 (2011), 599–610.
  • Clarke, F. H., « The Pontryagin maximum principle and a unified theory of dynamic optimization », Proceedings of the Steklov Institute of Mathematics, 268:1 (April 2010), 58–69.
  • Clarke, F. H., de Pinho, M. d. R., « Optimal control problems with mixed constraints  », SIAM Journal on Control and Optimization, 48:7 (2010), 4500–4524.
Octav Cornea

Peer-reviewed journal articles:
  • Charette, F., Cornea, O., « Categorification of Seidel’s representation », Israel Journal of Mathematics, 211:1 (February 2016), 67–104.
  • Biran, P., Cornea, O., « Lagrangian cobordism and Fukaya categories », Geometric and Functional Analysis, 24:6 (December 2014), 1731–1830.
  • Biran, P., Cornea, O., « Lagrangian cobordism I », Journal of the American Mathematical Society, 26:2 (April 2013), 295–340.
  • Biran, P., Cornea, O., « Lagrangian topology and enumerative geometry », Geometry & Topology, 16:2 (2012), 963–1052.
  • Cornea, O., de Rezende, K. A., da Silveira, M. R., « Spectral sequences in Conley’s theory », Ergodic Theory and Dynamical Systems, 30:4 (August 2010), 1009–1054.
Peer-reviewed conference proceedings:
  • Cornea, O., « Lagrangian cobordism: Rigidity and flexibility aspects », in Mathematical Congress of the Americas, First Mathematical Congress of the Americas (Guanajuato, 2013), J. A. de la Peña, J. A. López-Mimbela, M. Nakamura, J. Petean, eds., Contemporary Mathematics, Vol. 656, Providence, RI, Amer. Math. Soc., 2016, 41–63.
Research reports:
  • Biran, P., Cornea, O., « Lagrangian Cobordism II », arXiv:1304.6032, April 2013, 95 p.
Galia Dafni

Monographs and books:
  • Dafni, G., McCann, R., Stancu, A. (EDT), Analysis and Geometry of Metric Measure Spaces: 50th Séminaire de Mathématiques Supérieures (SMS), Montréal, 2011 56, CRM Proceedings & Lecture Notes, Vol. 56, Providence, RI, Amer. Math. Soc., 2013.
Peer-reviewed journal articles:
  • Dafni, G., Yue, H., « Some characterizations of local bmo and h1 on metric measure spaces », Analysis and Mathematical Physics, 2:3 (June 2012), 285–318.
  • Badr, N., Dafni, G., « An atomic decomposition of the Hajłasz Sobolev space $M_1^1$ on manifolds », Journal of Functional Analysis, 259:6 (September 2010), 1380–1420.
Peer-reviewed conference proceedings:
  • Badr, N., Dafni, G., « Maximal characterization of Hardy–Sobolev spaces on manifolds », in Concentration, Functional Inequalities and Isoperimetry, International Workshop on Concentration, Functional Inequalities and Isoperimetry (Boca Raton, FL, 2009), C. Houdré, M. Ledoux, E. Milman, M. Milman, eds., Contemporary Mathematics, Vol. 545, Providence, RI, Amer. Math. Soc., 2011, 13–21.
  • Chang, D.-C., Dafni, G., Yue, H., « Nonhomogeneous div-curl decompositions for local Hardy spaces on a domain  », in Hilbert Spaces of Analytic Functions, Hilbert Spaces of Analytic Functions (Montréal, QC, 2008), J. Mashreghi, T. Ransford, K. Seip, eds., CRM Proceedings & Lecture Notes, Vol. 51, Providence, RI, Amer. Math. Soc., 2010, 153–163.
Stephen W. Drury

Book chapters:
  • Drury, S. W., Loisel, S., « Sharp condition number estimates for the syhmmetric 2-lagrange multiplier method », in Domain Decomposition Methods in Sciences and Engineering XX, Randolph Bank, Michael Holst, Olof Widlund, Jinchao Xu, eds., Lecture Notes in Computational Science and Engineering, Vol. 91, Berlin, Springer, 2013.
Peer-reviewed journal articles:
  • Drury, S. W., « Principal powers of matrices with positive definite real part », Linear and Multilinear Algebra, 63:2 (2015), 296–301.
  • Drury, S. W., « Positive semidefiniteness of a 3x3 matrix related to partitioning », Linear Algebra and its Applications, 446 (April 2014), 369–376.
  • Drury, S. W., Lin, M., « Reserved fischer determinantal inequalities », Linear and Multilinear Algebra, 62:8 (2014), 1069–1075.
  • Drury, S. W., Lin, M., « Singular value inequalities for matrices with numerical ranges in a sector », Operators and Matrices, 8:4 (2014), 1143–1148.
  • Drury, S. W., « Fischer determinantal inequalities and Higham’s Conjecture », Linear Algebra and its Applications, 439:10 (November 2013), 3129–3133.
  • Lin, H., Drury, S. W., « The maximum Perron roots of digraphs with some given parameters », Discrete Mathematics, 313:22 (November 2013), 2607–2613.
  • Drury, S. W., Lin, H., « Extremal digraphs with given clique number », Linear Algebra and its Applications, 439:2 (July 2013), 328–345.
  • Drury, S. W., « On a question of Bhatia and Kittaneh », Linear Algebra and its Applications, 437:7 (October 2012), 1955–1960.
  • Drury, S. W., « Solution of the conjecture of Brualdi and Li  », Linear Algebra and its Applications, 436:9 (May 2012), 3392–3399.
  • Drury, S. W., « A counterexample to a conjecture of Matsaev », Linear Algebra and its Applications, 435:2 (July 2011), 323–329.
Richard Fournier

Peer-reviewed journal articles:
  • Fournier, R., « Bound-preserving operatiors and the maximum modulus of polynomials », Computational Methods and Function Theory, 14:4 (December 2014), 735–741.
  • Fournier, R., « Discrete Bernstein Inequalities for Polynomials », Mathematical Inequalities & Applications, 17 (2014), 241–248.
  • Fournier, R., « A note on an interpolation formula », Journal of Interpolation and Approximation in Scientific Computing, 2013 (September 2013), 5.
  • Fournier, R., Ruscheweyh, S., Salinas, L., « On a discrete norm for polynomials », Journal of Mathematical Analysis and Applications, 396:12 (December 2012), 425–433.
  • Fournier, R., Lam, R., Kamtchatnikov, T., « On a criterion for analyticity », Dawson Research Journal of Experimental Science, 9 (2012), 25–26.
  • Fournier, R., Nestoridis, V., « Non-normal sequences of holomorphic functions and universality », Computational Methods and Function Theory, 11:1 (September 2011), 309–316.
  • Nestoridis, V., Fournier, R., « Non-normal sequences of holomorphic functions and universality », Computational Methods and Function Theory, 11:1 (August 2011), 309–316.
  • Rubio-Sanchez, J., Fournier, R., « The Leibniz criterion and generalized Euler–Mascheroni constants », Dawson Research Journal of Experimental Science, 8 (2011), 18–20.
  • Fournier, R., Letac, G., Ruscheweyh, S., « Estimates for the uniform norm of complex polynomials in the unit disk », Mathematische Nachrichten, 283:2 (January 2010), 193–199.
Peer-reviewed conference proceedings:
  • Fournier, R., Giguêre, J.-M., « On Universality of series in Banach spaces », in Complex Analysis and Potential Theory , Complex Analysis and Potential Theory André Boivin, Javad Mashreghi, ed., CRM Proceedings & Lecture Notes, Vol. 55, Providence, RI, Amer. Math. Soc., 2012, 217–223.
  • Fournier, R., « Discrete Bernstein Inequalities for polynomials », in 60 years of analytic functions in Lublin, International conference: “60 years of analytic functions in Lublin”: In memory of our Professors and friends Jan G. Krzyż, Zdzisław Lewandowski and Wojciech Szapiel: June 4-5, Lublin,Poland, Jan Szynal, eds., Lublin, Innovatio Press Scientific publishing house, 2012, 139–143.
  • Ruscheweyh, S., Fournier, R., « On the Bohr radius for simply connected domains », in Hilbert Spaces of Analytic Functions, Hilbert Spaces of Analytic Functions (Montréal, QC, 2008), J. Mashreghi, T. Ransford, K. Seip, eds., CRM Proceedings & Lecture Notes, Vol. 51, Providence, RI, Amer. Math. Soc., 2010, 165–171.
Marlène Frigon

Peer-reviewed journal articles:
  • Frigon, M., Lotfipour, M., « Multiplicity results for systems of first order differential inclusions », Journal of Nonlinear and Convex Analysis, 16:6, “Nonlinear functional analysis” dedicated to the memory Professor de Blasi (June 2015), 1025–1040.
  • El Khattabi, N., Frigon, M., Ayyadi, N., « Multiple solutions of boundary value problems with φ-Laplacian operators and
    under a Wintner-Nagumo growth condition
     », Boundary Value Problems, 2013:236 (November 2013), 16 p.
  • Dinevari, T., Frigon, M., « Fixed point results for multivalued contractions on a metric space with a graph », Journal of Mathematical Analysis and Applications, 405:2 (September 2013), 507–517.
  • Frigon, M., Gilbert, H., « Systems of first order inclusions on time scales », Topological Methods in Nonlinear Analysis, 37:1 (March 2011), 147–163.
  • Frigon, M., « On some generalizations of Ekeland’s principle and inward contractions in gauge spaces », Journal of Fixed Point Theory and Applications, 10:2 (2011), 279–298.
  • Beauchemin, N., Frigon, M., « On a notion of category depending on a functional. II: An application to Hamiltonian systems », Nonlinear Analysis: Theory, Methods & Applications, 72:7-8 (April 2010), 3376–3387.
  • Beauchemin, N., Frigon, M., « On a notion of category depending on a functional. I: Theory and application to critical point theory », Nonlinear Analysis: Theory, Methods & Applications, 72:7-8 (April 2010), 3356–3375.
  • Frigon, M., Gilbert, H., « Existence theorems for systems of third order differential equations », Dynamic Systems and Applications, 19:1 (2010), 1–23.
  • Frigon, M., « Fixed point results for multivalued maps in metric spaces with generalized inwardness conditions », Fixed Point Theory and Applications, 2010, Dedicated to W.Takahashi (2010), 183217, 19 p.
  • Frigon, M., Gilbert, H., « Boundary value problems for systems of second-order dynamic equations on time scales with $\Delta$-Carathéodory functions », Abstract and Applied Analysis, 2010 (2010), Article 234015, 26 p.
Paul M. Gauthier

Book chapters:
  • Gauthier, P. M., « Approximating the Riemann zeta-function by strongly recurrent functions », in Blaschke products and their applications, Javad Mashreghi, Emmanuel Fricain, ed., Fields Institute Communications, Vol. 65, Providence, RI, Amer. M’ath. Soc., 2013.
Peer-reviewed journal articles:
  • Gauthier, P. M., Sharifi, F., « The Carathéodory reflection principle and Osgood–Carathéodory theorem on Riemann surfaces », Canadian Mathematical Bulletin / Bulletin canadien de mathématiques, 59:4 (December 2016), 776–793.
  • Gauthier, P. M., « Non-extendable zero sets of harmonic and holomorphic functions », Canadian Mathematical Bulletin / Bulletin canadien de mathématiques, 59:2 (June 2016), 303–310.
  • Gauthier, P. M., Kienzle, J., « Approximation of a function and its derivatives by entire functions », Canadian Mathematical Bulletin / Bulletin canadien de mathématiques, 59:1 (March 2016), 87–94.
  • Gauthier, P. M., Nestoridis, V., « Density of polynomials in classes of functions on products of planar domains », Journal of Mathematical Analysis and Applications, 433:1 (January 2016), 282–290.
  • Andersson, J., Gauthier, P. M., « Mergelyan’s theorem with polynomials non-vanishing on unions of sets  », Complex Variables and Elliptic Equations, 59:1, Special issue: Complex Analysis and Potential Theory, in memory of Promarz M. Tamrazov. (November 2013), 99–109.
  • Gauthier, P. M., « Universally overconvergent power series via the Riemann zeta-function », Canadian Mathematical Bulletin / Bulletin canadien de mathématiques, 56:3 (September 2013), 544–550.
  • Boivin, A., Gauthier, P. M., Paramonov, P., « Cm - Subharmonic extension of runge type from closed to open subsets of Rn », Proceedings of the Steklov Institute of Mathematics, 279:1 (December 2012), 207–214.
  • Gauthier, P. M., « Approximating all meromorphic funstions by linear motions of the Riemann zeta-function », Computational Methods and Function Theory, 12:2 (December 2012), 517–526.
  • Gauthier, P. M., Nestoridis, V., « Domains of injective holomorphy », Canadian Mathematical Bulletin / Bulletin canadien de mathématiques, 55:3 (September 2012), 509–522.
  • Gauthier, P. M., Knese, G., « Zero-free polynomial approximation on a chain of jordan domains », Annales des sciences mathématiques du Québec, 36:1 (August 2012), 107–112.
  • Gauthier, P. M., « Approximating functions by the Riemann zeta-function and by polynomials with zero constraints », Computational Methods and Function Theory, 12:1 (June 2012), 257–271.
  • Gauthier, P. M., Donzelli, F., « On the instability of the Riemann hypothesis for varieties over finite », Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 47:3 (May 2012), 124–133.
  • Gauthier, P. M., Tarkhanov, N., « On the instability of the Riemann hypothesis for curves over finite fields », Journal of Approximation Theory, 164:4 (April 2012), 504–515.
  • Donzelli, F., Gauthier, P. M., « Traces of entire functions on algebraic subvarieties », Albanian Journal of Mathematics, 6:2 (2012), 51–62.
  • Chen, H., Gauthier, P. M., « The Landau theorem and Bloch theorem for planar harmonic and pluriharmonic mappings », Proceedings of the American Mathematical Society, 139:2 (2011), 583–595.
  • Gauthier, P. M., « Approximation of and by the Riemann zeta-function », Computational Methods and Function Theory, 10:2 (2010), 603–638.
  • Gauthier, P. M., « Approximation of and by the Riemann Zeta-function », Computational Methods and Function Theory, 10:2 (2010), 603–638.
Peer-reviewed conference proceedings:
  • Gauthier, P. M., « Whether regularity is local for the generalized Dirichlet problem », in Hilbert Spaces of Analytic Functions, Hilbert Spaces of Analytic Functions (Montréal, 2008), J. Mashreghi, T. Ransford, K. Siep, eds., CRM Proceedings & Lecture Notes, Vol. 51, Providence, RI, Amer. Math. Soc., 2010, 211–214.
Alexandre Girouard

Peer-reviewed journal articles:
  • Girouard, A., Polterovich, I., « The Steklov eigenvalue problem: some open questions », CMS Notes/ Notes de la SMC, 48:3 (June 2016), 16–17.
  • Girouard, A., Laugesen, R. S., Siudeja, B., « Steklov eigenvalues and quasiconformal maps of simply connected planar domains », Archive for Rational Mechanics and Analysis, 219:2 (February 2016), 903–936.
  • Girouard, A., Parnovski, L., Polterovich, I., Sher, D. A., « The Steklov spectrum of surfaces: asymptotics and invariants », CMS Notes/ Notes de la SMC, 157:3 (November 2014), 379–389.
  • Colbois, B., El Soufi, A., Girouard, A., « Isoperimetric control of the spectrum of a compact hypersurface », Journal für die Reine und Angewandte Mathematik, 683 (2013), 49–65.
  • Colbois, B., Girouard, A., Iversen, M., « Uniform stability of the dirichlet spectrum for rough outer perturbations  », Journal of Spectral Theory, 3:4 (2013), 575–599.
  • Polterovich, I., Girouard, A., « Upper bounds for Steklov eigenvalues on surfaces », Electronic Research Announcements in Mathematical Sciences, 19:7 (January 2012), 77–85.
  • Girouard, A., El Soufi, A., Colbois, B., « Isoperimetric control of the Steklov spectrum », Journal of Functional Analysis, 261:5 (September 2011), 1384–1399.
  • Girouard, A., Polterovich, I., « On the Hersch–Payne–Schiffer inequalities for Steklov eigenvalues », Functional Analysis and its Applications, 44:2 (June 2010), 106–117.
  • Girouard, A., Polterovich, I., « Shape optimization for low Neumann and Steklov eigenvalues », Mathematical Methods in the Applied Sciences, 33:4, Complex-Analytic Methods (2010), 501–516.
Pawel Góra

Peer-reviewed journal articles:
  • Góra, P., Boyarsky, A., Li, Z., « Singular SRB measures for a non 1–1 map of the unit square », Journal of Statistical Physics, 165:2 (October 2016), 409–433.
  • Góra, P., Li, Z., Boyarsky, A., Proppe, H., « Toward a mathematical holographic principle », Journal of Statistical Physics, 156:4 (August 2014), 775–799.
  • Boyarsky, A., Góra, P., Li, Z., « Selections and their absolutely continuous invariant measures  », Journal of Mathematical Analysis and Applications, 413:1 (May 2014), 100–113.
  • Góra, P., Boyarsky, A., Eslami, P., « Metastable systems as random maps », International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 22:11 (November 2013), 1250279, 11 p.
  • Boyarsky, A., Li, Z., Góra, P., « A framework for interneural dynamics in a cerebral cortex center », International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 23:9 (September 2013), 1350151, 8 p.
  • Góra, P., Eslami, P., « Stronger Lasota-Yorke inequality for one-dimensional piecewise expanding transformations », Proceedings of the American Mathematical Society, 141:12 (August 2013), 4249–4260.
  • Li, Z., Góra, P., « Instability of isolated spectrum for W-shaped maps », Ergodic Theory and Dynamical Systems, 33:4 (August 2013), 1052–1059.
  • Boyarsky, A., Góra, P., « Dynamical system solutions for homogeneous linear functional equations of higher order », Aequationes mathematicae, 85:3 (June 2013), 221–230.
  • Góra, P., Boyarsky, A., « Stochastic Perturbations and Ulam’s methods for W-shaped Maps », Discrete and Continuous Dynamical Systems. Series A, 33:5 (May 2013), 1937–1944.
  • Góra, P., Li, Z., Boyarsky, A., « Harmonic average of slopes and the stability of absolutely continuous invariant measure », Journal of Mathematical Analysis and Applications, 396:1 (June 2012), 1–6.
  • Góra, P., Li, Z., Boyarsky, A., Proppe, H., « Harmonic Averages and New Explicit Constants for Invariant Densities of Piecewise Expanding Maps of the Interval », Journal of Statistical Physics, 146:4 (February 2012), 850–863.
  • Li, Z., Góra, P., Boyarsky, A., Eslami, P., Proppe, H., « Family of piecewise expanding maps having singular measure as a limit of ACIMs », Ergodic Theory and Dynamical Systems, 33:1 (November 2011), 158–167.
  • Eslami, P., Góra, P., « On eventually expanding maps of the interval », The American Mathematical Monthly, 118:7 (August 2011), 629–635.
  • Bahsoun, W., Góra, P., « SRB measures for certain Markov processes », Discrete and Continuous Dynamical Systems. Series A, 30:1 (May 2011), 17–37.
  • Góra, P., Islam, M. S., « Invariant measures of stochastic perturbations of dynamical systems using fourier approximations », International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 21:1 (January 2011), 113–123.
  • Góra, P., Stern, R. J., « Subdifferential analysis of the Van der Waerden function », Journal of Convex Analysis, 18:3 (2011), 699–705.
  • Boyarsky, A., Góra, P., « A random map model for quantum interference », Communications in Nonlinear Science and Numerical Simulation, 15:8 (August 2010), 1974–1979.
  • Boyarsky, A., Góra, P., Proppe, H., « A model of the holographic principle: Randomness and additional dimension », Physics Letters A, 374:3-4 (January 2010), 435–438.
  • Doosti, H., Islam, M. S., Chaubey, Y. P., Góra, P., « Two-dimensional wavelets for nonlinear autoregressive models with an application in dynamical system », Italian Journal of Pure and Applied Mathematics, 27 (2010), 39–62.
  • Góra, P., Islam, M. S., « Smoothness of density function for random maps », Dynamics of Continuous, Discrete & Impulsive Systems. Series A. Mathematical Analysis, 17:2 (2010), 249–262.
Frédéric Gourdeau

Peer-reviewed journal articles:
  • Gourdeau, F., White, M. C., « The cyclic and simplicial cohomology of the Cuntz semigroup algebra », Journal of Mathematical Analysis and Applications, 386:2 (February 2012), 92–932.
  • Choi, Y., Gourdeau, F., White, M. C., « Simplicial cohomology of band semigroup algebras », Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 142:4 (2012), 715–744.
  • Gourdeau, F., White, M. C., « The cyclic and simplicial cohomology of the bicyclic semigroup algebra », The Quarterly Journal of Mathematics, 62:3 (September 2011), 607–624.
  • Gourdeau, F., Grønbæk, N., White, M. C., « Homology and cohomology of Rees semigroup algebras », Studia Mathematica, 202:2 (2011), 105–121.
Pengfei Guan

Book chapters:
  • Guan, P., Zhang, X., « A Geodesic equation in the space of sasakian metrics », in Geometry and Analysis, No1, Lizhen Ji, eds., Advanced Lectures in Mathematics Vol. 17, Somerville, MA, International Press of Boston, 2011.
Peer-reviewed journal articles:
  • Andrews, B., Guan, P., Ni, L., « Flow by powers of the Gauss curvature », Advances in Mathematics, 299 (August 2016), 174–201.
  • Guan, P., Wang, Z., Zhang, X., « A proof of Alexandrov's uniqueness theorem for convex surfaces in $\mathbb{R}^3$
     », Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, 33:2 (2016), 329–336.
  • Guan, P., Ren, C., Wang, Z., « Global $C^2$-estimates for convex solutions of curvature equations », Communications on Pure and Applied Mathematics, 68:8 (August 2015), 1287–1325.
  • Guan, P., Li, J., « A mean curvature type flow in space forms », International Mathematics Research Notices, 2015:13 (2015), 4716–4740.
  • Guan, P., Xu, L., « Convexity estimates for leve sets of quasiconcave solutions to fully nonlinear elliptic equations  », Journal für die Reine und Angewandte Mathematik, 680 (April 2013), 41–67.
  • Guan, P., Phong, D. H., « Partial legendre transforms of nonlinear equations », Proceedings of the American Mathematical Society, 140:11 (November 2012), 3831–3842.
  • Guan, P., Phong, D. H., « A maximum rank problem for degenerate elliptic fully nonlinear equations », Mathematische Annalen, 354:1 (September 2012), 147–168.
  • Guan, P., Zhang, X., « Regularity of the geodesic equation in the space of Sasakian metyrics », Advances in Mathematics, 230:1 (May 2012), 321–371.
  • Guan, P., Li, Y. Y., Li, J., « Hypersurfaces of prescribed curvature measures », Duke Mathematical Journal, 161:10 (2012), 1927–1942.
  • Bian, B., Guan, P., Ma, X.-N., Xu, L., « A constant rank theorem for quasiconcave solutions of fully nonlinear partial differential equations », Indiana University Mathematics Journal, 60:1 (2011), 101–119.
  • Guan, P., Ma, X.-N., Trudinger, N., Zhu, X., « A form of Alexandrov–Fenchel inequality », Pure and Applied Mathematics Quarterly, 6:4, In honor of Joseph J. Kohn (October 2010), 999–1012.
  • Bian, B., Guan, P., « A structural condition for microscopic convexity principle », Discrete and Continuous Dynamical Systems. Series A, 28:2 (October 2010), 789–807.
Peer-reviewed conference proceedings:
  • Guan, P., Shen, X. S., « A rigidity theorem for hypersurfaces in higher dimensional space forms  », in Analysis, Complex Geometry, and Mathematical Physics: in Honor of Duong H. Phong, Analysis, Complex Geometry, and Mathematical Physics: A Conference in Honor of Duong H. Phong (New York, 2013), P. M. N. Feehan, J. Song, B. Weinkove, R. A. Wentworth, eds., Contemporary Mathematics, Vol. 644, Providence, RI, Amer. Math. Soc., 2015, 61–65.
  • Guan, P., « Remarks on the homogenous complex Monge–Ampère equation », in Complex Analysis, Conference in Complex Analysis 2008 (Fribourg, 2008), P. Ebenfelt, N. Hungerbühler, J. J. Kohn, N. Mok, E. J. Straube, eds., Trends in Mathematics, Basel, Birkhäuser, 2010, 175–185.
John Harnad

Monographs and books:
  • Harnad, J. (EDT), Random matrices, random processes and integrable systems, CRM Series in Mathematical Physics, New York, Springer, 2011.
Book chapters:
  • Harnad, J., Orlov, A. Y., « Convolution symmetries of integrable hierarchies, matrix models and $\tau$-functions », in Random Matrix Theory Interacting Particle Systems and Integrable Systems, Percy Deift, Peter Forrester, ed., Mathematical Sciences Research Institute Publications, Vol. 65, Cambridge, Cambridge Univ. Press, 2014.
Peer-reviewed journal articles:
  • Harnad, J., « Quantum Hurwitz numbers and Macdonald polynomials », Journal of Mathematical Physics, 57:11 (November 2016), 113505, 16 p.
  • Harnad, J., Balogh, F., Dinis da Fonseca, T., « Finite-dimensional KP $\tau$-functions. I. Finite Grassmannians », Journal of Mathematical Physics, 55:8 (August 2014), 083517, 32 p.
  • Harnad, J., Orlov, A. Y., « Determinantal identity for multilevel systems and finite determinantal point processes », Analysis and Mathematical Physics, 2:2 (June 2012), 105–121.
  • Harnad, J., van de Leur, J., Orlov, A. Y., « Multiple sums and integrals as neutral BKP tau functions », Theoretical and Mathematical Physics, 168:1 (July 2011), 951–962.
  • Harnad, J., Enolskii, V., « Schur function expansions of KP $\tau$ functions associated to algebraic curves », Russian Mathematical Surveys, 66:4 (2011), 767–807.
Peer-reviewed conference proceedings:
  • Harnad, J., « Weighted Hurwitz numbers and hypergeometric $\tau$-functions: an overview », in String-Math 2014, String Math Conference – 2014, V. Bouchard, C. Doran, S. Méndez-Diez, C. Quigley, eds., Proceedings of Symposia in Pure Mathematics, Vol. 93, Providence, RI, Amer. Math. Soc., 2016, 289–333.
  • Harnad, J., Orlov, A. Y., « Convolution symmetries of integrable hierarchies, matrix models and $\tau$-functions », in Random Matrix Theory, Interacting Particle Systems and Integrable Systems, Random Matrix Theory, Interacting Particle Systems and Integrable Systems (Berkeley, 2010), P. Deift, P. Forrester, ed., Mathematical Sciences Research Institute Publications, Vol. 65, Cambridge, Cambridge Univ. Press, 2014, 247–276.
Research reports:
  • Alexandrov, A., Chapuy, G., Eynard, B., Harnad, J., « Fermionic approach to weighted Hurwitz numbers and topological recursion », Centre de recherches mathématiques, CRM-3360, June 2017.
  • Alexandrov, A., Chapuy, G., Eynard, B., Harnad, J., « Weighted Hurwitz numbers and topological recursion », Centre de recherches mathématiques, CRM-3359, April 2017.
  • Harnad, J., Ortmann, J., « Zero-temperature limit of quantum weighted Hurwitz numbers », Centre de recherches mathématiques, CRM-3361, March 2017.
  • Alexandrov, A., Chapuy, G., Eynard, B., Harnad, J., « Weighted Hurwitz numbers and topological recursion: An overview », Centre de recherches mathématiques, CRM-3356, October 2016.
  • Harnad, J., Ortmann, J., « Semiclassical asymptotics of quantum weighted Hurwitz numbers », Centre de recherches mathématiques, CRM-3357, October 2016.
  • Harnad, J., « Multispecies quantum Hurwitz numbers », Centre de recherches mathématiques, CRM-3344, April 2015, 17 p.
  • Harnad, J., « Multispecies weighted Hurwitz numbers », Centre de recherches mathématiques, CRM-3345, April 2015, 11 p.
Dmitry Jakobson

Monographs and books:
  • Albin, P., Jakobson, D., Rochon, F. (EDT), Geometric and Spectral Analysis 630, Contemporary Mathematics, Vol. 630, Providence, RI, Amer. Math. Soc., 2014.
  • Jakobson, D., Nonnenmacher, S., Polterovich, I. (EDT), Spectrum and Dynamics 52, CRM Proceedings & Lecture Notes, Vol. 52, Providence, RI, Amer. Math. Soc., 2010.
Peer-reviewed journal articles:
  • Jakobson, D., Naud, F., « Resonances and density bounds for convex co-compact congruence subgroups of $\operatorname{SL}_2(\mathbb{Z})$ », Israel Journal of Mathematics, 213:1 (June 2016), 443–473.
  • Gover, A. R., Hassannezhad, A., Jakobson, D., Levitin, M., « Zero and negative eigenvalues of the conformal Laplacian », Journal of Spectral Theory, 6:4 (2016), 793–806.
  • Dolgopyat, D., Jakobson, D., « On small gaps in the length spectrum », Journal of Modern Dynamics, 10 (2016), 339–352.
  • Jakobson, D., Safarov, Y., Strohmaier, A., Colin de Verdière, Y., « The semiclassical theory of discontinuous systems and ray-splitting billiards », American Journal of Mathematics, 137:4 (August 2015), 859–906.
  • Apostolov, V., Jakobson, D., Kokarev, G., « An extremal eigenvalue problem in Kähler geometry », Journal of Geometry and Physics, 91 (May 2015), 108–116.
  • Jakobson, D., Ng, T., Stevenson, M., Suzuki, M., « Conformally covariant operators and conformal invariants on weighted graphs », Geometriae Dedicata, 174 (February 2015), 339–357.
  • Chen, L., Jakobson, D., « Gaussian free fields and KPZ relation in R4 », Annales Henri Poincaré, 15:7 (July 2014), 1245–1283.
  • Jakobson, D., Canzani, Y., Toth, J. A., « On the distribution of perturbations of propagated Schrödinger eigenfunctions », Journal of Spectral Theory, 4:2 (2014), 283–307.
  • Canzani, Y., Gover, A. R., Jakobson, D., Ponge, R., « Conformal invariants from nodal sets. I. Negative eigenvalues and curvature prescription  », International Mathematics Research Notices, 2014:9 (2014), 2356–2400.
  • Canzani, Y., Jakobson, D., Wigman, I., « Scalar curvature and $Q$-curvature of random metrics », Journal of Geometric Analysis, 24 (2014), 1982–2019.
  • Canzani, Y., Gover, A. R., Jakobson, D., Ponge, R., « Nullspaces of conformally invariant operators. Applications to Qk-curvature », Electronic Research Announcements in Mathematical Sciences, 20 (March 2013), 43–50.
  • Jakobson, D., Naud, F., « On the critical line of convex co-compact hyperbolic surfaces », Geometric and Functional Analysis, 22:2 (April 2012), 352–368.
  • Aïssiou, T., Jakobson, D., Macià, F., « Uniform estimates for the solutions of the Schrödinger equation on the torus and regularity of semiclassical measures », Mathematical Research Letters, 19:3 (2012), 589–599.
  • Canzani, Y., Jakobson, D., Wigman, I., « Scalar curvature and $Q$-curvature of random metrics », Electronic Research Announcements in Mathematical Sciences, 17 (July 2010), 43–56.
  • Jakobson, D., Naud, F., « Lower bounds for resonances of infinite-area Riemann surfaces », Analysis & PDE, 3:2 (2010), 207–225.
Research reports:
  • Clarke, B., Jakobson, D., Kamran, N., Silberman, L., Taylor, J., Canzani, Y., « The manifold of metrics with a fixed volume form  », McGill, arXiv:1309.1348, September 2013.
Vojkan Jakšic

Book chapters:
  • Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A., « Entropic fluctuations in quantum statistical mechanics — An introduction », in Quantum Theory from Small to Large Scales, J. Frohlich, M. Salmhofer, V. Mastropietro, W. De Roeck, L. F. Cugliandolo, eds., Lecture Notes of the Les Houches Summer School, Vol. 95, Oxford, Oxford Univ. Press, 2012.
Peer-reviewed journal articles:
  • Benedikter, N. P., Jakšic, V., Porta, M., Saffirio, C., Schlein, B., « Mean-field evolution of fermionic mixed states », Communications on Pure and Applied Mathematics, 69:12 (December 2016), 2250–2303.
  • Jakšic, V., Pillet, C.-A., Shirikyan, A., « Entropic fluctuations in Gaussian dynamical systems », Reports on Mathematical Physics, 77:3 (June 2016), 335–376.
  • Bruneau, L., Jakšic, V., Last, Y., Pillet, C.-A., « Conductance and absolutely continuous spectrum of 1D samples », Communications in Mathematical Physics, 344:3 (June 2016), 959–981.
  • Bruneau, L., Jakšic, V., Last, Y., Pillet, C.-A., « Crystalline conductance and absolutely continuous spectrum of 1D samples », Letters in Mathematical Physics, 106:6 (June 2016), 787–797.
  • Jakšic, V., Nersesyan, V., Pillet, C.-A., Shirikyan, A., « Large derivations and Gallavotti–Cohen principle for dissipative PDEs with rough noise », Communications in Mathematical Physics, 336:1 (May 2015), 131–170.
  • Jakšic, V., Pillet, C.-A., « A note on the Landauer principle in quantum statistical mechanics », Journal of Mathematical Physics, 55:7 (July 2014), 075210.
  • Jakšic, V., Pillet, C.-A., Westrich, M., « Entropic fluctuations of quantum dynamicall semigroups », Journal of Statistical Physics, 154:1-2 (January 2014), 153–187.
  • Jakšic, V., Landon, B., Panati, A., « A note on reflectionless Jacobi matrices », Communications in Mathematical Physics, 332:2 (2014), 827–838.
  • Jakšic, V., Landon, B., Pillet, C.-A., « Entropic fluctuations in XY chains and reflectionless Jacobi matrices », Annales Henri Poincaré, 14:7 (November 2013), 1775–1800.
  • Grech, P., Jakšic, V., Westrich, M., « The spectral structure of the electronic black box hamiltonian », Letters in Mathematical Physics, 103:10 (October 2013), 1135–1147.
  • Bruneau, L., Jakšic, V., Pillet, C.-A., « Landauer–Büttiker formula and Schrödinger conjecture », Communications in Mathematical Physics, 319:2 (April 2013), 501–513.
  • Jakšic, V., Ogata, Y., Pillet, C.-A., Seiringer, R., « Quantum hypothesis testing and non-equilibrium statistical mechanics », Reviews in Mathematical Physics, 24:6 (July 2012), 1230002, 67 p.
  • Jakšić, V., Pillet, C.-A., Rey-Bellet, L., « Entropic fluctuations in statistical mechanics. I: Classical dynamical systems », Nonlinearity, 24:3 (March 2011), 699–763.
  • Jakšić, V., Pautrat, Y., Pillet, C.-A., « A quantum central limit theorem for sums of independent identically distributed random variables », Journal of Mathematical Physics, 51:1 (January 2010), 015208, 8 p.
  • Jakšić, V., Pautrat, Y., Pillet, C.-A., « A non-commutative Lévy–Cramér continuity theorem », Markov Processes and Related Fields, 16:1 (2010), 59–78.
Research reports:
  • Bruneau, L., Jakšic, V., Last, Y., Pillet, C.-A., « Landauer–Büttiker and thouless conductance », arXiv:1408.0185, August 2014.
Tomasz Kaczynski

Peer-reviewed journal articles:
  • Kaczynski, T., Mrozek, M., Wanner, T., « Towards a formal tie between combinatorial and classical vector field dynamics », Journal of Computational Dynamics, 3:1 (June 2016), 17–50.
  • Ethier, M., Kaczynski, T., « Suspension models for testing shape similarity methods », Computer Vision and Image Understanding, 121 (April 2014), 13–20.
  • Kaczynski, T., Mrozek, M., « The cubical cohomology ring: an algorithmic approach », Foundations of Computational Mathematics, 13:5 (October 2013), 789–818.
  • Cavazza, N., Ethier, M., Frosini, P., Kaczynski, T., Landi, C., « Comparison of persistent homologies for vector functions: from continuous to discrete and black », Computers & Mathematics with Applications, 66:4 (September 2013), 560–573.
  • Dłotko, P., Kaczynski, T., Mrozek, M., Wanner, T., « Coreduction homology algorithm for regular CW-complexes », Discrete & Computational Geometry, 46:2 (September 2011), 361–388.
  • Allili, M., Corriveau, D., Derivière, S., Ethier, M., Kaczynski, T., « Detecting critical regions in multidimensional data sets », Computers & Mathematics with Applications, 61:2 (January 2011), 499–512.
  • Kaczynski, T., Dłotko, P., Mrozek, M., « Computing the cubical cohomology ring », ImageN-A, 1:3 (2010), 137–142.
Peer-reviewed conference proceedings:
  • Allili, M., Ethier, M., Kaczynski, T., « Critical region analysis of scalar fields in arbitrary dimensions », in Visualization and Data Analysis 2010, Visualization and Data Analysis — VDA 2010 (San Jose, CA, 2010), J. Park, M. C. Hao, P. C. Wong, C. Chen, eds., Proceedings of SPIE, Vol. 7530, Bellingham, WA, SPIE, 2010, 753008, 12 pages.
Research reports:
  • Batkam, C. J., Colin, F., Kaczynski, T., « On differential systems with strongly indefinite variational structure », ArXiv:1403.0159, March 2014.
  • Allili, M., Kaczynski, T., Landi, C., « Reducing complexes in multidimensional persistent homology theory », arXiv:1310.8089 , October 2013.
Vadim Kaimanovich

Book chapters:
  • Kaimanovich, V., Sobieczky, F., « Random walks on random horospheric products », in Dynamical Systems and Group Actions, Lewis Bowen, Rostislav Grigorchuk, Yaroslav Vorobets, eds., Contemporary Mathematics, Vol. 567, Providence, RI, Amer. Math. Soc., 2012.
Peer-reviewed journal articles:
  • Erschler, A., Kaimanovich, V., « Continuity of asymptotic characteristics for random walks on hyperbolic groups  », Functional Analysis and its Applications, 47:2 (April 2013), 152–156.
  • Grigorchuk, R., Kaimanovich, V., Nagnibeda, T., « Ergodic properties of boundary actions and the Nielsen-Schreier theory », Advances in Mathematics, 230:3 (June 2012), 1340–1380.
  • Kaimanovich, V., Le Prince, V., « Matrix random products with singular harmonic measure », Geometriae Dedicata, 150:1 (February 2011), 257–279.
  • Bartholdi, L., Kaimanovich, V., Nekrashevych, V., « On amenability of automata groups », Duke Mathematical Journal, 154:3 (September 2010), 575–598.
  • Kaimanovich, V., « Hopf decomposition and horospheric limit sets », Annales Academiæ Scientiarium Fennicæ. Mathematica, 35 (2010), 335–350.
Niky Kamran

Monographs and books:
  • Reid, N. M., Adem, A., Bierstone, E., Campbell, E., Dean, C. R., Genest, C., Kamran, N., Kuske, R., Lewis, M., Ivanoff, G., Thompson, A.-M., Solutions for a Complex Age: Long Range Plan for Mathematical and Statistical Science Researchin Canada: 2013-2018, 2012.
Book chapters:
  • Gómez-Ullate, D., Kamran, N., Milson, R., « On orthogonal polynomials spanning a non-standard flag », in Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Primitivo B. Acosta-Humànez, Federico Finkel, Niky Kamran, Peter J. Olver, eds., Contemporary Mathematics, Vol. 563, Providence, RI, Amer. Math. Soc., 2012.
Peer-reviewed journal articles:
  • Castro Silva, T., Kamran, N., « Third-order differential equations and local isometric immersions of pseudospherical surfaces », Communications in Contemporary Mathematics, 18:6 (December 2016), 1650021, 41 p.
  • Kahouadji, N., Kamran, N., Tenenblat, K., « Second-order equations and local isometric immersions of pseudo-spherical surfaces  », Communications in Analysis and Geometry, 24:3 (2016), 605–643.
  • Enciso, A., Kamran, N., « A singular initial-boundary value problem for nonlinear wave equations and holography in asymptotically anti-de Sitter spaces », Journal des mathématiques pures et appliquées. Neuvième série, 103:4 (April 2015), 1053–1091.
  • Farooqui, A., Kamran, N., Panangaden, P., « An exact expression for photon polarization in Kerr geometry », Advances in Theoretical and Mathematical Physics, 8:3 (2014), 657–684.
  • Gómez-Ullate, D., Kamran, N., Milson, R., « A conjecture on exceptional orthogonal polynomials  », Foundations of Computational Mathematics, 13:4 (August 2013), 615–666.
  • Enciso, A., Kamran, N., « Causality and the conformal boundary of AdS in real-time holography », Physical Review D. Particles, Fields, Gravitation, and Cosmology, 85 (5:10 2012), 106016, 6 p.
  • Daude, T., Kamran, N., « Local energy decay of massive Dirac fields in the 5D Myers–Perry metric », Classical and Quantum Gravity, 29:14 (July 2012), 145007, 38 p.
  • Chen, F., Dasgupta, K., Enciso, A., Kamran, N., « On the scalar spectrum of the Yp,q manifolds », Journal of High Energy Physics, 2012:9 (May 2012), Article 9, 36 p.
  • Gómez-Ullate, D., Kamran, N., Milson, R., « Two-step Darboux transformations and exceptional Laguerre polynomials », Journal of Mathematical Analysis and Applications, 387:1 (March 2012), 410–418.
  • Enciso, A., Kamran, N., « Spinor Green’s functions via spherical means on products of space forms », Journal of Geometry and Physics, 61:1 (January 2011), 180–190.
  • Gómez-Ullate, D., Kamran, N., Milson, R., « Exceptional orthogonal polynomials and the Darboux transformation », Journal of Physics A. Mathematical and Theoretical, 43:43 (October 2010), 434016, 16 p.
  • Enciso, A., Kamran, N., « Global causal propagator for the Klein–Gordon equation on a class of supersymmetric AdS backgrounds », Advances in Theoretical and Mathematical Physics, 14:4 (August 2010), 1183–1208.
  • Gómez-Ullate, D., Kamran, N., Milson, R., « An extension of Bochner's problem: exceptional invariant subspaces », Journal of Approximation Theory, 162:5 (May 2010), 987–1006.
Research reports:
  • Finster, F., Kamran, N., « Spinors on singular spaces and the topology of causal fermion systems », arXiv:1403.7885, March 2014.
  • Clarke, B., Jakobson, D., Kamran, N., Silberman, L., Taylor, J., Canzani, Y., « The manifold of metrics with a fixed volume form  », McGill, arXiv:1309.1348, September 2013.
Ivo Klemes

Peer-reviewed journal articles:
  • Klemes, I., « Polarization of an inequality », Mathematical Inequalities & Applications, 14:4 (2011), 819–824.
  • Klemes, I., « Symmetric polynomials and 1p inequalities for certain intervals of p », Houston Journal of Mathematics, 37:1 (2011), 285–295.
Alexey Kokotov

Book chapters:
  • Kokotov, A., « On the spectral theory of the laplacian on compact polyhedral surfaces of arbitrary genus », in Computational Approach to Riemann Surfaces, Alexander I. Bobenko, Christian Klein, ed., Lecture Notes in Mathematics, Berlin, Springer, 2011.
Peer-reviewed journal articles:
  • Hillairet, L., Kalvin, V., Kokotov, A., « Spectral determinants on Mandelstam diagrams », Communications in Mathematical Physics, 343:2 (April 2016), 563–600.
  • Hillairet, L., Kokotov, A., « Krein formula and S-matrix for euclidean surfaces with conical singularities », Journal of Geometric Analysis, 23:3 (July 2013), 1498–1529.
  • Kokotov, A., « Polyhedral surfaces and determinant of Laplacian », Proceedings of the American Mathematical Society, 141:2 (February 2013), 725–735.
  • Kokotov, A., « On the asymptotics of determinant of Laplacian at the principal boundary of the principal stratum of the moduli space of Abelian differentials  », Transactions of the American Mathematical Society, 364:11 (November 2012), 5645–5671.
  • Aïssiou, T., Hillairet, L., Kokotov, A., « Determinants of pseudo-Laplacians », Mathematical Research Letters, 19:6 (2012), 1297–1308.
  • Kokotov, A., Korotkin, D., Zograf, P., « Isomonodromic tau function on the space of admissible covers », Advances in Mathematics, 227:1 (May 2011), 586–600.
Dmitry Korotkin

Book chapters:
  • Korotkin, D., Zograf, P., « From the tau function of painlevé P6 equation to moduli spaces », in Painlevé equations and related topics, Alexander D. Bruno Alexander B. Batkhin, ed., Proceedings in mathematics, Saint Petersburg, Russia, De Gruyter, 2012.
Peer-reviewed journal articles:
  • Korotkin, D., Shramchenko, V., « On higher genus Weierstrass sigma-function », Physica D. Nonlinear Phenomena, 241:23-24 (December 2012), 2086–2094.
  • Korotkin, D., Shramchenko, V., « Riemann–Hilbert problems for Hurwitz Frobenius manifolds: regular singularities », Journal für die Reine und Angewandte Mathematik, 661 (December 2011), 125–187.
  • Korotkin, D., Shramchenko, V., « Riemann–Hilbert problems for Hurwitz Frobenius manifolds », Letters in Mathematical Physics, 96:1-3 (June 2011), 109–121.
  • Kokotov, A., Korotkin, D., Zograf, P., « Isomonodromic tau function on the space of admissible covers », Advances in Mathematics, 227:1 (May 2011), 586–600.
  • Korotkin, D., Zograf, P., « Tau function and moduli of differentials », Mathematical Research Letters, 18:3 (May 2011), 447–458.
Research reports:
  • Bertola, M., Korotkin, D., Norton, C., « Symplectic geometry of the moduli space of projective structures in homological coordinates », arXiv:1506.07918, June 2015.
Javad Mashreghi

Monographs and books:
  • Fricain, E., Mashreghi, J., The Theory of $\mathcal{H}(b)$ Spaces. Volume 1, New Mathematical Monographs, Cambridge, Cambridge Univ. Press, 2016.
  • Garcia, S., Ross, W. T., Mashreghi, J., Introduction to Model Spaces and their Operators, Cambridge Studies in Advanced Mathematics, Cambridge, Cambridge Univ. Press, 2016.
  • Fricain, E., Mashreghi, J., The Theory of $\mathcal{H}(b)$ Spaces. Volume 2, New Mathematical Monographs, Cambridge, Cambridge Univ. Press, 2016.
  • Fricain, E., Ross, W. T., Mashreghi, J. (EDT), Invariant Subspaces of the Shift Operator 638, Contemporary Mathematics, Vol. 638, Providence, RI, Amer. Math. Soc., 2015.
  • El-Fallah, O., Kellay, K., Mashreghi, J., Ransford, T. J., A Primer on the Dirichlet Space 203, Cambrige Tracts in Mathematics, Vol. 203, Cambridge University Press, 2014.
  • Mashreghi, J., Derivatives of inner functions 31, Fields Institute Monographs, Vol. 31, New York, Springer, 2013.
  • Mashreghi, J., Fricain, E. (EDT), Blaschke Products and Their Applications 65, Fields Institute Communications, Vol. 65, Providence, RI, Amer. Math. Soc., 2013.
  • Boivin, A., Mashreghi, J. (EDT), Complex Analysis and Potential Theory 55, CRM Proceedings & Lecture Notes, Vol. 55, Providence, RI, Amer. Math. Soc., 2012.
  • Mashreghi, J., Ransford, T. J., Seip, K. (EDT), Hilbert Spaces of Analytic Functions 51, CRM Proceedings & Lecture Notes, Vol. 51, Providence, RI, Amer. Math. Soc., 2010.
Book chapters:
  • Mashreghi, J., « Blaschke products as solutions of a functional equation », in Blaschke products and their applications, Javas Mashreghi, Emamanuel Fricain, ed., Fields Institute Communications, Vol. 65, Providence, RI, Amer. M’ath. Soc., 2013.
Peer-reviewed journal articles:
  • Bourhim, A., Mashreghi, J., « Maps preserving the local spectrum of productt of operators », Glasgow Mathematical Journal, 57:3 (September 2015), 709–718.
  • Mashreghi, J., Pouliasis, S., « Condenser capacity, exponential Blaschke products and universal covering maps », Proceedings of the American Mathematical Society, 143:8 (August 2015), 3547–3559.
  • El-Fallah, O., Kellay, K., Mashreghi, J., Ransford, T. J., « One-box conditions for Carleson measures for the Dirichlet space », Proceedings of the American Mathematical Society, 143:2 (February 2015), 679–684.
  • Bourhim, A., Mashreghi, J., « Maps preserving the local spectrum of triple product of operators », Linear and Multilinear Algebra, 63:4 (2015), 765–773.
  • Bourhim, A., Mashreghi, J., Stepanyan, A., « Nonlinear maps preserving the minimum and surjectivity moduli », Linear Algebra and its Applications, 463 (December 2014), 171–189.
  • Fricain, E., Mashreghi, J., Seco, D., « Cyclicity in reproducing kernel Hilbert spaces of analytic functions », Computational Methods and Function Theory, 14:4 (December 2014), 665–680.
  • Mashreghi, J., Timotin, D. G., « Nonextreme de Branges-Rovnyak spaces as models for contractions », Integral Equations Operator Theory, 80:1 (September 2014), 137–152.
  • Mashreghi, J., Shabankhah, M., « Composition of Inner functions », Canadian Journal of Mathematics / Journal canadien de mathématiques, 66:2 (April 2014), 387–399.
  • Fricain, E., Mashreghi, J., « On a characterization of finite Blaschke products », Complex Variables and Elliptic Equations, 59:3 (2014), 362–368.
  • Drissi, D., Mashreghi, J., « Resolvent spaces for algebraic operators and applications », Journal of Mathematical Analysis and Applications, 402:1 (June 2013), 179–184.
  • Bourhim, A., Mashreghi, J., « Local spectral radius preservers », Integral Equations Operator Theory, 76:1 (May 2013), 95–104.
  • Bourhim, A., Mashreghi, J., « Local spectral radius preservers », Integral Equations Operator Theory, 76:1 (May 2013), 95–104.
  • Mashreghi, J., Shabankhah, M., « Composition operators on finite rank model subspaces  », Glasgow Mathematical Journal, 55:1 (January 2013), 69–83.
  • Kellay, K., Mashreghi, J., « On zero sets in the Dirichlet space », Journal of Geometric Analysis, 22:4 (October 2012), 1055–1070.
  • Nasri, M., Mashreghi, J., « A proximal augmented Lagrangian method for equilibrium problems », Applicable Analysis, 91:1 (2012), 157–172.
  • Mashreghi, J., Nasri, M., « Hybrid Lagrange multiplier approaches for solving infinite dimensional equilibrium problems with cone constraints », Journal of Nonlinear and Convex Analysis, 13:2 (2012), 331–349.
  • Baranov, A., Chalendar, I., Fricain, E., Mashreghi, J., Timotin, D., « Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators », Journal of Functional Analysis, 259:10 (November 2010), 2673–2701.
  • Baranov, A., Fricain, E., Mashreghi, J., « Weighted norm inequalities for de Branges–Rovnyak spaces and their applications », American Journal of Mathematics, 132:1 (February 2010), 125–155.
  • Mashreghi, J., Nasri, M., « Forcing strong convergence of Korpelevich's method in Banach spaces with its applications in game theory », Nonlinear Analysis. Theory, Methods & Applications, 72:3-4 (February 2010), 2086–2099.
  • Mashreghi, J., Mostafa, N., « Forcing strong convergence of Korpelevich’s method in banach spaces with its applications in game theory », Nonlinear Analysis. Theory, Methods & Applications, 72:3-4 (February 2010), 2086–2099.
  • Mashreghi, J., Shabankhah, M., « Admissible functions for the Dirichlet space », Studia Mathematica, 198:2 (2010), 147–156.
  • Mashreghi, J., Nasri, M., « Strong convergence of an inexact proximal point algorithm for equilibrium problems in Banach spaces », Numerical Functional Analysis and Optimization, 31:9 (2010), 1053–1071.
Peer-reviewed conference proceedings:
  • El-Fallah, O., Kellay, K., Mashreghi, J., Ransford, T. J., « A self-contained proof of the strong-type capacitary inequality for the Dirichlet space », in Complex Analysis and Potential Theory, Complex Analysis and Potential Theory (Montréal QC, 2011), André Boivin, Javad Mashreghi, ed., CRM Proceedings & Lecture Notes, Vol. 55, Providence, RI, Amer. Math. Soc., 2012, 1–20.
  • Mashreghi, J., « On a family of outer functions », in Complex analysis and potential theory , André Boivin, Javad Mashreghi, ed., CRM Proceedings & Lecture Notes, Vol. 55, Providence, RI, Amer. Math. Soc., 2012, 193–199.
  • Mashreghi, J., Ransford, T. J., Shabankhah, M., « Arguments of zero sets in the Dirichlet space », in Hilbert Space of Analytic Functions, Hilbert Space of Analytic Functions (Montréal, QC, 2008), J. Mashreghi, T. J. Ransford, K. Seip, eds., CRM Proceedings & Lecture Notes, Vol. 51, Providence, RI, Amer. Math. Soc., 2010, 143–148.
  • Mashreghi, J., « A formula for the logarithmic derivative and its applications », in Hilbert Spaces of Analytic Functions, Hilbert spaces of analytic functions (Montréal, QC, 20080, J. Mashreghi, T. Ransford, K. Seip, eds., CRM Proceedings & Lecture Notes, Vol. 51, Providence, RI, Amer. Math. Soc., 2010, 197–201.
Iosif Polterovich

Monographs and books:
  • Jakobson, D., Nonnenmacher, S., Polterovich, I. (EDT), Spectrum and Dynamics 52, CRM Proceedings & Lecture Notes, Vol. 52, Providence, RI, Amer. Math. Soc., 2010.
Book chapters:
  • Bañuelos, R., Kulczycki, T., Polterovich, I., Siudeja, B., « Eigenvalue estimates for mixed Steklov problems », in Operator Theory and Its Applications, M. Levitin, D. Vassiliev, ed., American Mathematical Society Translations: Series 2, Vol. 231, Providence, RI, Amer. Math. Soc., 2010.
Peer-reviewed journal articles:
  • Girouard, A., Polterovich, I., « The Steklov eigenvalue problem: some open questions », CMS Notes/ Notes de la SMC, 48:3 (June 2016), 16–17.
  • Polterovich, I., Sher, D., « Heat invariants of the Steklov problem », Journal of Geometric Analysis, 25:2 (April 2015), 924–950.
  • Elton, D. M., Levitin, M., Polterovich, I., « Eigenvalues of a one-dimensional Dirac operator pencil  », Annales Henri Poincaré, 15;12 (December 2014), 2321–2377.
  • Girouard, A., Parnovski, L., Polterovich, I., Sher, D. A., « The Steklov spectrum of surfaces: asymptotics and invariants », CMS Notes/ Notes de la SMC, 157:3 (November 2014), 379–389.
  • Kuznetsov, N., Kulczycki, T., Kwasnicki, M., Nazarov, A., Poborchi, S., Polterovich, I., « The legacy of Vladimir Andreevich Steklov », Notices of the American Mathematical Society, 61:1 (January 2014), 9–22.
  • Karpukhin, M., Kokarev, G., Polterovich, I., « Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces », Annales de l'Institut Fourier, 64:6 (2014), 2481–2502.
  • Artemev, A., Parnovski, L., Polterovich, I., « Inverse electrostatic and elasticity problems for checkered distibutions », Inverse Problems, 29:7 (July 2013), 075010, 16 p.
  • Polterovich, I., Girouard, A., « Upper bounds for Steklov eigenvalues on surfaces », Electronic Research Announcements in Mathematical Sciences, 19:7 (January 2012), 77–85.
  • Girouard, A., Polterovich, I., « On the Hersch–Payne–Schiffer inequalities for Steklov eigenvalues », Functional Analysis and its Applications, 44:2 (June 2010), 106–117.
  • Girouard, A., Polterovich, I., « Shape optimization for low Neumann and Steklov eigenvalues », Mathematical Methods in the Applied Sciences, 33:4, Complex-Analytic Methods (2010), 501–516.
Thomas J. Ransford

Monographs and books:
  • El-Fallah, O., Kellay, K., Mashreghi, J., Ransford, T. J., A Primer on the Dirichlet Space 203, Cambrige Tracts in Mathematics, Vol. 203, Cambridge University Press, 2014.
  • Mashreghi, J., Ransford, T. J., Seip, K. (EDT), Hilbert Spaces of Analytic Functions 51, CRM Proceedings & Lecture Notes, Vol. 51, Providence, RI, Amer. Math. Soc., 2010.
Peer-reviewed journal articles:
  • Rochon, D., Parisé, P.-O., Ransford, T. J., « Tricomplex dynamical systems generated by polynomials of odd degree », Fractals. Complex Geometry, Patterns, and Scaling in Nature and Society, 25:3 (June 2017), 11pp.
  • El-Fallah, O., Kellay, K., Mashreghi, J., Ransford, T. J., « One-box conditions for Carleson measures for the Dirichlet space », Proceedings of the American Mathematical Society, 143:2 (February 2015), 679–684.
  • Ransford, T. J., Costara, C., « Which de Branges - Rovnyak spaces are Dirichlet spaces ( and vice versa)? », Journal of Functional Analysis, 265:12 (December 2013), 3204–3218.
  • Younsi, M., Ransford, T. J., « Computation of analytic capacity and applications to the sudadditivity problem », Computational Methods and Function Theory, 13:3 (October 2013), 337–382.
  • Aron, R. M., Jaramillo, J. A., Ransford, T. J., « Smooth surjections without surjective restrictions », Journal of Geometric Analysis, 23:4 (October 2013), 2081–2090.
  • Ransford, T. J., Raouafi, S., « Pseudospectra and holomorphic functions of matrices », Bulletin of the London Mathematical Society, 45:4 (August 2013), 693–699.
  • Anderson, J., Cima, J. A., Levenberg, N., Ransford, T. J., « Projective hulls and characterizations of meromorphic functions », Indiana University Mathematics Journal, 61:6 (December 2012), 2111–2122.
  • Ransford, T. J., Selezneff, A., « Capacity and covering numbers », Potential Analysis, 36:2 (February 2012), 223–233.
  • Ransford, T. J., Rostand, J., « Pseudospectra do not determine norm behavior, even for matrices with only simple eigenvalues », Linear Algebra and its Applications, 435:12 (December 2011), 3024–3028.
  • Rajon, Q., Ransford, T. J., Rostand, J., « Computation of capacity via quadratic programming », Journal des mathématiques pures et appliquées. Neuvième série, 94:4 (January 2011), 398–413.
  • El-Fallah, O., Kellay, K., Ransford, T. J., « Cantor sets and cyclicity in weighted Dirichlet spaces », Journal of Mathematical Analysis and Applications, 372:2 (December 2010), 565–573.
  • Chevrot, N., Guillot, D., Ransford, T. J., « De Branges–Rovnyak spaces and Dirichlet spaces », Journal of Functional Analysis, 259:9 (November 2010), 2366–2383.
  • Rajon, Q., Ransford, T. J., Rostand, J., « Computation of weighted capacity », Journal of Approximation Theory, 162:6 (June 2010), 1187–1203.
  • Munroe, P., Ransford, T. J., Genest, C., « Un contre-exemple à une conjecture de Hutchinson et Lai », Comptes rendus. Mathématique, 348:5-6 (March 2010), 305–310.
  • Ransford, T. J., « Computation of logarithmic capacity », Computational Methods and Function Theory, 10:2 (2010), 555–578.
Other journal articles:
  • Glover, P. W. J., Ransford, T. J., Auger, G., « A simple method for solving the Bussian equation for electrical conduction in rocks », Solid Earth, 1 (2010), 85–91.
Peer-reviewed conference proceedings:
  • El-Fallah, O., Kellay, K., Mashreghi, J., Ransford, T. J., « A self-contained proof of the strong-type capacitary inequality for the Dirichlet space », in Complex Analysis and Potential Theory, Complex Analysis and Potential Theory (Montréal QC, 2011), André Boivin, Javad Mashreghi, ed., CRM Proceedings & Lecture Notes, Vol. 55, Providence, RI, Amer. Math. Soc., 2012, 1–20.
  • Kalmes, T., Niess, M., Ransford, T. J., « Examples of quantitative universal approximation », in Complex Analysis and Potential Theory, Complex Analysis and Potential Theory (Montréal QC, 2011), André Boivin, Javad Mashreghi, ed., CRM Proceedings & Lecture Notes, Vol. 55, Providence, RI, Amer. Math. Soc., 2012, 77–97.
  • Kantrowitz, R., Neumann, M. M., Ransford, T. J., « Regularity, scrambling, and the steady state for stochastic matrices », in Function Spaces in Modern Analysis, Sixth Conference on Function Spaces (Edwardsville, 2010), K. Jarosz, eds., Contemporary Mathematics, Vol. 547, Providence, RI, Amer. Math. Soc., 2011, 153–164.
  • Ransford, T. J., « Pseudospectra and matrix behaviour », in Banach Algebras 2009, 19th International Conference on Banach Algebras (Bedlewo, 2009), R. J. Loy, V. Runde, A. Sołtysiak, eds., Banach Center Publications, Vol. 91, Varsovie, PWN, 2010, 327–338.
  • El-Fallah, O., Kellay, K., Ransford, T. J., « Invariant subspaces of the Dirichlet space », in Hilbert Spaces of Analytic Functions, Hilbert Spaces of Analytic Functions (Montréal, QC, 2008), J. Mashreghi, T. J. Ransford, K. Seip, eds., CRM Proceedings & Lecture Notes, Vol. 51, Providence, RI, Amer. Math. Soc., 2010, 133–141.
  • Mashreghi, J., Ransford, T. J., Shabankhah, M., « Arguments of zero sets in the Dirichlet space », in Hilbert Space of Analytic Functions, Hilbert Space of Analytic Functions (Montréal, QC, 2008), J. Mashreghi, T. J. Ransford, K. Seip, eds., CRM Proceedings & Lecture Notes, Vol. 51, Providence, RI, Amer. Math. Soc., 2010, 143–148.
Dominic Rochon

Peer-reviewed journal articles:
  • Rochon, D., Parisé, P.-O., Ransford, T. J., « Tricomplex dynamical systems generated by polynomials of odd degree », Fractals. Complex Geometry, Patterns, and Scaling in Nature and Society, 25:3 (June 2017), 11pp.
  • Matteau, C., Rochon, D., « The inverse iteration method for Julia sets in the 3-dimensional space », Chaos, Solitons and Fractals, 75 (June 2016), 272-280.
  • Parisé, P.-O., Rochon, D., « A study of dynamics of the tricomplex polynomial ηp+c
     », Nonlinear Dynamics, 82:1 (October 2015), 157-171.
  • Charak, K. S., Kumar, R., Rochon, D., « Bicomplex Riesz-Fischer theorem », Global Journal of Science Frontier Research, 13:1 (September 2013), 67–77.
  • Rochon, D., Kumar, R., Charak, K. S., « Infinite Dimensional Bicomplex Spectral Decomposition Theorem », Advances in Applied Clifford Algebras, 23:3 (September 2013), 593–605.
  • Rochon, D., Marchildon, L., Mathieu, J., « The bicomplex quantum Coulomb potential problem », Canadian Journal of Physics / Revue canadienne de physique, 91 (July 2013), 1093–1100.
  • Charak, K. S., Rochon, D., Sharma, N., « Normal families of bicomplex meromorphic functions », Annales Polonici Mathematici, 103:3 (2012), 303–317.
  • Gervais-Lavoie, R., Marchildon, L., Rochon, D., « Finite-dimensional bicomplex Hilbert spaces », Advances in Applied Clifford Algebras, 21:3 (September 2011), 561–581.
  • Gervais-Lavoie, R., Marchildon, L., Rochon, D., « The bicomplex quantum harmonic oscillator », Il Nuovo Cimento della Società Italiana di Fisica B, 125:10 (October 2010), 1173–1192.
  • Gervais-Lavoie, R., Marchildon, L., Rochon, D., « Infinite-dimensional bicomplex Hilbert spaces », Annals of Functional Analysis, 1:2 (2010), 75–91.
Peer-reviewed conference proceedings:
  • Gervais-Lavoie, R., Marchildon, L., Rochon, D., « Hilbert space of the bicomplex quantum harmonic oscillator », in Advances in Quantum Theory, International Conference on Advances in Quantum Theory (Växjö, 2010), G. Jaeger, A. Khrennikov, M. Schlosshauer, G. Weihs, eds., AIP Conference Proceedings, Vol. 1327, Melvile, NY, Amer. Inst. Phys., 2011, 148–157.
Research reports:
  • Kumar, R., Kumar, R., Rochon, D., « The fundamental theorems in the framework of bicomplex topological modules », arXiv:1109.3424, September 2011.
Jérémie Rostand

Peer-reviewed journal articles:
  • Ransford, T. J., Rostand, J., « Pseudospectra do not determine norm behavior, even for matrices with only simple eigenvalues », Linear Algebra and its Applications, 435:12 (December 2011), 3024–3028.
  • Rajon, Q., Ransford, T. J., Rostand, J., « Computation of capacity via quadratic programming », Journal des mathématiques pures et appliquées. Neuvième série, 94:4 (January 2011), 398–413.
  • Rajon, Q., Ransford, T. J., Rostand, J., « Computation of weighted capacity », Journal of Approximation Theory, 162:6 (June 2010), 1187–1203.
Christiane Rousseau

Monographs and books:
  • Rousseau, C., Saint-Aubin, Y., Mathematik und technologie XV, Springer Spektrum, Vol. XV, Berlin Heidelberg, Springer, 2012.
Peer-reviewed journal articles:
  • Hurtubise, J., Lambert, C., Rousseau, C., « Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of poincaré rank k », Moscow Mathematical Journal, 14:2 (April 2014), 309–338.
  • Christopher, C., Rousseau, C., « The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point », International Mathematics Research Notices (January 2014), 2494–2558.
  • Rousseau, C., « How Inge Lehmann Discovered the Inner Core of the Earth », The College Mathematics Journal, 44:5 (November 2013), 399–408.
  • Lambert, C., Rousseau, C., « Moduli space of unfolded differential linear systems with an irregular singularity of Poincaré rank 1 », Moscow Mathematical Journal, 13:3 (July 2013), 529–550.
  • Rousseau, C., « Analytic moduli for unfoldings of germs of generic analytic diffeomorphims with a codimension $k$ parabolic point », Ergodic Theory and Dynamical Systems (June 2013), 1–19.
  • Rousseau, C., « The modulus of unfoldings of cusps in conformal geometry », Journal of Differential Equations, 252:2 (January 2012), 1562–1588.
  • Lambert, C., Rousseau, C., « Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of Poincaré rank 1 », Moscow Mathematical Journal, 12:1 (2012), 77–138.
  • Laurin, S., Rousseau, C., « Organizing center for the bifurcation analysis of a generalized Gause model with prey harvesting and Holling response function of type III », Journal of Differential Equations, 251:10 (November 2011), 2980–2986.
  • Arriagada-Silva, W., Rousseau, C., « The modulus of analytic classification for the unfolding of the codimension-one flip and Hopf bifurcations », Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série 6, 20:3 (2011), 541–580.
  • Etoua, R. M. D., Rousseau, C., « Bifurcation analysis of a generalized Gause model with prey harvesting and a generalized Holling response function of type III », Journal of Differential Equations, 249:9 (November 2010), 2316–2356.
  • Rousseau, C., « The moduli space of germs of generic families of analytic diffeomorphisms unfolding of a codimension one resonant diffeomorphism or resonant saddle », Journal of Differential Equations, 248:7 (April 2010), 1794–1825.
Other journal articles:
  • Rousseau, C., « Passera, Passera pas? », Accromath, 9:1 (March 2014), 8–13.
  • Rousseau, C., « Comment Inge Lehmann a découvert le noyau interne de la Terre », Accromath, 8.1 (November 2013), 2–5.
  • Rousseau, C., « L’équitation du temps », Accromath, 8.2 (September 2013), 8–11.
  • Rousseau, C., « The equation of time », Pi in the Sky, 16 (2013), 4–7.
  • Rousseau, C., « Voyager aux confins du système solaire en économisant l’énergie  », Accromath, 7:2 (May 2012), 18–23.
  • Rousseau, C., « Des coquillages aux pelages », Accromath, 7:1 (February 2012), 2–7.
  • Rousseau, C., « Que signifie “Dimension”? », Accromath, 7:1 (February 2012), 20–23.
  • Rousseau, C., « L’effet papillon », Accromath, 6:1 (2011), 2–5.
  • Rousseau, C., « Au-delà de l'effet papillon », Accromath, 6:1 (2011), 6–7.
  • Novikov, D., Rousseau, C., Saint-Aubin, Y., « Les sphères de Dandelin », Accromath, 6:2 (2011), 2–7.
  • Rousseau, C., « Apprendre à frauder ou à détecter les fraudes ? », Accromath, 5:2 (2010), 2–7.
  • Rousseau, C., « Triangle de Reuleaux », Accromath, 5:2 (2010), 8–9.
  • Rousseau, C., « Point fixe de Banach », Accromath, 5:1 (2010), 20–23.
Other conference proceedings:
  • Rousseau, C., « The Role of Mathematicians in Popularization of Mathematics », in Proceeding of the International Congress of Mathematicians, Communicating Mathematics to society at large, Rejendra Bhatla, eds., Vol. 1, India, Hindustan Book Agency, 2010.
  • Rousseau, C., Ziegler, G., Freiberger, M., Peterson, I., Ramachandran, R., « Proceeding of the International Congress of Mathematicians », in Communicating Mathematics to society at large, Communicating Mathematics to society at large, Rejendra Bhatla, eds., Vol. 1, India, Hindustan Book Agency, 2010.
Dana Schlomiuk

Peer-reviewed journal articles:
  • Schlomiuk, D., Vulpe, N., « Global topological classification of Lotka-Volterra quadratic differential systems  », Electronic Journal of Diffrential Equations (EJDE) 2012:64 (April 2012), 1–69.
  • Schlomiuk, D., Vulpe, N., « Global classification of the planar Lotka-Volterra differential systems according to the configurations of invariant straight lines », Journal of Fixed Point Theory and Applications, 8:1 (December 2010), 177–245.
  • Llibre, J., Schlomiuk, D., « Preface (Classical problems on planar polynomial vector fields) », Qualitative Theory of Dynamical Systems, 9:1-2 (November 2010), 1–3.
  • Vulpe, N., Schlomiuk, D., « Bifurcation diagrams and moduli spaces of planar quadratic vector fields with invariant lines of total multiplicity four and having exactly three real singularities at infinity  », Qualitative Theory of Dynamical Systems, 9:1-2 (November 2010), 251–300.
  • Artés, J. C., Llibre, J., Schlomiuk, D., « The geometry of quadratic polynomial differential systems with a weak focus and an invariant straight line », International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 20:11 (November 2010), 3627–3662.
Research reports:
  • Artés, J. C., Llibre, J., Schlomiuk, D., Vulpe, N., « Configurations of singularites for quadratic differential systems with total finite multiplicity lower than 2* », Centre de recherches mathématiques, CRM-3324, March 2013, 33pp p.
  • Artés, J. C., Llibre, J., Schlomiuk, D., Vulpe, N., « Configurations of singularities for quadratic differential systems with total finite multiplicity $m_f= 2$ », Centre de recherches mathématiques, CRM-3325, March 2013.
  • Artés, J. C., Llibre, J., Schlomiuk, D., Vulpe, N., « Geometric classification of singularities at infinity of the class quadratic vector fields », Centre de recherches mathématiques, CRM-3319, June 2012, 55 p.
  • Artés, J. C., Llibre, J., Schlomiuk, D., Vulpe, N., « Global analysis of infinite singularities of quadratic vector fields », Centre de recherches mathématiques, CRM-3318, December 2011.
  • Schlomiuk, D., Vulpe, N., « The global topological classification of the Lotka–Volterra quadratic differential systems », Centre de recherches mathématiques, CRM-3312, December 2010.
Robert Seiringer

Monographs and books:
  • Lieb, E. H., Seiringer, R., The Stability of Matter in Quantum Mechanics, Cambridge, Cambridge Univ. Press, 2010.
Book chapters:
  • Frank, R. L., Hainzl, C., Seiringer, R., Solovej, J. P., « Derivation of Ginzburg-Landau theory for a one-dimensional system with contact interaction », in Operator Methods in Mathematical Physics, Jan Janas, Pavel Kurasov, Ari Laptev, Sergei Naboko, eds., Operator Theory. Advances and Applications, Vol. 227, Basel, Birkäuser, 2013.
  • Seiringer, R., « Cold quantum gases and Bose-Einstein condensation », in Quantum Many Body Systems, J. M. Morel B. Teissier ed., Lecture Notes in Mathematics, Vol. 2051, Berlin, Springer, 2012.
  • Frank, R. L., Seiringer, R., « Sharp fractional Hardy inequalities in half-spaces », in Around the Research of Vladimir Maz'ya. I, A. Laptev, eds., International Mathematical Series (New York), Vol. 11, New York, Springer, 2010.
Peer-reviewed journal articles:
  • Grech, P., Seiringer, R., « The excitation spectrum for weakly interacting bosons in a trap », Communications in Mathematical Physics, 322:2 (September 2013), 559–591.
  • Frank, R. L., Lieb, E. H., Seiringer, R., « Symmetry of bipolaron bound states for small Coulomb repulsion », Communications in Mathematical Physics, 319:2 (April 2013), 557–573.
  • Frank, R. L., Lewin, M., Lieb, E. H., Seiringer, R., « A positive density analogue of the Lieb–Thirring inequality », Duke Mathematical Journal, 162:3 (2013), 435–495.
  • Seiringer, R., Yngvason, J., Zagrebnov, V., « Disordered Bose–Einstein condensates with Interaction in one dimension », Journal of Statistical Mechanics. Theory and Experiment, 2012:11 (November 2012), P11007, 23 p.
  • Lieb, E. H., Seiringer, R., « Further implications of the Bessis–Moussa–Villani conjecture », Journal of Statistical Physics, 149:1 (October 2012), 86–91.
  • Frank, R. L., Seiringer, R., « Lieb–Thirring inequality for a model of particles with point interactions », Journal of Mathematical Physics, 53:9, In honor of Elliott Lied’s 80th birthday (September 2012), 095201, 11 p.
  • Jakšic, V., Ogata, Y., Pillet, C.-A., Seiringer, R., « Quantum hypothesis testing and non-equilibrium statistical mechanics », Reviews in Mathematical Physics, 24:6 (July 2012), 1230002, 67 p.
  • Frank, R. L., Lieb, E. H., Seiringer, R., « Binding of polarons and atoms at threshold », Communications in Mathematical Physics, 313:2 (July 2012), 405–424.
  • Landon, B., Seiringer, R., « The scattering length at positive temperature », Letters in Mathematical Physics, 100:3 (June 2012), 237–243.
  • Seiringer, R., « Absence of bound states implies non-negativity of the scattering length », Journal of Spectral Theory, 2:3 (April 2012), 321–328.
  • Freiji, A., Hainzl, C., Seiringer, R., « The gap equation for spin-polarized fermions », Journal of Mathematical Physics, 53:1 (January 2012), 012101, 19 p.
  • Frank, R. L., Lieb, E. H., Seiringer, R., Thomas, L. E., « Stability and absence of binding for multi-polaron systems », Publications Mathématiques. Institut de Hautes Études Scientifiques, 113:1 (June 2011), 39–67.
  • Frank, R. L., Lewin, M., Lieb, E. H., Seiringer, R., « Energy cost to make a hole in the Fermi sea », Physical Review Letters, 106:15 (April 2011), 150402, 4 p.
  • Seiringer, R., « The excitation spectrum for weakly interacting bosons », Communications in Mathematical Physics, 306:2 (2011), 565–578.
  • Frank, R. L., Lieb, E. H., Seiringer, R., Thomas, L. E., « Bipolaron and $N$-polaron binding energies », Physical Review Letters, 104:21 (May 2010), 210402, 4 p.
  • Hainzl, C., Seiringer, R., « Asymptotic behavior of eigenvalues of Schrödinger type operators with degenerate kinetic energy », Mathematische Nachrichten, 283:3 (March 2010), 489–499.
Other journal articles:
  • Hainzl, C., Seiringer, R., « Low density limit of BCS theory and Bose–Einstein condensation of fermion pairs », Letters in Mathematical Physics, 100:2 (May 2012), 119–138.
  • Frank, R. L., Hainzl, C., Seiringer, R., Solovej, J. P., « Microscopic derivation of Ginzburg–Landau theory », Journal of the American Mathematical Society, 25:3 (2012), 667–713.
Peer-reviewed conference proceedings:
  • Frank, R. L., Hainzl, C., Seiringer, R., Solovej, J. P., « Derivation of Ginzburg–Landau theory for a one-dimensional system with contact interaction », in Operator Methods in Mathematical Physics, Fifth International Conference on Operator Theory Analysis and Mathematical Physics — OTAMP 2010 (Będlewo, 2010), J. Janas, P. Kurasov, A. Laptev, S. Naboko, eds., Operator Theory. Advances and Applications, Vol. 227, Basel, Birkäuser, 2013.
  • Frank, R. L., Laptev, A., Seiringer, R., « A sharp bound on eigenvalues of Schrödinger operators on the half-line with complex-valued potentials », in Spectral Theory and Analysis, Operator Theory, Analysis and Mathematical Physics – OTAMP2008 (Bedlewo, 2008), J. Janas, P. Kurasov, A. Laptev, S. Naboko, G. Stolz, eds., Operator Theory. Advances and Applications, Vol. 214, Basel, Birkäuser, 2011, 39–44.
  • Frank, R. L., Lieb, E. H., Seiringer, R., Thomas, L. E., « Binding, stability, and non-binding of multi-polaron systems », in Mathematical Results In Quantum Physics, QMath11 Conference (Hradec Králové, 2010), P. Exner, eds., Singapore, World Scientific Publishing, 2011, 21–32.
  • Seiringer, R., « Inequalities for Schrödinger operators and applications to the stability of matter problem », in Entropy and the Quantum, Arizona School of Analysis with Applications (Tucson, AZ, 2009), R. Sims, D. Ueltschi, ed., Contemporary Mathematics, Vol. 529, Providence, RI, Amer. Math. Soc., 2010, 53–72.
  • Frank, R. L., Lieb, E. H., Seiringer, R., « Equivalence of Sobolev inequalities and Lieb–Thirring inequalities », in XVIth International Congress on Mathematical Physics, XVIth International Congress on Mathematical Physics (Prague, 2009), P. Exner, eds., Singapore, World Scientific Publishing, 2010, 523–535.
  • Seiringer, R., « Hot topics in cold gases », in XVIth International Congress on Mathematical Physics, XVIth International Congress on Mathematical Physics (Prague, 2009), P. Exner, eds., Singapore, World Scientific Publishing, 2010, 231–245.
Research reports:
  • Bellazzini, J., Frank, R. L., Lieb, E. H., Seiringer, R., « Existence of the group states for negative ions at the binding threshold », arXiv:1301.5370, January 2013, 17pp p.
  • Guo, Y., Seiringer, R., « On the mass concentration for Bose-Einstein condensates with attractive interactions », arXiv:1301.5682, January 2013, 14pp p.
Alexander Shnirelman

Peer-reviewed journal articles:
  • Shnirelman, A., « On the long time behavior of fluid flows », Procedia IUTAM, 7 (2013), 151–160.
Research reports:
  • Shnirelman, A., « On the analyticity of particle trajectories in the ideal incompressible fluid », arXiv:1205.5837, May 2012, 9 p.
Alina Stancu

Monographs and books:
  • Dafni, G., McCann, R., Stancu, A. (EDT), Analysis and Geometry of Metric Measure Spaces: 50th Séminaire de Mathématiques Supérieures (SMS), Montréal, 2011 56, CRM Proceedings & Lecture Notes, Vol. 56, Providence, RI, Amer. Math. Soc., 2013.
Peer-reviewed journal articles:
  • Stancu, A., Ivaki, M. N., « Volume preserving centro affine normal flows », Communications in Analysis and Geometry, 21:3 (2013), 671–685.
  • Stancu, A., « Centro-affine invariants for smooth convex bodies », International Mathematics Research Notices, 2012:10 (2012), 2289–2320.
Peer-reviewed conference proceedings:
  • Stancu, A., « Some affine invariants revisited », in Asymptotic geometric analysis , Proceedings of the Fall 2010 Fields Institute Thematic Program (held in Toronto, ON, July-December 2010), Monika Ludwig, Vitali D. Milman, Vladimir Pestov, Nicole Tomczak-Jaegermann, eds., Fields Institute Communications, Vol. 68, New York, Springer, 2013, 341–357.
  • Stancu, A., « Flows by powers of Centro-affine Curvature », in Geometric Partial Differentiel Equations , Antonin Chambolle, Matteo Novaga, Enrico Valdinoci, eds., CRM Series ( Centro di Ricerca Matematica Ennio De Giorgi), Vol. 15, Italie, Edizioni della Normale, 2013, 251–265.
Ron J. Stern

Peer-reviewed journal articles:
  • Nour, C., Stern, R. J., Takche, J., « Generalized exterior sphere conditions, local semiconcavity, and convexity », Discrete and Continuous Dynamical Systems. Series A, 29:2 (2011), 615–622.
  • Góra, P., Stern, R. J., « Subdifferential analysis of the Van der Waerden function », Journal of Convex Analysis, 18:3 (2011), 699–705.
John A. Toth

Peer-reviewed journal articles:
  • Christianson, H., Hassell, A., Toth, J. A., « Exterior mass estimates and $L^2$ restriction bounds for Neumann data along hypersurfaces », International Mathematics Research Notices, 2015 (2015), 1638–1665.
  • El-Hajj, L. A., Toth, J. A., « Intersection bounds for nodal sets of planar neumann eigenfunctions with analytic curves », Journal of Differential Geometry, 100:1 (2015), 1–53.
  • Jakobson, D., Canzani, Y., Toth, J. A., « On the distribution of perturbations of propagated Schrödinger eigenfunctions », Journal of Spectral Theory, 4:2 (2014), 283–307.
  • Toth, J. A., Zelditch, S., « Quantum ergodic restriction theorems. : Manifolds without boundary », Geometric and Functional Analysis, 23:2 (April 2013), 715–775.
  • Eswarathasan, S., Toth, J. A., « Averaged pointwise bounds for deformations of Schrödinger eigenfunctions », Annales Henri Poincaré, 14:3 (April 2013), 611–637.
  • Christianson, H., Toth, J. A., Zelditch, S., « Quantum ergodic restriction for Cauchy data: Interior QUE and Restricted QUE », Mathematical Research Letters, 20:3 (2013), 465–475.
  • Toth, J. A., Zelditch, S., « Quantum ergodic restriction theorems. I: Interior hypersurfaces in domains with ergodic billiards », Annales Henri Poincaré, 13:4 (May 2012), 599–670.
  • Sogge, C., Toth, J. A., Zelditch, S., « About the blowup of quasimodes on Riemannian manifolds  », Journal of Geometric Analysis, 21:1 (January 2011), 150–173.
Jérôme Vétois

Peer-reviewed journal articles:
  • Druet, O., Hebey, E., Vétois, J., « Static Klein–Gordon–Maxwell–Proca systems in 4-dimensional closed manifolds. II », Journal für die Reine und Angewandte Mathematik, 713 (April 2016), 149–179.
  • Vétois, J., « A priori estimates and application to the symmetry of solutions for critical $p$-Laplace equations », Journal of Differential Equations, 260:1 (January 2016), 149–161.
  • Vétois, J., « Decay estimates and a vanishing phenomenon for the solutions of critical anisotropic equations », Advances in Mathematics, 284 (October 2015), 122–158.
  • Robert, F., Vétois, J., « Sign-changing solutions to elliptic second order equations: glueing a peak to a degenerate critical manifold », Calculus of Variations and Partial Differential Equations, 54:1 (September 2015), 693–716.
  • Vétois, J., « Continuity and injectivity of optimal maps », Calculus of Variations and Partial Differential Equations, 52:3-4 (March 2015), 587–607.
  • Cîrstea, F., Vétois, J., « Fundamental solutions for anisotropic elliptic equations: existence and a priori estimates », Communications in Partial Differential Equations, 40:4 (2015), 727–765.
  • Esposito, P., Pistoia, A., Vétois, J., « The effect of linear perturbations on the Yamabe problem », Mathematische Annalen, 358:1-2 (February 2014), 511–560.
  • Robert, F., Vétois, J., « Examples of non-isolated blow-up for perturbations of the scalar curvature equation on non-locally conformally flat manifolds », Journal of Differential Geometry, 98:2 (2014), 349–356.
  • Pistoia, A., Vétois, J., « Sign-changing bubble towers for asymptotically critical elliptic equations on Riemannian manifolds », Journal of Differential Equations, 254:11 (June 2013), 4245–4278.
  • Robert, F., Vétois, J., « Sign-changing blow-up for scalar curvature type equations », Communications in Partial Differential Equations, 38:8 (2013), 1437–1465.
  • Vétois, J., « Strong maximum principles for anisotropic elliptic and parabolic equations », Advanced Nonlinear Studies, 12:1 (February 2012), 101–114.
  • Vétois, J., « The blow-up of critical anisotropic equations with critical directions », NoDEA: Nonlinear Differential Equations and Applications, 18:2 (April 2011), 173–197.
  • Vétois, J., « Existence and regularity for critical anisotropic equations with critical directions », Advances in Differential Equations, 16:1-2 (2011), 61–83.
  • Vétois, J., « Asymptotic stability, convexity, and Lipschitz regularity of domains in the anisotropic regime », Communications in Contemporary Mathematics, 12:1 (February 2010), 35–53.
  • Druet, O., Hebey, E., Vétois, J., « Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian », Journal of Functional Analysis, 258:3 (February 2010), 999–1059.
Peer-reviewed conference proceedings:
  • Esposito, P., Pistoia, A., Vétois, J., « Blow-up solutions for linear perturbations of the Yamabe equation », in Concentration Analysis and Applications to PDE, Concentration Analysis and Applications to PDE (Bangalore, 2012), Adimurthi, Sandeep, K., Schindler, I., Tintarev, C., eds., Trends in Mathematics, Basel, Birkhäuser, 2013, 29–47.
  • Robert, F., Vétois, J., « A general theorem for the construction of blowing-up solutions to some elliptic nonlinear equations with Lyapunov-Schmidt's finite-dimensional reduction », in Concentration Analysis and Applications to PDE, Concentration Analysis and Applications to PDE (Bangalore, 2012), Adimurthi, Sandeep, K., Schindler, I., Tintarev, C., eds., Trends in Mathematics, Basel, Birkhäuser, 2013, 85–116.
Home l Members
Postdoctoral fellows l Graduate students
Activities l Publications l Contact us l Links