Prototype of a statistical / dynamical hybrid model for high-resolution hydrodynamic simulations

> J. Carreau, A. latcenko, S. Innocenti, P. Matte, P. Petitclerc & N. Razaaly

> > August 26th 2022

Environnement et Changement climatique Canada

POLYTECHNIQUE Montréal

UNIVERSITÉ D'INGÉNIERIE

Modeling current and future water level fluctuations in the Great Lakes: temporal evolution of coastal wetlands under various climate scenarios

Great Lakes Protection Initiative

Modeling current and future water level fluctuations in the Great Lakes: temporal evolution of coastal wetlands under various climate scenarios

Regional / lake average

Major wind direction

W S S S

Average wind speed

Average water level

Regional / lake average

Regional / lake average

scenarios: direction, speed, and water-level classes

scenarios: direction, speed, and water-level classes

Drawbacks of the scenario approach

Too simplistic scenarios:

Only regional/lake major wind direction and average speed

Only *wind set-up* in one direction

Drawbacks of the scenario approach

Too simplistic scenarios:

Only regional/lake major wind direction and average speed

Only *wind set-up* in one direction

No dynamics in reconstructions:

no seiche effect

seiche after the set-up

Drawbacks of the scenario approach

Too simplistic scenarios:

Only regional/lake major wind direction and average speed

Only *wind set-up* in one direction

No dynamics in reconstructions:

no seiche effect

Still depends on continuous simulations:

Computational burden of the hydrodymical model to produce continuous simulations

proposed solutions

1. Analog method on PCA projections of wind fields

Information on wind patterns in scenarios

2. Variational mode decomposition to construct seiche scenarios

Information about seiches in reconstructions

3. Reduce the computational cost of simulations by simplifying the dynamical model equations - **avoid scenarios**

Training set: pairs of wind field $(\boldsymbol{u}_t, \boldsymbol{v}_t)$ and water level field \boldsymbol{h}_t Test set: only wind fields $(\boldsymbol{u}_{t'}, \boldsymbol{v}_{t'})$ are available

- Each wind field $(\boldsymbol{u}_t, \boldsymbol{v}_t)$ from the training set is summarized by low dimensional features $\boldsymbol{z}_t \in \mathbb{R}^d$
- ❷ Project the wind fields ($u_{t'}, v_{t'}$) from the test set onto the same low dimensional space $z_{t'} \in \mathbb{R}^d$
- For each time step t' of the test set, identify the nearest neighbor t* in the train set:

$$t^* = rgmin_t ||m{z}_t - m{z}_{t'}||^2$$

• Estimate $h_{t'}$ with $\hat{h}_{t'} = h_{t^*}$

Training set: $\{(\boldsymbol{u}_t, \boldsymbol{v}_t), \boldsymbol{h}_t\}_t$

over the period 01/03/1991 - 30/04/1991 (hourly)

Test set: $\{(u_{t'}, v_{t'}), h_{t'}\}_{t'}$

over the period 01/03/1992 - 30/04/1992 (hourly)

 $\rightarrow h_{t'}$ is used for evaluation purposes only

Performance criterion:

$$\sqrt{rac{1}{\mathcal{T}'}\sum_{t'=1}^{\mathcal{T}'}(oldsymbol{h}_{t'}-\hat{oldsymbol{h}}_{t'})^2}$$

Wind patterns with PCA

- → Summarize spatial information with Principal Component analysis (PCA)
- Main wind patterns = principal eigenvectors carry the spatial information
- Time varying features: projections onto first principal eigenvectors each wind field is a linear combination of the principal eigenvectors
- → Use temporal features of the wind to identify similar water level fields nearest neighbor approach

First two principal eivenvectors: intensity and direction

8

Analyzed water level signals in Lake Erie

Variational Mode Decomposition (VMD)

(Dragomiretskiy & Zosso, 2014) was applied to separate the water level signals into different "modes of variability".

$$\begin{split} \min_{u_k \setminus \{\overline{u_k}\}} & \left\{ \sum_{k=1}^{K} \left\| \partial_t \left[\left(\delta(t) + \frac{j}{\pi t} \right)^{\pm} u_k(t) \right] e^{-j \overline{u}_k t} \right\|_2^2 \right\} \\ s.t. \quad \sum_{k=1}^{K} u_k(t) = H(t) \end{split}$$

VMD modes @ Toledo

FFT of VMD modes @ Toledo

FFT amplitude spectrum for each mode (colors) compared to the original spectrum (black). Vertical lines denote major diurnal and semi-diurnal tidal frequencies (dotted) and documented seiche frequencies (dashed).

Predicting seiches (high frequencies) from water level setups (low frequencies)?

A simple (linear) regression model was constructed as a preliminary step to building a more complex (non-linear) model, e.g. using machine learning.

$$\begin{split} h_{HF}(t) &= \beta_0 + \sum_{j=1}^{N_{modes}} \left(\beta_{1,j}(t) \cos \omega_j t + \beta_{2,j}(t) \sin \omega_j t \right) + \varepsilon \\ \beta_{i,j}(t) &= a_{0,i,j} + h_{LF}(t) \times a_{1,i,j} \\ A_j(t) &= \sqrt{\beta_{1,j}^2 + \beta_{2,j}^2}, \ \Phi_j(t) = \tan^{-1}(\beta_{2,j}/\beta_{1,j}) \end{split}$$

Next steps

- Build a non-linear relationship between setup and seiches, e.g. using machine learning
- Add other variables such as winds or their principal components (from PCA)
- · Extend the analysis in 2D using simulated fields
- Represent the seiche phenomenon in a synthetized fashion (e.g. by their amplitudes and phases)
- Preserve the temporal variability in seiche features as opposed to producing static maps

ref. Hamblin (1987)

• Full system being simulated:

• Do we need all these effects to understand Seiche dynamics?

• Maybe some of the terms are small?

• Factor out the typical sizes by writing

dimensional variable' = typical size* \times dimensionless variable $_{(\textit{known})}^{(known)}$

for example

distance $x'[km] = (\text{length of the lake})^*[km] \times x$ velocity $u'[m/s] = (1m/s) \times u$

Reduced System Approach: Nondimensionalization

• Using typical magnitudes for Lake Erie, we get

$$\frac{\partial h}{\partial t} + \{10\} \nabla \cdot \boldsymbol{q} = 0,$$

$$\begin{aligned} \frac{\partial \boldsymbol{q}}{\partial t} + \{1\} \nabla \cdot \left(\frac{\boldsymbol{q} \boldsymbol{q}^{T}}{H}\right) + \{10\} H \nabla h - \{10^{-8}\} \nabla \cdot (H\tau) \\ + \{74\} \boldsymbol{\tau}^{b} - \{2.3\} (\boldsymbol{q} \times \boldsymbol{e}_{z}) = \{1.2 \times 10^{-2} w^{*}\} \boldsymbol{\tau}^{s} \end{aligned}$$

• We can also linearize the remaining system (small waves case):

$$\frac{\partial^2 h}{\partial t^2} + \eta_1 \nabla \cdot \left(z \nabla h \right) = 0.$$

Reduced System Approach: Eigenvalue Problem

• The Seiche states are the resonant modes of the system, i.e. solutions to the eigenvalue problem:

$$\eta_1 \nabla \cdot \left(z \nabla h \right) = \lambda h$$

• From the eigenvalues, the Seiche oscillation period is recovered:

$$T = \frac{2L^*}{\underbrace{\sqrt{gz^*}}_{Merian's}} \sqrt{\frac{\pi^2}{\lambda}}$$

• The eigenvalue problem cab be solved numerically (in a few seconds of computing time). A very preliminary calculation for Lake Erie gives

$$T_1 = 3h \ 7m$$

Conclusions