Statistical Mechanics—a lightning course

A. J. Guttmann

ARC Centre of Excellence for Mathematics and Statistics of Complex Systems Department of Mathematics and Statistics The University of Melbourne, Australia

Lecture 4, Val Morin, February 12-16, 2007

< ロ > < 同 > < 回 > < 回 > .

Outline

Tony Guttmann Stat. mech. course

▲□▶▲□▶▲目▶▲目▶ 目 うえぐ

Outline

Tony Guttmann Stat. mech. course

▲□▶▲□▶▲目▶▲目▶ 目 うえぐ

Two-dimensional Ising model

- First, we wrap the square lattice onto an $n \times m$ cylinder, labelling the spins at site *i*, *j* as $s_{i,j}$.
- We have s_{i,n+1} = s_{i,1}, and denote a column configuration as σ_j = (s_{1,j}, s_{2,j}, ... s_{m,j}.). (There are 2^m possible configurations for a column).
- We have

$$\mathcal{H}\{\mathbf{s}\} = -J \sum_{i=1}^{m-1} \sum_{j=1}^{n} \mathbf{s}_{i,j} \mathbf{s}_{1+1,j} - J \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{s}_{i,j} \mathbf{s}_{1,j+1} \quad (1)$$
$$-H \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{s}_{i,j}.$$

Setting up the transfer matrix

• We now rewrite (1) as the sum of the interaction energies within a column, $V_1(\sigma_j)$, and the interaction energies between columns, $V_2(\sigma_j, \sigma_{j+1})$.

$$V_1(\sigma_j) = -J \sum_{i=1}^{m-1} s_{i,j} s_{1+1,j} - H \sum_{i=1}^m s_{i,j},$$

$$V_2(\sigma_j,\sigma_{j+1})=-J\sum_{i=1}^m s_{i,j}s_{1,j+1}.$$

ヘロト 人間 とくほとく ほとう

Transfer matrix-cont.

• Then, noting that $\sigma_{n+1} = \sigma_1$,

$$\mathcal{H}{\boldsymbol{s}} = \mathcal{H}{\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \dots, \boldsymbol{\sigma}_n} = \sum_{j=1}^n [V_1(\sigma_j) + V_2(\sigma_j, \sigma_{j+1})].$$

• The partition function is then

$$Z_{n,m} = \sum_{\{s\}} \exp(-\beta \mathcal{H}\{s\})$$

$$= \sum_{\{\sigma_1, \sigma_2, \dots, \sigma_n\}} \exp\left[-\beta \left(\sum_{j=1}^n \{V_1(\sigma_j) + V_2(\sigma_j, \sigma_{j+1})\}\right)\right]$$

$$= \sum_{\{\sigma_1, \sigma_2, \dots, \sigma_n\}} L(\sigma_1, \sigma_2) L(\sigma_1, \sigma_2) \cdots L(\sigma_{n-1}, \sigma_n) L(\sigma_n, \sigma_1)$$

$$= \sum_{\sigma_1} L^n(\sigma_1, \sigma_1)$$

Transfer matrix—continued

Here

$$L_{\sigma,\sigma'} = \exp[-\beta V_1(\sigma)] \exp[-\beta V_2(\sigma,\sigma')]$$
(2)
=
$$\exp\left(K \sum_{i=1}^{m-1} s_i s_{i+1} + B \sum_{i=1}^m s_i\right) \exp\left(K \sum_{i=1}^m s_i s_i'\right)$$

with $K = \beta J$ and $B = \beta H$.

We can also symmetrise this matrix, as we did in the 1d case. In the above equation, Lⁿ(σ₁, σ₁) denotes the (σ₁, σ₁) component of the 2^m × 2^m matrix L, with elements (2) (symmetrised), raised to the *n*th power.

So

$$Z_{n,m} = Tr(\mathbf{L}^{\mathbf{n}}) = \sum_{j=1}^{\mathbf{2}^{m}} \lambda_{j}^{\mathbf{n}},$$

3

where $\lambda_1 > \lambda_2 \ge \ldots \ge \lambda_{2^m}$ are the eigenvalues of the matrix.

• The thermodynamic properties are then found from the free energy,

$$-\beta\psi = \lim_{m\to\infty} \lim_{n\to\infty} \frac{1}{mn} \log Z_{n,m} = \lim_{m\to\infty} \frac{1}{m} \log \lambda_1.$$

 By a masterly application of Lie algebras and group representations, Onsager found the largest eigenvalue (with H=0) to be

$$\lambda_1 = (2\sinh 2\mathbf{K})^{m/2} \exp[\frac{1}{2}(\gamma_1 + \gamma_3 + \dots + \gamma_{2m-1})],$$

where

$$\cosh \gamma_{k} = \cosh 2K \coth 2K - \cos \left(rac{\pi k}{m}
ight)$$

ヘロアス語アメヨア 小田アー

So

$$-\beta\psi=\frac{1}{2}\log(2\sinh 2K)+\lim_{m\to\infty}\frac{1}{2m}\sum_{k=0}^{m-1}\gamma_{2k+1}.$$

• In the limit, the sum becomes an integral, and we have

$$\begin{aligned} -\beta\psi &= \frac{1}{2}\log(2\sinh 2K) \\ &+ \frac{1}{2\pi}\int_0^{\pi}\cosh^{-1}(\cosh 2K\coth 2K - \cos\theta)d\theta. \end{aligned}$$

◆ロト ◆聞 と ◆臣 と ◆臣 とう

三 のへで

The free energy—continued

• The using the identity

$$\cosh^{-1}|z| = \frac{1}{\pi} \int_0^{\pi} \log[2(z - \cos \phi)] d\phi$$

allows us to rewrite this, (after symmetrisation), as

$$-\beta\psi = \log 2 + \frac{1}{2\pi^2} \int_0^{\pi} \int_0^{\pi} \log[\cosh^2 2K - \sinh 2K(\cos\theta_1 + \cos\theta_2)] d\theta_1 d\theta_2.$$

• Exercise: Calculate the internal energy

$$U = -kT^2 \frac{\partial}{\partial T} \frac{\psi}{kT}$$

and hence show that it diverges logarithmically at the origin $\theta_1 = \theta_2 = 0$. Hence show that the specific heat $C_V = \frac{\partial U}{\partial T}$ has a logarithmic divergence.

 This remarkable result was the first demonstration that statistical mechanics, alone, could produce a phase transition. It is also arguably the first mathematical treatment of the collective behaviour that is studied widely under the heading of complex systems.

(本部) ・ モト ・ モト

Onsager used the algebra

$$[A_m, A_n] = 4G_{m-n}$$
$$[G_m, A_n] = 2A_{n+m} - 2A_{n-m}$$
$$[G_m, G_n] = 0$$

This algebra is isomorphic to an SL_2 loop algebra with a Z_2 automorphism modded out.

《曰》《聞》《臣》《臣》

Rewrite the Hamiltonian as

$$\mathcal{H} = -J\sum_{\{i,j\}} \delta(\sigma_i, \sigma_j) - H\sum_i \delta(\sigma_i, 1)$$

where $\sigma_i = 1, 2, ..., q$. This is the *q*-state Potts model that Alan has been discussing.

- When q = 2 it reduces to the Ising model (with a trivial rescaling of the coupling J by a factor of 2, and an energy shift, which makes no contribution to thermodynamic quantities).
- In two-dimensions, the Potts model has a second order phase transition for q = 2, 3 and 4 on a regular planar lattice.

- A *first-order* phase transition is characterised by a discontinuity in a first-derivative of the free-energy, while a second-order phase transiiton
- For q > 4 the Potts model has a first order phase transition.
- In three-dimensions the result is not rigorously known, but it is believed to be first order for *q* ≥ 2.8 or so.
- The q = 3 state Potts model in three-dimensions is believed to be in the same universality class as the quantum chromodynamics phase transition when quark-hadrons emerged from the quark-gluon plasma at the time of formation of the universe.

(4個) (4) 国 (4) \Pi (4) \Pi

The O(*n*) model—another generalisation of the Ising model

- Another generalization arises if we allow the spin variables to be unit vectors of dimension *n*.
- This gives rise to the O(*n*) model. Let $\mathbf{s}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots, \mathbf{s}_i^{(n)})$ be an *n*-component vector such that $|\mathbf{s}_i| = \mathbf{1}$.

$$\mathcal{H} = -J\sum_{\{i,j\}} \mathbf{s}_i \cdot \mathbf{s}_j - \mathbf{H}\sum_i \mathbf{s}_i^{(1)}$$

- Clearly, when n = 1 we recover the Ising model.
- For n = 2 the model is called the planar classical Heisenberg model (or planar model). It exhibits no phase transition for d = 2, but does for d = 3.

日本《國本《國本《國本》

= 900

The O(n) model–continued

- For n = 3 the model is called the classical Heisenberg model (there is a quantum version). It also exhibits no phase transition for d = 2, but does for d = 3.
- As $n \to \infty$ we recover the spherical model of Kac-Berlin, in which a spherical constraint can be imposed on the spins $\sum s_i^2 = N$.
- Of the greatest interest is the n → 0 limit, when we recover (de Gennes) the SAW model. This is a rather non-rigorous result. There is a half-believable derivation in the book by Madras and Slade called *The self-avoiding walk*.
- Other interesting limits are n = -1 (spanning forests, Caracciolo, Jacobsen, Saleur, Sokal, Sportiello), n = -2(Gaussian model), n = -3, -5, -7 \cdots which are all conjectured to have a combinatorial interpretation (Sokal).

ロト (得) (ヨ) (ヨ)