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Beneva and Insurance Modelling

Goal: modelling customer lifetimes (home insurance).
The data:

Cross-section of “active” clients (prevalent cohort) as of
2010 + “new” clients (incident cohort) from 2010
All of these customers followed until the end of the
study (2022)
For the “active” customers (prevalent cohort):

baseline covariates unavailable, only lagged covariates
(measured at 2010)

For the “new” customers (incident cohort):
only baseline covariates are available
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The data: incident cohort
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The data: prevalent cohort
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The Problem

The main difficulties with the analysis here:
Right censoring
Left truncation
Incomplete data: time-varying covariates only
measured once, with missing data
Combination of prevalent + incident cohorts
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Methodology overview
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Exploratory data analysis
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Exploratory data analysis

33 variables existed, 2 new variables added
Baseline: 0: prevalent, 1: incident
End Date: starting date and survived years aggregation
6 variables with missing values is detected that for 3 of
these more or near 50% missing is reported.
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Data Cleaning and Missing Imputation

Records with end date before 2010 are removed
Treatment for variables with missing is either
Informative: 3 Variables
Non-informative: 3 Variables
Non-informative missing treatments:

complete-case analysis
imputation (single, multiple) (due to time constraint)
Joint Modelling

Limitations:
covariates only measured at one point in time (2010 or
baseline)

only observed either baseline covariates, or lagged
covariates, but not both → unable to observe the
evolution of the covariates

all covariates are time-varying
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Notation

{
(Aj ,Xj , δj) : Tj > Aj , j = 1,2, . . . ,n

}
Aj = max{2010 − Oj ,0}, where Oj is the entry time
Xj = min{Tj ,Cj}, where Tj is the failure time and Cj is
the censoring time (i.e., Cj = 2022 − Oj )
δj = 1{Tj < Cj}
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Incident vs. Prevalent Cohorts

Separate analyses:
models for the incident cohort (right censoring)
models for the prevalent cohort (right censoring +
left-truncation Tj > 2010 − Oj )
not using information in both jointly

Combined analysis:
truncation for prevalent cohort: 2010 − Oj
truncation for incident cohort: 0
estimation reflects left-truncation + right-censoring
can be shown∗ that estimators based on combined data
have nice properties
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Non-parametric Model

Kaplan-Meier estimator:

Ŝ(t) =
∏

i:ti≤t

(
1 − di

mi

)
where

ti are the distinct observed failure times,
t1 < t2 < . . . < tm
di are the number of failures at time ti
mi =

∑
j 1{aj ≤ ti ≤ xj} (recall: aj are the truncation

times)
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Non-parametric Model

Incident cannot estimate past 12 years

Prevalent and combined can estimate probabilities past 40
years

Drops at integer times
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Parametric Model

We assume the underlying failure times of all cohorts Ti
have a common distribution function F (·;θ) = 1 − S(·;θ).
We consider the Exponential, Weibull and Gamma
distributions. The likelihood function for each cohort is as
follows:

Linc(θ) ∝
ninc∏
i=1

f (xi ;θ)
δi S(xi ;θ)

1−δi

Lprev (θ) ∝
nprev∏
k=1

f (xk ;θ)
δk S(xk ;θ)

1−δk

P(Tk > Ak ;θ)

The likelihood of the combined cohorts can be obtained from the
combination of the two different likelihoods:

Lcomb(θ) = Linc(θ)× Lprev (θ)
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Parametric Model - Uniform Assumption

In the likelihood for the prevalent cohort, the denominator
P(Tk > Ak ;θ) involves the random variable Ak . To handle it,
we assume Ak follows the discrete uniform distribution.
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Parametric Model - Uniform Assumption

Due to the assumption, we can compute the denominator
exactly.

P(T > A;θ) =
50∑

i=1

P(T > A;θ|A = i)P(A = i) =

1
50

50∑
i=1

P(T > i ;θ|A = i) =
1

50

50∑
i=1

P(T > i ;θ) =
1
50

50∑
i=1

S(i ;θ)



Beneva:
Survival

Models and
Incomplete

Data

Introduction

Data

Modelling
Approaches
Non-Parametric
Approach

Parametric Approach

Semi-parametric
Approach

Survival trees

Boosting

Bayesian approach

Conclusion

21/34

Parametric Model - Results

Can estimate survival probabilities for any horizon
Smooth (not ideal for integer times)
Combined curve lies between incident and prevalent
curves
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Semi-parametric Model

The Proportional Hazards (PH) model is a semi-parametric
approach allowing the consideration of covariates Z.

λ(t |Z)
λ0(t)

= exp(Zβ)

Partial likelihood for incident cohort:

Linc(β) =

ninc∏
i=1

(
eZ iβ∑

j:Xi≤Xj
eZ jβ

)δi

Partial likelihood for prevalent cohort:

Lprev (β) =

nprev∏
i=1

(
eZ iβ∑

j:Aj≤Xi≤Xj
eZ jβ

)δi
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Semi-parametric Model

With truncation: truncation time as usual

Without truncation: truncation time considered as a covariate
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Survival trees

We are manipulating left-truncated right-censored data with
missing information. Some approaches with random survival
trees/forests:

Random survival forest handling left-truncated
right-censored data and imputing missing data
simultaneously. → No package available yet.

1 Create a new covariate accounting for left truncation
Aj = max{2010 − Oj ,0}, where Oj is the entry time.

2 Random survival forest for right censored data which
imputs missing data simultaneously. (Ishwaran, 2008)

→ Drawbacks: long running time + loss of information about
left truncation (clients who left Beneva prior to 2010 are not
encapsulated)

1 Impute missing data.
2 Random survival tree/forest for left-truncated

right-censored data. (Fu & Simonoff, 2017; Yao, 2022)
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Survival trees

Imputed data set + survival tree for left-truncated right-censored
data (Fu and Simonoff, 2017)
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Boosting Indiviual Survival Distribution (ISD)

The heterogeneity of clients, coupled with the need to provide
probabilistic estimates at several time points, has motivated the
creation of several individual survival time distribution (ISD).

We use xgbse algorithm (an enhanced XGBoost ensemble
model) for survival analysis to account for two properties:

Prediction of survival curves for each client.

Extrapolation over long-time horizon beyond the
observational period.

Trees enables us to find the terminal leave for each client.
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Boosting Individual Survival Distribution (ISD) :
Results

The model output extrapolation over long time horizon illustrated
bellow.
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Boosting Individual Survival Distribution (ISD) :
Results

The model output extrapolation over long time horizon for given
client is provided bellow.
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Bayesian approach

There are several approaches within a Bayesian framework:

Bayesian analysis for basic survival models (Weibull
distribution, etc.) ;
Bayesian analysis for regression models using
complete covariable data (after imputation);
Bayesian analysis for regression models that take
account for missing covariables and the mechanism
that describes the probability of missingness.

Challenges: There is no package that takes account for left
truncation and right censoring data in our case: We have to
implement these methods ourselves.

We then implement the Weibull distribution model using
Bayesian inference (Kundu & Mitra, 2016).



Beneva:
Survival

Models and
Incomplete

Data

Introduction

Data

Modelling
Approaches
Non-Parametric
Approach

Parametric Approach

Semi-parametric
Approach

Survival trees

Boosting

Bayesian approach

Conclusion

30/34

Weibull distribution based on left truncated and right censored data

It is assumed that the lifetime has a Weibull distribution:
f (t) = αλtα−1 exp(−λtα), t > 0.
Scale parameter λ follows Gamma distribution

λ ∼ Gamma(a,b)

Shape parameter α can be known and unknown
Likelihood function is as follows:

L(θ) =
∏
i∈S1

{f (ti ; θ)}δi{1 − F (ti ; θ)}(1−δi )×

∏
i∈S2

{
f (ti , θ)

1 − F (τiL; θ)

}δi
{

1 − F (ti ; θ)
1 − F (τiL; θ)

}1−δi
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Known Alpha

For the sake of simplicity we will continue with α being
known

(fixed α as MLE from classical parametric model)
Parameters, adaption is considered
λ estimate when α is fixed is as follows:

λ̂ =
a + m

b +
∑

i∈S tiα −
∑

i∈S2
τiL

α

Survival function for t > ti is as:

S(t |ti , α, λ) = e−λ(tα−tiα)
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Prediction

Fixing the value for α and estimation λ based on Beneva’s
data set let us find survival function for any new individual
(starting time 0)
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Discussion

This is a difficult problem!
The idea of combining prevalent + incident cohorts
The issue of missing time-varying covariates remains
unsolved.

We hope that our work offers some potential solutions /
future paths to further explore for Beneva
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