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Two-dimensional Ising model

First, we wrap the square lattice onto an n ×m cylinder,
labelling the spins at site i , j as si ,j .

We have si ,n+1 = si ,1, and denote a column configuration
as σj = (s1,j , s2,j , . . . sm,j .). (There are 2m possible
configurations for a column).

We have

H{s} = −J
m−1
∑

i=1

n
∑

j=1

si ,js1+1,j − J
m
∑

i=1

n
∑

j=1

si ,js1,j+1 (1)

−H
m
∑

i=1

n
∑

j=1

si ,j .
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Setting up the transfer matrix

We now rewrite (1) as the sum of the interaction energies
within a column, V1(σj), and the interaction energies
between columns, V2(σj , σj+1).

V1(σj) = −J
m−1
∑

i=1

si ,js1+1,j − H
m
∑

i=1

si ,j ,

V2(σj , σj+1) = −J
m
∑

i=1

si ,js1,j+1.
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Transfer matrix–cont.

Then, noting that σn+1 = σ1,

H{s} = H{σ1, σ2, . . . , σn} =
n
∑

j=1

[V1(σj) + V2(σj , σj+1)].

The partition function is then

Zn,m =
∑

{s}

exp(−βH{s})

=
∑

{σ1,σ2,...,σn}

exp



−β





n
∑

j=1

{V1(σj) + V2(σj , σj+1)}









=
∑

{σ1,σ2,...,σn}

L(σ1, σ2)L(σ1, σ2) · · · L(σn−1, σn)L(σn, σ1)

=
∑

σ1

Ln(σ1, σ1)
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Transfer matrix—continued

Here

Lσ,σ′ = exp[−βV1(σ)]exp[−βV2(σ, σ
′)] (2)

= exp

(

K
m−1
∑

i=1

sisi+1 + B
m
∑

i=1

si

)

exp

(

K
m
∑

i=1

sis
′
i

)

with K = βJ and B = βH.
We can also symmetrise this matrix, as we did in the 1d
case. In the above equation, Ln(σ1, σ1) denotes the
(σ1, σ1) component of the 2m × 2m matrix L, with elements
(2) (symmetrised), raised to the nth power.
So

Zn,m = Tr(Ln) =
2m
∑

j=1

λn
j ,

where λ1 > λ2 ≥ . . . ≥ λ2m are the eigenvalues of the
matrix.
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Transfer matrix—continued

The thermodynamic properties are then found from the
free energy,

−βψ = lim
m→∞

lim
n→∞

1
mn

log Zn,m = lim
m→∞

1
m

logλ1.

By a masterly application of Lie algebras and group
representations, Onsager found the largest eigenvalue
(with H=0) to be

λ1 = (2 sinh 2K )m/2exp[
1
2
(γ1 + γ3 + · · ·+ γ2m−1)],

where

cosh γk = cosh 2K coth 2K − cos
(

πk
m

)

.
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The free energy

So

−βψ =
1
2

log(2 sinh 2K ) + lim
m→∞

1
2m

m−1
∑

k=0

γ2k+1.

In the limit, the sum becomes an integral, and we have

−βψ =
1
2

log(2 sinh 2K )

+
1

2π

∫ π

0
cosh−1(cosh 2K coth 2K − cos θ)dθ.
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The free energy—continued

The using the identity

cosh−1 |z| =
1
π

∫ π

0
log[2(z − cosφ)]dφ

allows us to rewrite this, (after symmetrisation), as

−βψ = log 2 +

1
2π2

∫ π

0

∫ π

0
log[cosh2 2K − sinh 2K (cos θ1 + cos θ2)]dθ1dθ2.

Exercise: Calculate the internal energy

U = −kT 2 ∂

∂T
ψ

kT

and hence show that it diverges logarithmically at the
origin θ1 = θ2 = 0. Hence show that the specific heat
CV = ∂U

∂T has a logarithmic divergence.
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The significance

This remarkable result was the first demonstration that
statistical mechanics, alone, could produce a phase
transition. It is also arguably the first mathematical
treatment of the collective behaviour that is studied widely
under the heading of complex systems.
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Ising model–a mathematician’s description

Onsager used the algebra

[Am,An] = 4Gm−n

[Gm,An] = 2An+m − 2An−m

[Gm,Gn] = 0

This algebra is isomorphic to an SL2 loop algebra with a Z2

automorphism modded out.
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Generalisations of the Ising model–Potts model

Rewrite the Hamiltonian as

H = −J
∑

{i ,j}

δ(σi , σj)− H
∑

i

δ(σi ,1)

where σi = 1,2, . . . ,q. This is the q-state Potts model that
Alan has been discussing.

When q = 2 it reduces to the Ising model (with a trivial
rescaling of the coupling J by a factor of 2, and an energy
shift, which makes no contribution to thermodynamic
quantities).

In two-dimensions, the Potts model has a second order
phase transition for q = 2,3 and 4 on a regular planar
lattice.
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Potts model–continued

A first-order phase transition is characterised by a
discontinuity in a first-derivative of the free-energy, while a
second-order phase transiiton ....

For q > 4 the Potts model has a first order phase transition.

In three-dimensions the result is not rigorously known, but
it is believed to be first order for q ≥ 2.8 or so.

The q = 3 state Potts model in three-dimensions is
believed to be in the same universality class as the
quantum chromodynamics phase transition when
quark-hadrons emerged from the quark-gluon plasma at
the time of formation of the universe.
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The O(n) model–another generalisation of the Ising
model

Another generalization arises if we allow the spin variables
to be unit vectors of dimension n.

This gives rise to the O(n) model. Let
si = (s(1)

i ,s(2)
i , . . . ,s(n)

i ) be an n-component vector such
that |si| = 1.

H = −J
∑

{i ,j}

si · sj − H
∑

i

s(1)
i

Clearly, when n = 1 we recover the Ising model.

For n = 2 the model is called the planar classical
Heisenberg model (or planar model). It exhibits no phase
transition for d = 2, but does for d = 3.
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The O(n) model–continued

For n = 3 the model is called the classical Heisenberg
model (there is a quantum version). It also exhibits no
phase transition for d = 2, but does for d = 3.

As n →∞ we recover the spherical model of Kac-Berlin, in
which a spherical constraint can be imposed on the spins
∑

s2
i = N.

Of the greatest interest is the n → 0 limit, when we recover
(de Gennes) the SAW model. This is a rather non-rigorous
result. There is a half-believable derivation in the book by
Madras and Slade called The self-avoiding walk.

Other interesting limits are n = −1 (spanning forests,
Caracciolo, Jacobsen, Saleur, Sokal, Sportiello), n = −2
(Gaussian model), n = −3, −5, −7 · · · which are all
conjectured to have a combinatorial interpretation (Sokal).
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