Recent publications

Recent publications

Recent Publications (since 2012)


Note: the researchers’ personal web page may contain more recent publications.
Click on the icon to access to the DOI (Digital Object Identifier).

    Lab Members

  • Henri Darmon (McGill University)
  • Chantal David (Concordia University)
  • Jean-Marie De Koninck (Université Laval)
  • Eyal Z. Goren (McGill University)
  • Andrew Granville (Université de Montréal)
  • Adrian Iovita (Concordia University)
  • Hershy Harry Kisilevsky (Concordia University)
  • Dimitris Koukoulopoulos (Université de Montréal)
  • Matilde Lalín (Université de Montréal)
  • Antonio Lei (Université Laval)
  • Claude Levesque (Université Laval)


  • Henri Darmon

    Peer-reviewed journal articles:

    • Bertolini, M., Darmon, H., Prasanna, K., Conrad, B., $p$-adic $L$-functions and the coniveau filtration on Chow groups, Journal fr die Reine und Angewandte Mathematik, 2017:731 (octobre 2017), 21–78.
    • Darmon, H., Rotger, V., Diagonal cycles and Euler systems. II. The Birch and Swinnerton-Dyer conjecture for Hasse–Weil–Artin $L$-functions, Journal of the American Mathematical Society, 30:3 (juillet 2017), 601–672.
    • Darmon, H., Andrew Wiles’ marvellous proof, EMS Newsletter, 104:2 (juin 2017), 7–13.
    • Darmon, H., Andrew Wiles’s marvelous proof, Notices of the American Mathematical Society, 64:3 (mars 2017), 209–216.
    • Darmon, H., Lauder, A. G. B., Rotger, V., Gross–Stark units and $p$-adic iterated integrals attached to modular forms of weight one, Annales mathmatiques du Qubec, 40:2 (aot 2016), 325–354.
    • Darmon, H., Rotger, V., Elliptic curves of rank two and generalised Kato classes, Research in the Mathematical Sciences, 3 (2016), 27, 32p.
    • Darmon, H., Lauder, A. G. B., Rotger, V., Overconvergent generalised eigenforms of weight one and class fields of real quadratic fields, Advances in Mathematics, 283 (octobre 2015), 130–142.
    • Darmon, H., Daub, M., Lichtenstein, S., Rotger, V., Algorithms for Chow–Heegner points via iterated integrals, Mathematics of Computation, 84:295 (septembre 2015), 2505–2547. With an appendix by William Stein
    • Bertolini, M., Darmon, H., Rotger, V., Beilinson–Flach elements and Euler systems. II. the Birch–Swinnerton-Dyer conjecture for Hasse–Weil–Artin $L$-series, Journal of Algebraic Geometry, 24:3 (juillet 2015), 569–604.
    • Darmon, H., Lauder, A. G., Rotger, V., Stark points and $p$-adic iterated integrals attached to modular forms of weight one, Forum of Mathematics, Pi, 3 (2015), e8, 95p.
    • Bertolini, M., Darmon, H., Rotger, V., Beilinson–Flach elements and Euler systems. I. Syntomic regulators and $p$-adic Rankin $L$-series, Journal of Algebraic Geometry, 24:2 (avril 2014), 355–378.
    • Bertolini, M., Darmon, H., Prasanna, K., Chow–Heegner points on CM elliptic curves and values of $p$-adic $L$-functions, International Mathematics Research Notices, 2014:3 (janvier 2014), 745–793.
    • Bertolini, M., Darmon, H., Kato’s Euler system and rational points on elliptic curves. I. A $p$-adic Beilinson formula, Israel Journal of Mathematics, 199:1 (janvier 2014), 163–188.
    • Darmon, H., Rotger, V., Diagonal cycles and Euler systems. I. A $p$-adic Gross–Zagier formula, Annales scientifiques de l’cole normale suprieure. Quatrime srie, 47:4 (2014), 779–832.
    • Bertolini, M., Darmon, H., Prasanna, K., Generalized Heegner cycles and $p$-adic Rankin $L$-series, Duke Mathematical Journal, 162:6 (avril 2013), 1033–1148.
    • Bertolini, M., Darmon, H., Prasanna, K., $p$-adic Rankin $L$-series and rational points on CM elliptic curves, Pacific Journal of Mathematics, 260:2 (novembre 2012), 261–303.
    • Darmon, H., Rotger, V., Sols, I., Iterated integrals, diagonal cycles, and rational points on elliptic curves, Publications mathmatiques de Besanon, 2012:2 (2012), 19–46.

    Peer-reviewed conference proceedings:

    • Bertolini, M., Castella, F., Darmon, H., Dasgupta, S., Prasanna, K., Rotger, V., $p$-adic $L$-functions and Euler systems: a tale in two trilogies , in Automorphic Forms and Galois Representations. Volume 1, Symposium on Galois Representations and Automorphic Forms (Durham, 2011), R. Diamond, P. L. Kassaei, M. Kim, d., London Mathematical Society Lecture Note Series, Vol. 414, Cambridge, Cambridge Univ. Press, 2014, 52–101.



    Chantal David

    Monographs and books:

    • David, C., Laln, M., Manes, M. (EDT), Women in Numbers 2: Research Directions in Number Theory 606, Contemporary Mathematics, Vol. 606, Providence, RI, Amer. Math. Soc., 2013.

    Peer-reviewed journal articles:

    • Bettin, S., David, C., Delaunay, C., Non-isotrivial elliptic surfaces with non-zero average root number, Journal of Number Theory, 191 (octobre 2018), 1–84.
    • Bucur, A., Costa, E., David, C., Guerreiro, J., Lowry-Duda, D., Traces, high powers and one level density for families of curves over finite fields, Mathematical Proceedings of the Cambridge Philosophical Society, 165:2 (septembre 2018), 225–248.
    • David, C., Koukoulopoulos, D., Smith, E. C., Sums of Euler products and statistics of elliptic curves, Mathematische Annalen, 368:1-2 (juin 2017), 685–752.
    • Chandee, V., David, C., Koukoulopoulos, D., Smith, E. C., The frequency of elliptic curve groups over prime finite fields, Canadian Journal of Mathematics / Journal canadien de mathmatiques, 68:4 (aot 2016), 721–761.
    • Bucur, A., David, C., Feigon, B., Laln, M., Statistics for ordinary Artin–Schreier covers and other $p$-rank strata, Transactions of the American Mathematical Society, 368:4 (avril 2016), 2371–2413.
    • Bucur, A., David, C., Feigon, B., Kaplan, N., Laln, M., Ozman, E., Wood, M. M., The distribution of $\mathbb{F}_q$-points on cyclic $\ell$-covers of genus $g$, International Mathematics Research Notices, 2016:14 (2016), 4297–4340.
    • David, C., Huynh, D. K., Parks, J., One-level density of families of elliptic curves and the Ratios Conjecture, Research in Number Theory, 1 (dcembre 2015), 6, 37p.
    • David, C., Smith, E. C., A Cohen–Lenstra phenomenon for elliptic curves , Journal of the London Mathematical Society. Second Series, 89:1 (septembre 2014), 24–44.
    • David, C., Garton, D., Scherr, Z., Shankar, A., Smith, E. C., Thompson, L., Abelian surfaces over finite fields with prescribed groups, Bulletin of the London Mathematical Society, 46:4 (aot 2014), 779–792.
    • David, C., Smith, E. C., Corrigendum: Elliptic curves with a given number of points over finite fields, Compositio Mathematica, 150:8 (aot 2014), 1347–1348.
    • David, C., Smith, E. C., Corrigendum: A Cohen–Lenstra phenomenon for elliptic curves, Journal of the London Mathematical Society. Second Series, 89:1 (fvrier 2014), 45–46.
    • Chandee, V., David, C., Koukoulopoulos, D., Smith, E. C., Group structures of elliptic curves over finite fields., International Mathematics Research Notices, 2014:19 (janvier 2014), 5230–5248.
    • David, C., Smith, E. C., Elliptic curves with a given number of points over finite fields, Compositio Mathematica, 149:2 (aot 2013), 175–203.
    • Bucur, A., David, C., Feigon, B., Laln, M., Sinha K., Distribution of zeta zeroes of Artin–Schreier covers, Mathematical Research Letters, 19:6 (novembre 2012), 1329–1356.
    • David, C., Wu, J., Pseudoprime reductions of elliptic curves, Canadian Journal of Mathematics / Journal canadien de mathmatiques, 64:1 (fvrier 2012), 81–101.
    • David, C., Wu, J., Almost prime values of the order of elliptic curves over finite fields, Forum Mathematicum, 24:1 (janvier 2012), 99–119.

    Peer-reviewed conference proceedings:

    • Akhtari, S., David, C., Hahn, H., Thompson, L., Distribution of squarefree values of sequences associated with elliptic curves, in Women in Numbers 2: Research Directions in Number Theory, Women in Numbers 2 (Banff, AB, 2011), C. David, M. Laln, M. Manes, d., Contemporary Mathematics, Vol. 606, Providence, RI, Amer. Math. Soc., 2013, 171–188.



    Jean-Marie De Koninck

    Monographs and books:

    • De Koninck, J.-M., Mercier, A., Notions fondamentales de la thorie des nombres, Qubec, Canada, Loze-Dion, 2013.
    • De Koninck, J.-M., Luca, F., Analytic number theory: Exploring the anatomy of integers 134, Graduate studies in mathematics, Vol. 134, Providence, Rhode Island, American Mathematical Society, 2012.
    • De Koninck, J.-M., Luca, F., Analytic Number Theory 134, Graduate Stuidies in Mathematics, Vol. 134, Providence, RI, American Mathematical Society, 2012.

    Book chapters:

    • De Koninck, J.-M., Ktai, I., The number of prime factors function on shifted primes and normal numbers, in Topics in Mathematical Analysis and Applications, T. M. Rassias, L. Toth, d., Springer Optimization and its Applications Vol. 94, Cham, Springer, 2014.

    Peer-reviewed journal articles:

    • De Koninck, J.-M., Doyon, N., Laniel, F., On the proximity of multiplicative functions to the number of distinct prime factors function, Mathematica Slovaca, 68:3 (juin 2018), 513–526.
    • De Koninck, J.-M., Ktai, I., On properties of sharp normal numbers and of non-Liouville numbers, Annales mathmatiques du Qubec, 42:1 (avril 2018), 31–47.
    • De Koninck, J.-M., Phong, B. M., Continuation of the laudation to Professor Imre Katai on his eightieth birthday, Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae. Sectio Computatorica, 47 (2018), 21–29.
    • De Koninck, J.-M., Luca, F., Corrigendum to “Positive integers divisible by the product of their nonzero digits’”, Portugaliae Math. 64 (2007), 1: 75–85, Portugaliae Mathematica, 74:2 (2017), 169–170.
    • De Koninck, J.-M., Ktai, I., On the distribution of the number of prime factors of the $k$-fold iterate of various arithmetic functions, Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae. Sectio Computatorica, 46 (2017), 27–38.
    • De Koninck, J.-M., Ktai, I., Normal numbers in generalized number systems in Euclidean spaces, Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae. Sectio Computatorica, 46 (2017), 15–25.
    • De Koninck, J.-M., Ktai, I., On the distribution of the difference of some arithmetic functions, Bulletin of the Hellenic Mathematical Society, 61 (2017), 1–10.
    • De Koninck, J.-M., Ktai, I., On the $k$-fold iterate of the sum of divisors function, Colloquium Mathematicum, 147:2 (2017), 247–255.
    • De Koninck, J.-M., Ktai, I., Phong, B. M., On strong normality, Uniform Distribution Theory, 11:1 (2016), 59–78.
    • De Koninck, J.-M., Ktai, I., The index of composition of the iterates of the Euler function, Acta Mathematica. Academiae Paedagogicae Nyregyhziensis. New Series, 32:2 (2016), 303–311.
    • De Koninck, J.-M., Ktai, I., Shifted values of the largest prime factor function and its average value in short intervals, Colloquium Mathematicum, 143:1 (2016), 39–62.
    • De Koninck, J.-M., Ktai, I., Iterates of the sum of the unitary divisors of an integer, Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae. Sectio Computatorica, 45 (2016), 101–110.
    • De Koninck, J.-M., Ktai, I., On the $k$-fold iterates of the Euler totient function at shifted primes, Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae. Sectio Computatorica, 45 (2016), 89–99.
    • De Koninck, J.-M., Ktai, I., On convoluted sums, Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae. Sectio Computatorica, 45 (2016), 75–87.
    • De Koninck, J.-M., German, L., Ktai, I., On the convolution of the Liouville function under the existence of Siegel zeros, Lithuanian Mathematical Journal, 55:3 (juillet 2015), 331–342.
    • De Koninck, J.-M., Doyon, N., Letendre, P., On the proximity of additive and multiplicative functions, Functiones et Approximatio. Commentarii Mathematici 52:2 (juin 2015), 327–344.
    • De Koninck, J.-M., Ktai, I., On a property of non Liouville numbers, Acta Cybernetica, 22:2 (juin 2015), 335–347.
    • De Koninck, J.-M., Ktai, I., The number of large prime factors of intergers and normal numbers, Publications mathmatiques de Besanon, 2015 (2015), 5–12.
    • De Koninck, J.-M., Ktai, I., About an unsolved problem involving normal numbers, Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae. Sectio Computatorica, 44 (2015), 227–232.
    • De Koninck, J.-M., Ouellet, V., On the $n$-th element of a set of positive integers, Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae. Sectio Computatorica, 44 (2015), 153–164.
    • De Koninck, J.-M., Ktai, I., On the uniform distribution of certain sequences involving the Euler totient function and the sum of divisors function, Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae. Sectio Computatorica, 44 (2015), 79–91.
    • De Koninck, J.-M., Ktai, I., Normal numbers generated using the smallest prime factor function, Annales mathmatiques du Qubec, 38:2 (dcembre 2014), 133–144.
    • Cloutier, M.-., De Koninck, J.-M., Doyon, N., On the powerful and squarefree parts of an integer, Journal of Integer Sequences, 17:6 (aot 2014), 14.8.6, 28p.
    • Luca, F., De Koninck, J.-M., Arithmetic functions monotonic at consecutive arguments, Studia Scientiarum Mathematicarum Hungarica, 51:2 (juin 2014), 155–164.
    • De Koninck, J.-M., Ktai, I., Complex roots of unity and normal numbers, Journal of Numbers, 2014 (juin 2014), 437814, 4p.
    • De Koninck, J.-M., Ktai, I., Normal numbers and the middle prime factor of an integer, Colloquium Mathematicum, 135:1 (2014), 69–77.
    • De Koninck, J.-M., Ktai, I., Constructing normal numbers using residues of selective prime factors of integers, Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae. Sectio Computatorica, 42 (2014), 127–133.
    • De Koninck, J.-M., Ktai, I., Exponential sums involving arithmetic functions and shifted primes, Journal of Combinatorics and Number Theory, 6:2 (2014), 77–84.
    • De Koninck, J.-M., Ktai, I., Prime-like sequences leading to the construction of normal numbers, Functiones et Approximatio. Commentarii Mathematici 49:2 (dcembre 2013), 291–302.
    • De Koninck, J.-M., Ktai, I., Construction of normal numbers by classified prime divisors of integers II, Functiones et Approximatio. Commentarii Mathematici 49:1 (septembre 2013), 7–27.
    • De Koninck, J.-M., Doyon, N., Luca, F., Consecutive integers divisible by the square of their largest prime factors, Journal of Combinatorics and Number Theory, 5:2 (juin 2013), 81–93.
    • De Koninck, J.-M., Ktai, I., Exponential sums involving the $k$-th largest prime factor function, Journal of Integer Sequences, 16:2 (mars 2013), 13.2.16, 13p.
    • De Koninck, J.-M., Ktai, I., The uniform distribution mod 1 of sequences involving the largest prime factor function, Šiauliai Mathematical Seminar, 8:16 (janvier 2013), 117–129.
    • Ktai, I., De Koninck, J.-M., Construction of normal numbers using the distribution of the kth largest prime factor, Bulletin of the Australian Mathematical Society, 88:1 (2013), 158–168.
    • De Koninck, J.-M., Ktai, I., Using large prime divisors to construct normal numbers, Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae. Sectio Computatorica, 39 (2013), 45–62.
    • De Koninck, J.-M., Luca, F., On the middle prime factor of an integer, Journal of Combinatorics and Number Theory, 16:5 (2013), 13.5.5, 10p.
    • De Koninck, J.-M., Phong, B. M., Continuation of the laudation to Professor Imre Katai, Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae. Sectio Computatorica, 40 (2013), 33–47.
    • De Koninck, J.-M., Ktai, I., Some new methods for constructing normal numbers, Annales des sciences mathmatiques du Qubec, 36:2 (dcembre 2012), 349–359.
    • De Koninck, J.-M., Ktai, I., Luca, F., Broughan, K. A., On integers for which the sum of divisors is the square of the squarefree core, Journal of Integer Sequences, 15:7 (aot 2012), 12.7.5, 12p.
    • De Koninck, J.-M., Ktai, I., Exponential sums and arithmetic functions at polynomial values, Lithuanian Mathematical Journal, 52:2 (avril 2012), 138–144.
    • De Koninck, J.-M., Diouf, I., Doyon, N., On the truncated kernel function, Journal of Integer Sequences, 15:3 (fvrier 2012), 12.3.2, 17p.
    • De Koninck, J.-M., Ktai, I., Normal numbers created from primes and polynomials , Uniform Distribution Theory, 7:2 (2012), 1–20.
    • Ktai, I., De Koninck, J.-M., On the distribution of the values of additive functions over integers with a fixed number of distinct prime divisors, Albanian Journal of Mathematics 6:2 (2012), 75–86.
    • De Koninck, J.-M., Ktai, I., The distribution of additive functions in short intervals on the set of shifted integers having a fixed number of prime factors, Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae. Sectio Computatorica, 38 (2012), 57–70.

    Peer-reviewed conference proceedings:

    • De Koninck, J.-M., Ktai, I., Multidimensional sequences uniformly distributed modulo 1 created from normal numbers, in SCHOLAR—A Scientific Celebration Highlighting Open Lines of Arithmetic Research, SCHOLAR—A Scientific Celebration Highlighting Open Lines of Arithmetic Research (Montral, QC, 2013), A. C. Cojocaru, C David, E. Pappalardi, d., Contemporary Mathematics, Vol. 655, Providence, RI, Amer. Math. Soc., 2015, 77–82.
    • De Koninck, J.-M., Doyon, N., Additive and multiplicative functions with similar global behavior, in SCHOLAR—A Scientific Celebration Highlighting Open Lines of Arithmetic Research, SCHOLAR—A Scientific Celebration Highlighting Open Lines of Arithmetic Research (Montral, QC, 2013), A. C. Cojocaru, C. David, F. Pappalardi, d., Contemporary Mathematics, Vol. 655, Providence, RI, Amer. Math. Soc., 2015, 59–75.
    • De Koninck, J.-M., The mysterious world of normal numbers, in Scalable Uncertainty Management, 9th International Conference on Scalable Uncertainty Management (Qubec, QC, 2015), C. Beierle, A. Dekhtyar, d., Lecture Notes in Computer Science, Vol. 9310, Cham, Springer, 2015, 3–18.
    • De Koninck, J.-M., Ktai, I., Distribution of consecutive digits in the $q$-ary expansions of some subsequences of integers. II, in Analytic and Probabilistic Methods in Number Theory, 5th International Conference on Analytic and Probabilistic Methods in Number Theory (Palanga, 2011), A. Laurinčikas, E. Manstavičius, G. Stepanauskas, d., Vilnius, TEV, 2012, 101–110.



    Eyal Z. Goren

    Peer-reviewed journal articles:

    • de Shalit, E., Goren, E. Z., Foliations on unitary Shimura varieties in positive characteristic, Compositio Mathematica, 154:11 (novembre 2018), 2267–2304.
    • Andreatta, F., Goren, E. Z., Howard, B., Madapusi Pera, K., Faltings heights of abelian varieties with complex multiplication, Annals of Mathematics. Second Series, 187:2 (mars 2018), 391–531.
    • Andreatta, F., Goren, E. Z., Howard, B., Madapusi Pera, K., Height pairings on orthogonal Shimura varieties, Compositio Mathematica, 153:3 (mars 2017), 474–534.
    • de Shalit, E., Goren, E. Z., Supersingular curves on Picard modular surfaces modulo an inert prime, Journal of Number Theory, 171 (fvrier 2017), 391–421.
    • de Shalit, E., Goren, E. Z., A theta operator on Picard modular forms modulo an inert prime, Research in the Mathematical Sciences, 3 (2016), 28, 65p.
    • Goren, E. Z., Lauter, K. E., A gross-zagier formula for quaternion algebras over totally real fields, Algebra & Number Theory, 7:6 (2013), 1405–1450.
    • Goren, E. Z., Kassaei, P. L., Canonical subgroups over Hilbert modular varieties, Journal fr die Reine und Angewandte Mathematik, 2012:670 (octobre 2012), 1–63.
    • Goren, E. Z., Lauter, K. E., Genus 2 curves with complex multiplication, International Mathematics Research Notices, 2012:5 (2012), 1068–1142.



    Andrew Granville

    Book chapters:

    • Granville, A., Solymosi, J., Sum-product formulae, in Recent Trends in Combinatorics, A. Beveridge, J. R. Griggs, L. Hogben, G. Musiker, P. Tetali, d., The IMA Volumes in Mathematics and its Applications, Vol. 159, Cham, Springer, 2016.
    • Granville, A., What is the best approach to counting primes?, in A Century of Advancing Mathematics, S. F. Kennedy, d., Spectrum, Washington, DC, Math. Assoc. America, 2015.
    • Granville, A., Granville, J., Spencer, P., Writing and performing mathematics as metaphor, in Art in the Life of Mathematicians, A. Kepes Szemerdi, d., Providence, RI, Amer. Math. Soc., 2015.
    • Granville, A., Kane, D. M., Koukoulopoulos, D., Lemke Oliver, R. J., Best possible densities of Dickson $m$-tuples, as a consequence of Zhang–Maynard–Tao, in Analytic Number Theory, C. Pomerance, M. Th. Rassias, d., Cham, Springer, 2015.

    Peer-reviewed journal articles:

    • Granville, A., Harper, A. J., Soundararajan, K., A more intuitive proof of a sharp version of Halsz’s theorem, Proceedings of the American Mathematical Society, 146:10 (octobre 2018), 4099–4104.
    • Bober, J., Goldmakher, L., Granville, A., Koukoulopoulos, D., The frequency and the structure of large character sums, Journal of the European Mathematical Society (JEMS), 20:7 (2018), 1759-1818.
    • Granville, A., Shao, X., When does the Bombieri–Vinogradov theorem hold for a given multiplicative function?, Forum of Mathematics, Sigma, 6 (2018), e15, 23p.
    • Bober, J., Goldmakher, L., Granville, A., Koukoulopoulos, D., The frequency and the structure of large character sums, Journal of the European Mathematical Society (JEMS), 20:7 (2018), 1759–1818.
    • Granville, A., Using dynamical systems to construct infinitely many primes, The American Mathematical Monthly, 125:6 (2018), 483–496.
    • Granville, A., Soundararajan, K., Large character sums: Burgess’s theorem and zeros of $L$-functions, Journal of the European Mathematical Society (JEMS), 20:1 (2018), 1–14.
    • Granville, A., Wigman, I., Planck-scale mass equidistribution of toral Laplace eigenfunctions, Communications in Mathematical Physics, 355:2 (octobre 2017), 767–802.
    • Balog, A., Granville, A., Solymosi, J., Gaps between fractional parts, and additive combinatorics, The Quarterly Journal of Mathematics, 68:1 (mars 2017), 1–11.
    • Granville, A., Squares in arithmetic progressions and infinitely many primes, The American Mathematical Monthly, 124:10 (2017), 951–954.
    • Drappeau, S. A., Granville, A., Shao, X., Smooth-supported multiplicative functions in arithmetic progressions beyond the $x^1/2$-barrier, Mathematika, 63:3 (2017), 895–918.
    • Dummit, D. S., Granville, A., Kisilevsky, H. H., Big biases amongst products of two primes, Mathematika, 62:2 (janvier 2016), 502–507.
    • Granville, A., Harper, A. J., Soundararajan, K., Mean values of multiplicative functions over function fields, Research in Number Theory, 1 (octobre 2015), 25, 18p.
    • Granville, A., Koukoulopoulos, D., Matomki, K., When the sieve works, Duke Mathematical Journal, 164:10 (juillet 2015), 1935–1969.
    • Granville, A., About the cover: a new mathematical celebrity, Bulletin of the American Mathematical Society. New Series, 52:2 (avril 2015), 335–337.
    • Granville, A., Primes in intervals of bounded length, Bulletin of the American Mathematical Society. New Series, 52:2 (avril 2015), 171–222.
    • de la Bretche, R., Granville, A., Densit des friables, Bulletin de la Socit Mathmatique de France, 142:2 (2014), 303–348.
    • Watkins, M., Donnelly, S., Elkies, N. D., Fisher, T., Granville, A., Rogers, N. T., Ranks of quadratic twists of elliptic curves, Publications mathmatiques de Besanon, 2014:2, Mthodes arithmtiques et applications (2014), 63–98.
    • Balog, A., Granville, A., Soundararajan, K., Multiplicative functions in arithmetic progressions, Annales mathmatiques du Qubec, 37:1 (juin 2013), 3–30.
    • Granville, A., Biro, A., Zeta functions for ideal classes in real quadratic fields at $s = 0$, Journal of Number Theory, 132:8 (aot 2012), 1807–1829.
    • Croot, E. S., Granville, A., Pemantle, R., Tetali, P., On sharp transitions in making squares, Annals of Mathematics. Second Series, 175:3 (mai 2012), 1507–1550.
    • Granville, A., Primitive prime factors in second-order linear recurrence sequences, Acta Arithmetica, 155:4 (2012), 431–452.



    Adrian Iovita

    Book chapters:

    • Andreatta, F., Iovita, A., Pilloni, V., On overconvergent Hilbert modular cusp forms, in Arithmtique $p$-adique des formes de Hilbert, Astrisque, Vol. 382, Paris, Soc. Math. France, 2016.

    Peer-reviewed journal articles:

    • Andreatta, F., Iovita, A., Pilloni, V., Le halo spectral, Annales scientifiques de l’cole normale suprieure. Quatrime srie, 51:3 (2018), 603–655.
    • Andreatta, F., Iovita, A., Stevens, G., A 0.5 (half) overconvergent Eichler–Shimura isomorphism, Annales mathmatiques du Qubec, 40:1 (juin 2016), 121–148.
    • Chiarellotto, B., Coleman, R. F., Di Proietto, V., Iovita, A., On $p$-adic invariant cycles theorem, Journal fr die Reine und Angewandte Mathematik, 711 (fvrier 2016), 55–74.
    • Andreatta, F., Iovita, A., Pilloni, V., The adic, cuspidal, Hilbert eigenvarieties, Research in the Mathematical Sciences, 3 (2016), 34, 36p.
    • Andreatta, F., Iovita, A., Kim, M., A $p$-adic nonabelian criterion for good reduction of curves, Duke Mathematical Journal, 164:13 (octobre 2015), 2597–2642.
    • Andreatta, F., Iovita, A., Stevens, G., Overconvergent Eichler–Shimura isomorphisms, Journal of the Institute of Mathematics of Jussieu / Journal de l’Institut de Mathmatiques de Jussieu, 14:2 (avril 2015), 221–274.
    • Iovita, A., Andreatta, F., Pilloni, V., $p$-adic families of Siegel modular cuspforms, Annals of Mathematics. Second Series, 181:2 (mars 2015), 623–697.
    • Iovita, A., Marmora, A., On the continuity of the finite Bloch-Kato cohomology, Rendiconti del Seminrio Matematico della Universit di Padova, 134 (2015), 239–271.
    • Andreatta, F., Iovita, A., Stevens, G., Overconvergent modular sheaves and modular forms for $\mathbf{GL}_{2/F}$, Israel Journal of Mathematics, 201:1 (janvier 2014), 299–359.
    • Andreatta, F., Iovita, A., Comparison isomorphisms for smooth formal schemes, Journal of the Institute of Mathematics of Jussieu / Journal de l’Institut de Mathmatiques de Jussieu, 12:1 (janvier 2013), 77–151.
    • Andreatta, F., Iovita, A., Semistable sheaves and comparison isomorphisms in the semistable case, Rendiconti del Seminario Matematico della Universit di Padova, 128 (2012), 131–285.

    Peer-reviewed conference proceedings:

    • Conti, A., Iovita, A., Tilouine, J., Big image of Galois representations associated with finite slope $p$-adic families of modular forms, in Elliptic Curves, Modular Forms and Iwasawa Theory, JHC70: Elliptic Curves, Modular Forms and Iwasawa Theory – Conference in honour of the 70th birthday of John Coates (Cambridge, 2015), D. Loeffler, S. L. Zerbes, d., Springer Proceedings in Mathematics & Statistics, Vol. 188, Cham, Springer, 2016, 87–123.



    Hershy Harry Kisilevsky

    Book chapters:

    • Kisilevsky, H., Ranks of elliptic curves in cubic extensions, in Number Theory, Analysis and Geometry, D. Goldfeld, J. Jorgenson, P. Jones, D. Ramakrishnan, K. A. Ribet, J. Tate, d., New York, Springer, 2012.

    Peer-reviewed journal articles:

    • Dummit, D. S., Kisilevsky, H. H., Decomposition types in minimally tamely ramified extensions of $\mathbb{Q}$, Research in Number Theory, 3 (dcembre 2017), 24, 21p.
    • Dummit, D. S., Dummit, E. P., Kisilevsky, H. H., Characterizations of quadratic, cubic, and quartic residue matrices, Journal of Number Theory, 168 (novembre 2016), 167–179.
    • Dummit, D. S., Granville, A., Kisilevsky, H. H., Big biases amongst products of two primes, Mathematika, 62:2 (janvier 2016), 502–507.
    • Kisilevsky, H., Rubinstein, M., Chebotarev sets, Acta Arith., 171:2 (2015), 97–124.
    • Kisilevsky, H. H., Rubinstein, M., Chebotarev sets, Acta Arithmetica, 171:2 (2015), 97–124.
    • Fearnley, J., Kisilevsky, H. H., Kuwata, M., Vanishing and non-vanishing Dirichlet twists of $L$-functions of elliptic curves, Journal of the London Mathematical Society. Second Series, 86:2 (octobre 2012), 539–557.
    • Fearnley, J., Kisilevsky, H., Kuwata, M., Vanishing and non-vanishing Dirichlet twists of L-functions of elliptic curves, Journal of the London Mathematical Society. Second Series, 86:2 (octobre 2012), 539–557.
    • Fearnley, J., Kisilevsky, H., Critical values of higher derivatives of twisted elliptic $L$-functions, Experimental Mathematics, 21:3 (2012), 213–222.



    Dimitris Koukoulopoulos

    Book chapters:

    • Granville, A., Kane, D. M., Koukoulopoulos, D., Lemke Oliver, R. J., Best possible densities of Dickson $m$-tuples, as a consequence of Zhang–Maynard–Tao, in Analytic Number Theory, C. Pomerance, M. Th. Rassias, d., Cham, Springer, 2015.

    Peer-reviewed journal articles:

    • Bober, J., Goldmakher, L., Granville, A., Koukoulopoulos, D., The frequency and the structure of large character sums, Journal of the European Mathematical Society (JEMS), 20:7 (2018), 1759-1818.
    • Bober, J., Goldmakher, L., Granville, A., Koukoulopoulos, D., The frequency and the structure of large character sums, Journal of the European Mathematical Society (JEMS), 20:7 (2018), 1759–1818.
    • David, C., Koukoulopoulos, D., Smith, E. C., Sums of Euler products and statistics of elliptic curves, Mathematische Annalen, 368:1-2 (juin 2017), 685–752.
    • Chandee, V., David, C., Koukoulopoulos, D., Smith, E. C., The frequency of elliptic curve groups over prime finite fields, Canadian Journal of Mathematics / Journal canadien de mathmatiques, 68:4 (aot 2016), 721–761.
    • Eberhard, S., Koukoulopoulos, D., Ford, K., Permutations contained in transitive subgroups, Discrete Analysis, 2016 (2016), 12, 36p.
    • Koukoulopoulos, D., Primes in short arithmetic progressions, International Journal of Number Theory, 11:5 (aot 2015), 1499–1521.
    • Granville, A., Koukoulopoulos, D., Matomki, K., When the sieve works, Duke Mathematical Journal, 164:10 (juillet 2015), 1935–1969.
    • Koukoulopoulos, D., On the number of integers in a generalized multiplication table, Journal fr die Reine und Angewandte Mathematik, 2014:689 (avril 2014), 33–99.
    • Chandee, V., David, C., Koukoulopoulos, D., Smith, E. C., Group structures of elliptic curves over finite fields., International Mathematics Research Notices, 2014:19 (janvier 2014), 5230–5248.
    • Koukoulopoulos, D., On the concentration of certain additive functions, Acta Arithmetica, 162:3 (2014), 223–241.
    • Koukoulopoulos, D., On multiplicative functions which are small on average, Geometric and Functional Analysis, 23:5 (octobre 2013), 1569–1630.
    • Koukoulopoulos, D., Pretentious multiplicative functions and the prime number theorem for arithmetic progressions, Compositio Mathematica, 149:7 (juillet 2013), 1129–1149.
    • Koukoulopoulos, D., Thiel, J., Arrangements of stars on the American flag, The American Mathematical Monthly, 119:6 (2012), 443–450.



    Matilde Lalín

    Monographs and books:

    • David, C., Laln, M., Manes, M. (EDT), Women in Numbers 2: Research Directions in Number Theory 606, Contemporary Mathematics, Vol. 606, Providence, RI, Amer. Math. Soc., 2013.

    Peer-reviewed journal articles:

    • Laln, M., Mittal, T., The Mahler measure for arbitrary tori, Research in Number Theory, 4:2 (juin 2018), 16, 23p.
    • Girard, V., Laln, M., Nair, S. C., Families of non-$\theta$-congruent numbers with arbitrarily many prime factors, Colloquium Mathematicum, 152:2 (2018), 255–271.
    • Laln, M., Ramamonjisoa, F., The Mahler measure of a Weierstrass form, International Journal of Number Theory, 13:8 (septembre 2017), 2195–2214.
    • Laln, M., A new method for obtaining polylogarithmic Mahler measure formulas, Research in Number Theory, 2 (dcembre 2016), 17, 16p.
    • Bucur, A., David, C., Feigon, B., Laln, M., Statistics for ordinary Artin–Schreier covers and other $p$-rank strata, Transactions of the American Mathematical Society, 368:4 (avril 2016), 2371–2413.
    • Laln, M., Samart, D., Zudilin, W., Further explorations of Boyd’s conjectures and a conductor 21 elliptic curve, Journal of the London Mathematical Society. Second Series, 93:2 (avril 2016), 341–360.
    • Laln, M., Larocque, O., The number of irreducible polynomials with the first two prescribed coefficients over a finite field, The Rocky Mountain Journal of Mathematics, 46:5 (2016), 1587–1618.
    • Bucur, A., David, C., Feigon, B., Kaplan, N., Laln, M., Ozman, E., Wood, M. M., The distribution of $\mathbb{F}_q$-points on cyclic $\ell$-covers of genus $g$, International Mathematics Research Notices, 2016:14 (2016), 4297–4340.
    • Laln, M., Lechasseur, J.-S., Higher Mahler measure of an $n$-variable family, Acta Arithmetica, 174:1 (2016), 1–30.
    • Laln, M., Mahler measure and elliptic curve $L$-functions at $s=3$, Journal fr die Reine und Angewandte Mathematik, 709 (dcembre 2015), 201–218.
    • Laln, M., Smyth, C. J., Addendum to: Unimodularity of zeros of self-inversive polynomials, Acta Mathematica Hungarica, 147:1 (octobre 2015), 255–257.
    • Laln, M., Rodrigue, F., Rogers, M. D., Secant-Zeta Functions, Journal of Mathematical Analysis and Applications, 409:1 (janvier 2014), 197–204.
    • Issa, Z., Laln, M., A generalization of a theorem of Boyd and Lawton, Canadian Mathematical Bulletin / Bulletin canadien de mathmatiques, 56:4 (dcembre 2013), 759–768.
    • Rogers, M. D., Laln, M., Variations of the Ramanujan polynomials and remarks on $\zeta(2j+1)/\pi^{2j+1}$, Functiones et Approximatio. Commentarii Mathematici 48:1 (mars 2013), 91–111.
    • Laln, M., Smyth, C. J., Unimodularity of zeros of self-inversive polynomials, Acta Mathematica Hungarica, 138:1-2 (janvier 2013), 85–101.
    • Laln, M., Equations for Mahler measure and isogenies, Journal de thorie des nombres de Bordeaux, 25:2 (2013), 387–399.
    • Bucur, A., David, C., Feigon, B., Laln, M., Sinha K., Distribution of zeta zeroes of Artin–Schreier covers, Mathematical Research Letters, 19:6 (novembre 2012), 1329–1356.

    Peer-reviewed conference proceedings:

    • Bertin, M.-J., Feaver, A., Fuselier, J., Laln, M., Manes, M., Mahler measure of some singular K3-surfaces, in Women in Numbers 2: Research Directions in Number Theory, Women in Numbers 2, C. David, M. Lalin, M. Manes, d., Contemporary Mathematics, Vol. 606, Providence, RI, Amer. Math. Soc., 2013, 149–169.
    • Laln, M., Bertin, M. J., Mahler measure of multivariable polynomials , in Proceedings of WIN2, Women in Numbers 2, CRM Proceedings & Lecture Notes, Vol. 606, Providence, RI, Amer. Math. Soc., 2013, 125–147.



    Antonio Lei

    Peer-reviewed journal articles:

    • Delbourgo, D., Lei, A., Congruences modulo $p$ between $\rho$-twisted HasseWeil $L$-values, Transactions of the American Mathematical Society, 370:11 (novembre 2018), 8047–8080.
    • Bykboduk, K., Lei, A., Anticyclotomic $p$-ordinary Iwasawa theory of elliptic modular forms, Forum Mathematicum, 30:4 (juillet 2018), 887–913.
    • Dion, C., Lei, A., Plus and minus logarithms and Amice transform, Comptes rendus. Mathmatique, 355:9 (septembre 2017), 942–948.
    • Lei, A., Loeffler, D., Zerbes, S., On the asymptotic growth of Bloch–Kato–Shafarevich–Tate groups of modular forms over cyclotomic extensions, Canadian Journal of Mathematics / Journal canadien de mathmatiques, 69:4 (aot 2017), 826–850.
    • Bykboduk, K., Lei, A., Integral Iwasawa theory of Galois representations for non-ordinary primes, Mathematische Zeitschrift, 286:1-2 (juin 2017), 361–398.
    • Delbourgo, D., Lei, A., Estimating the growth in Mordell–Weil ranks and Shafarevich–Tate groups over Lie extensions, The Ramanujan Journal, 43:1 (mai 2017), 29–68.
    • Lei, A., Ponsinet, G., Functional equations for multi-signed Selmer groups, Annales mathmatiques du Qubec, 41:1 (avril 2017), 155-167.
    • Lei, A., Bounds on the Tamagawa numbers of a crystalline representation over towers of cyclotomic extensions, The Tohoku Mathematical Journal. Second Series, 69:4 (2017), 497–524.
    • Lei, A., Estimating class numbers over metabelian extensions, Acta Arithmetica, 180:4 (2017), 347–364.
    • Ayotte, D., Lei, A., Rondy-Turcotte, J.-C., On the parity of supersingular Weil polynomials, Archiv der Mathematik, 106:4 (avril 2016), 345–353.
    • Delbourgo, D., Lei, A., Non-commutative Iwasawa theory for elliptic curves with multiplicative reduction, Mathematical Proceedings of the Cambridge Philosophical Society, 160:1 (janvier 2016), 11–38.
    • Bykboduk, K., Lei, A., Coleman-adapted Rubin–Stark Kolyvagin systems and supersingular Iwasawa theory of CM abelian varieties, Proceedings of the London Mathematical Society. Third Series, 111:6 (dcembre 2015), 1338–1378.
    • Lei, A., Loeffler, D., Zerbes, S., Euler systems for modular forms over imaginary quadratic fields, Compositio Mathematica, 151:9 (septembre 2015), 1585–1625.
    • Lei, A., Delbourgo, D., Transition formalae for ranks of abelian varieties , The Rocky Mountain Journal of Mathematics, 45:6 (2015), 1807–1838.
    • Lei, A., Factorisation of two-variable $p$-adic $L$-funtions, Canadian Mathematical Bulletin / Bulletin canadien de mathmatiques, 57:4 (dcembre 2014), 845–852.
    • Lei, A., Loeffler, D., Zerbes, S., Euler systems for Rankin–Selberg convolutions of modular forms, Annals of Mathematics. Second Series, 180:2 (2014), 653–771.
    • Harron, R., Lei, A., Iwasawa theory for symmetric powers of CM modular forms at non-ordinary primes, Journal de thorie des nombres de Bordeaux, 26:3 (2014), 673–708.
    • Lei, A., Loeffler, D., Zerbes, S., Critical slope $p$-adic $L$-functions of CM modular forms, Israel Journal of Mathematics, 198:1 (novembre 2013), 261–282.
    • Lei, A., Non-commtative $p$-adic $L$-functions for supersingular primes , International Journal of Number Theory, 8:8 (dcembre 2012), 1813–1830.
    • Lei, A., Loeffler, D., Zerbes, S., Coleman maps and the $p$-adic regulator, Algebra & Number Theory, 5:8 (juin 2012), 1095–1131.
    • Lei, A., Iwasawa theory for the symmetric square of a CM modular from at inert primes, Glasgow Mathematical Journal, 54:2 (mai 2012), 241–259.
    • Lei, A., Zerbes, S., Signed Selmer groups over $p$-adic Lie extensions, Journal de thorie des nombres de Bordeaux, 24:2 (2012), 377–403.



    Claude Levesque

    Book chapters:

    • Levesque, C., Waldschmidt, M., Families of cubic thue equations with effective bounds for solutions, in Number Theory and Related Fields, In Memory of Alf van der Poorten, Jonathan M. Borwein, Wadim Zudilin, Jonathan M Borwein, d., Springer Proceedings in Mathematics & Statistics, Vol. 43, New York, Springer, 2013.

    Peer-reviewed journal articles:

    • Levesque, C., Waldschmidt, M., A family of Thue equations involving powers of units of the simplest cubic fields, Journal de thorie des nombres de Bordeaux, 27:2 (2015), 537–563.
    • Levesque, C., Waldschmidt, M., Solving effectively some families of thue diophantine equations, Moscow Journal of Combinatorics and Number Theory, 3:3-4 (2013), 118–144.
    • Levesque, C., Waldschmidt, M., Approximation of an algebraic number by products of rational numbers and units, Journal of the Australian Mathematical Society, 93:1-2 (octobre 2012), 121–131.
    • Levesque, C., Waldschmidt, M., Familles d’quations de Thue-Mahler n’ayant que des solutions triviales, Acta Arithmetica, 155:2 (2012), 117–138.