Statistical Mechanics—a lightning course

A. J. Guttmann

ARC Centre of Excellence for Mathematics and Statistics of Complex Systems Department of Mathematics and Statistics The University of Melbourne, Australia

Lecture 3, Val Morin, February 12-16, 2007

< ロ > < 同 > < 回 > < 回 > .

3

Outline

Tony Guttmann Stat. mech. course

▲□▶▲□▶▲目▶▲目▶ 目 うえぐ

Outline

Tony Guttmann Stat. mech. course

▲□▶▲□▶▲目▶▲目▶ 目 うえぐ

Canonical ensemble

- This tedious calculation demonstrates the clumsiness of the microcanonical ensemble, and explains why it is rarely used.
- It is also a somewhat artificial situation-a system in total thermal isolation.
- The *canonical ensemble* is appropriate for the description of a system in thermal equilibrium with a much larger system, e.g. a glass of water.
- So consider two systems described by Hamiltonians H₁ and H₂ of size N₁ and N₂ particles, ocupying volumes V₁ and V₂ respectively, with N₁ << N₂.
- Consider first a microcanonical ensemble of the composite system, with total energy lying between *E* and $E + 2\delta E$.
- The two energies E₁ and E₂ must satisfy

$$E < E_1 + E_2 < E + 2\delta E.$$

ヘロト 人間 とくほとく ほとう

3

Canonical ensemble

The volume of Γ-space occupied by the composite system is Γ₁(E₁)Γ₂(E₂), summed over all values of E₁ and E₂.

$$\Gamma(E) = \sum_{i=1}^{E/\delta E} \Gamma_1(E_i)\Gamma_2(E-E_i)$$

and E_i is the energy at the centre of each energy interval.

• The entropy of the composite system of $N = N_1 + N_2$ particles in a volume $V = V_1 + V_2$ is

$$S(E, V) = k \log \sum_{i=1}^{E/\delta E} \Gamma_1(E_i) \Gamma_2(E - E_i).$$

• Now let the largest term in the sum be $\Gamma_1(\bar{E}_1)\Gamma_2(\bar{E}_2)$, then

$$\Gamma_1(\overline{E}_1)\Gamma_2(\overline{E}_2) \leq \Gamma(E) \leq \frac{E}{\delta E}\Gamma_1(\overline{E}_1)\Gamma_2(\overline{E}_2),$$

・ロン ・聞と ・ 聞と

or

 $k\log[\Gamma_1(\bar{E}_1)\Gamma_2(\bar{E}_2)] \leq S(E, V) \leq k\log[\Gamma_1(\bar{E}_1)\Gamma_2(\bar{E}_2)] + k\log\frac{E}{\delta E}.$

- Now, as the number of particles in both systems is large, we expect that $\log \Gamma_{1,2} \propto N_{1,2}$ and $E \propto N_1 + N_2$.
- The term $k \log \frac{E}{\delta E}$ can be neglected as δE is independent of N. so we get

$$S(E, V) = S_1(\bar{E}_1, v_1) + S_2(\bar{E}_2, V_2) + O(\log N)$$

which proves the extensive property of the entropy, alluded to above, and, further, implies that the energies of the subsystems have the definite values \overline{E}_1 and \overline{E}_2 .

▲聞 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Canonical ensemble—continued

- So in our canonical ensemble, we have E
 ₂ >> E
 ₁, and if we let Γ₂(E₂) be the volume occupied by system 2 in its own Γ space, then the probability of finding system 1 in a state within dp₁ dq₁ of (p₁, q₁), regardless of the state of system 2, is proportional to dp₁ dq₁ Γ₂(E₂), where E₂ = E E₁.
- Thus, up to a multiplicative constant, the density in Γ space for system 1 is

$$\rho(p_1,q_1)\propto \Gamma_2(E-E_1).$$

• Expanding around \bar{E}_1 , we have

$$k \log \Gamma_2(E-E_1) = S_2(E-E_1) = S_2(E) - E_1 \left(\frac{\partial S_2(E_2)}{\partial E_2}\right)_{E_2=E} + \cdots$$

◆□ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ● ◆ ○ ○ ○

So

$$k \log \Gamma_2(E-E_1) \approx S_2(E) - \frac{E_1}{T}$$

where T is the temperature of the larger subsystem.

Hence

$$\Gamma_2(E-E_1) \approx \exp\left(\frac{S_2(E)}{k}\right) \exp\left(-\frac{E_1}{kT}\right)$$

- The first factor is independent of *E*₁ and is a constant from the point of view of the small subsystem.
- Now E₁ = H₁(p₁, q₁), we have (up to a multiplicative constant)

$$ho(oldsymbol{p},oldsymbol{q})={e^{-\mathcal{H}(oldsymbol{p},oldsymbol{q})/kT}}$$

where we have dropped the subscript 1, since we can forget about the larger subsystem, apart from the fact that its temperature is T.

Canonical ensemble—continued

- This ensemble, called the canonical ensemble, is appropriate for a system whose temperature is determined through contact with a heat reservoir.
- The volume in Γ-space occupied by the canonical ensemble is called the (canonical) partition function,

$$Z_N(V,T) \equiv \int rac{d^{3N}p \ d^{3N}q}{N!h^{3N}} e^{-eta \mathcal{H}(p,q)},$$

where $\beta = 1/kT$.

- The factor *h*^{3N} is for dimensional correction, while *N*! accounts for "correct Boltzmann counting" as discussed above.
- Strictly speaking we should restrict the range of integration, but for large systems $\mathcal{H}(p,q)$ is dominated by a single value that lies within the allowed range of integration.

• Thermodynamics is obtained by the identity

$$Z_N(V,T)=e^{-\beta A(V,T)},$$

where A(V, T) is the Helmholtz free-energy.

- This is justified by showing that (a) A is extensive, which follows from the factorisation of the partition function of a system made up of two sub-systems, and (b) A is related to U and S by A = U - TS.
- To prove this, rewrite it as $\langle \mathcal{H} \rangle = A T \left(\frac{\partial A}{\partial T} \right)_V$, and note the identity

$$\int \frac{d^{3N}p \ d^{3N}q}{N!h^{3N}} e^{\beta[A(V,T)-\mathcal{H}(p,q)]} = 1.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ◇◇◇

• Differentiating w.r.t. β gives the required result.

- All other thermodynamic variables may be found by appropriate differentiation. Hence it is often said that statistical mechanics starts and ends with the calculation of the partition function.
- In algebraic combinatorics, we are frequently dealing with discrete systems.
- Then the definition of the partition function involves a sum over all configurations, rather than an integral, viz:

$$Z = \sum_{e'' \text{ or } f \text{ or } e^{-\beta \mathcal{H}}.$$

all configurations

ヘロアス語アメヨア 小田アー

3

Canonical ensemble—ideal gas equation of state

- Example: Calculate the equation of state of an ideal gas.
- We start as above with $\mathcal{H} = \frac{1}{2m} \sum_{i=1}^{N} p_i^2$.
- Then the partition function is

$$Z_{N}(V,T) \equiv \int \frac{d^{3N}p \ d^{3N}q}{N!h^{3N}} e^{-\beta \mathcal{H}(p,q)}$$
$$= \frac{V^{N}}{N!h^{3N}} \int d^{3N}p e^{-\beta/2m\sum p_{i}^{2}}$$

- We don't even need to calculate the integral, though it is easy. To refer to it in the future, let's call it λ^N.
- Since $A(V, T) = -\frac{1}{\beta} \log Z$, and $P = -\left(\frac{\partial A}{\partial V}\right)_T$, the only term we need is the term V^N , so we immediately obtain PV = NkT.

→ ■ → モ → モ → モ → ○ へ ●

Outline

Tony Guttmann Stat. mech. course

▲□▶▲□▶▲目▶▲目▶ 目 うえぐ

- In going from the microcanonical to the canonical ensemble we relaxed the rather artificial restriction of an isolated system.
- In reality though we can never exactly specify the number of particles in a large system. All we know is some sort of average or approximation.
- This motivates the grand canonical ensemble, in which systems can have any number of particles, determined by external conditions.
- Just as we derived the density function in Γ-space of the canonical ensemble by considering the microcanonical ensemble, we will derive the grand canonical density function from the canonical one.

★聞▶ ★理▶ ★理▶

Grand Canonical Ensemble

- To find ρ(p, q, N) in the GCE, consider the CE for a system of N particles, with volume V at temperature T.
- Focus on a small (but still macroscopic) sub-volume V₁.
- The density ρ(p₁, q₁, N₁) is proportional to the probability that in sub-volume V₁ there are N₁ particles with coordinates (p₁, q₁).
- Let $N_2 = N N_1$ and $V_2 = V V_1$, and $N_2 >> N_1$, $V_2 >> V_1$.
- Neglecting interactions between V_2 and V_1 , we must have

$$ho(p_1, q_1, N_1) \propto e^{-eta \mathcal{H}(p_1, q_1, N_1)} \int_{V_2} dp_2 \; dq_2 \; e^{-eta \mathcal{H}(p_2, q_2, N_2)}$$

where the integral extends over all p_2 , but only those values of q_2 which keep N_2 particles in the volume V_2 .

日本本語を大語を

Grand Canonical Ensemble—continued

 It turns out to be convenient to choose the constant of proportionality so that

$$\rho(p_1, q_1, N_1) = \frac{N! e^{-\beta \mathcal{H}(p_1, q_1, N_1) \int_{V_2} dp_2 \ dq_2 \ e^{-\beta \mathcal{H}(p_2, q_2, N_2)}}}{N_1! N_2! \int_V dp \ dq \ e^{-\beta \mathcal{H}(p, q, N)}},$$

or

$$\rho(p_1, q_1, N_1) = \frac{Z_{N_2}(V_2, T)e^{-\beta \mathcal{H}(p_1, q_1, N_1)}}{Z_N(V, T)N_1!h^{3N_1}}.$$

Now

$$\frac{Z_{N_2}(V_2,T)}{Z_N(V,T)} = e^{-\beta[A(N_2,V_2,T) - A(N,V,T)]} = e^{-\beta[A(N-N_1,V-V_1,T) - A(N,V,T)]}$$

where A is the Helmholtz free energy introduced above.

Grand Canonical Ensemble-continued

• Since $N >> N_1$ and $V >> V_1$ we can write

$$\begin{array}{l} A(N - N_1, V - V_1, T) - A(N, V, T) \approx \\ -N_1 \left(\frac{\partial A(N_2, V, T)}{\partial N_2} \right)_{N_2 = N} - V_1 \left(\frac{\partial A(N, V_2, T)}{\partial V_2} \right)_{V_2 = V} \\ = -N_1 \mu + V_1 P, \end{array}$$

where μ is called the *chemical potential* and *P* is the (external) pressure.

• If we call $z = e^{\beta \mu}$ the *fugacity*, we have

$$\rho(p, q, N) = \frac{z^N}{N! h^{3N}} e^{-\beta P V - \beta \mathcal{H}(p, q)}.$$
 (1)

 We can drop the subscript 1 as the external system can now be forgotten, except that it has temperature *T*, pressure *P*, and chemical potential μ.

Grand Canonical Ensemble-continued

• Defining now the grand partition function as

$$\mathcal{Q}(z, V, T) \equiv \sum_{N=0}^{\infty} z^N Z_N(V, T),$$

then integrating both sides of eqn (??) over all p and q with N fixed, and summing N from 0 to ∞ , we find

$$\frac{PV}{kT} = \log \mathcal{Q}(z, V, T).$$

- So the GPF gives *P* as a function of *z*, *V*, and *T*.
- The average number of particles is found from

$$N = z \frac{\partial}{\partial z} \log \mathcal{Q}(z, V, T),$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Grand Canonical Ensemble-continued

- The equation of state is found by eliminating *z* between the two equations above.
- All other thermodynamic functions may be obtained from the internal energy,

$$U = -rac{\partial}{\partialeta}\log \mathcal{Q}(z,V,T),$$

or from the Helmholtz free-energy:

$$A = NkT \log z - kT \log Q(z, V, T).$$

• Whether using *U* or *A*, it is necessary to eliminate *z* in order to obtain *U* or *A* as a function of *N*, *V* and *T*.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ...

• Example: The equation of state of an ideal gas follows from the expression $Z = \frac{V^N \lambda^N}{N! \hbar^{3N}}$, where λ is the value of an integral we can evaluate, but needn't. Thus

$$\mathcal{Q}(z, V, T) = e^{zV\lambda/h^3},$$

and

$$N = rac{zV\lambda}{h^3} = PV/kT,$$

in agreement with the result obtained previously.

・ 祠 ト ・ ヨ ト ・ ヨ ト

Outline

Tony Guttmann Stat. mech. course

▲□▶▲□▶▲目▶▲目▶ 目 うえぐ

- In 1920 Lenz proposed a microscopic theory of a ferromagnetic domain comprised of elementary spin dipoles constrained in quantized directions.
- He then gave it to his student Ernst Ising to work out the details. Ising did so, and in 1925 published his solution for a one-dimensional version of the model.
- It exhibited no ferromagnetic phase transition.
- Ising then incorrectly speculated that this conclusion would persist in higher dimensions.
- As this contradicted experimental observations, interest in the model died out, and models like those of Heisenberg, which was fully quantum-mechanical, and itinerant electron models of Bloch and others were considered necessary.

★課 ▶ ★ 理 ▶ ★ 理 ▶

- The Lenz-Ising model was saved from obscurity by its application as a model of a binary alloy, when the calculations of Bethe, involving larger clusters of molecules) justified the Bragg-Williams mean-field theory.
- The model (as a model of a ferromagnet) assumes that "spins" may be up or down.
- Thus at each of *N* sites we have $s_i = \pm 1$.
- Each spin interacts with its nearest neighbour only, and (possibly) with an external magnetic field *H*.
- Thus the Hamiltonian is

$$\mathcal{H} = -J \sum_{\textit{nearest neighbours}} s_i s_j - H \sum_{i=1}^N s_i.$$

• J is the coupling constant, and has units of energy.

= 900

- The simplest assumption is that both *J* and *H* are constant, but they can be site-dependent.
- For ferromagnetism we require J > 0, as this energetically favours aligned configurations. (For J < 0 we have anti-ferromagnetism.)
- If there are N spins, then the partition function involves the sum over all 2^N configurations (each spin independently +1 or -1).
- Consider a 1-dimensional chain, with spins numbered from 1 to N in zero magnetic field, (H = 0).

ヘロアス語アメヨア 小田アー

э.

Then

$$Z(N,T) = \sum_{s_1=\pm 1} \sum_{s_2=\pm 1} \cdots \sum_{s_N=\pm 1} e^{\beta J \sum_{i=1}^{N-1} s_i s_{i+1}}$$
$$= \sum_{s_1=\pm 1} \sum_{s_2=\pm 1} \cdots \sum_{s_N=\pm 1} \prod_{i=1}^{N-1} e^{\beta J s_i s_{i+1}},$$

where $\beta = 1/kT$.

- Consider the sum $\sum_{s_N=\pm 1}$. It applies only to the term $e^{\beta J s_{N-1} s_N}$, giving $2 \cosh \beta J s_{N-1} = 2 \cosh(\beta J)$ since the cosh function is an even function, and $s_i = \pm 1$..
- Thus $Z(N, T) = 2 \cosh(\beta J) \times Z(N-1, T)$, and Z(1, T) = 2, so

$$Z(N,T) = 2^N (\cosh\beta J)^{N-1}$$

<ロト 4 目 ト 4 目 ト 4 目 ト 一 目 - うへで

• The Helmholtz free-energy per particle is given by

$$-\beta A(T) = \lim_{N \to \infty} 1/N \log Z_N = \log(2 \cosh \beta J).$$

The internal energy

$$U = -kT^2 \frac{\partial \beta A}{\partial T} = J \tanh \beta J.$$

The specific heat

$$C_V = \frac{\partial U}{\partial T} = -J^2/kT^2 \mathrm{sech}^2\beta J.$$

 This is a smooth function of temperature for all T > 0, though it is sometimes used as evidence of a zero-temperature phase transition.

3

- We now consider the same model with cyclic boundary conditions, so that $s_{N+1} = s_1$.
- We will also include the external magnetic field, so that we can calculate other thermodynamic quantities, such as the magnetisation $M(H, T) = \frac{\partial A}{\partial H}$ and the susceptibility $\chi(H, T) = \frac{\partial M}{\partial H}$.
- In fact we are usually interested in the zero-field limit *H* → 0⁺, in which case we have the spontaneous magnetisation and the zero-field susceptibility, respectively.

< ロ > < 同 > < 回 > < 回 > < □ > <

• The partition function is now

$$Z(N,T) = \sum_{s_1=\pm 1} \sum_{s_2=\pm 1} \cdots \sum_{s_N=\pm 1} e^{\beta \sum_{i=1}^N [Js_i s_{i+1} + Hs_i]}$$

=
$$\sum_{s_1=\pm 1} \sum_{s_2=\pm 1} \cdots \sum_{s_N=\pm 1} e^{\beta \sum_{i=1}^N [Js_i s_{i+1} + \frac{1}{2}H(s_i + s_{i+1})]}.$$

which symmetrises the summand.

• Now define the 2 × 2 matrix P with elements

$$\mathbf{a}_{i,j} = \mathbf{e}^{\beta[\mathbf{J}\mathbf{s}_i\mathbf{s}_j + \frac{1}{2}\mathbf{H}(\mathbf{s}_i + \mathbf{s}_j)]}$$

Thus

$$P = \begin{pmatrix} e^{\beta(J+H)} & e^{-\beta J} \\ e^{-\beta J} & e^{\beta(J-H)} \end{pmatrix}$$

э

In terms of P we may write the partition function

$$Z(N,T) = \sum_{s_1=\pm 1} \sum_{s_2=\pm 1} \cdots \sum_{s_N=\pm 1} \langle s_1 | P | s_2 \rangle \langle s_2 | P | s_3 \rangle \cdots \langle s_N | P | s_1 \rangle$$
$$= \sum_{s_1=\pm 1} \langle s_1 | P^N | s_1 \rangle = \text{Trace} P^N = \lambda_1^N + \lambda_2^N.$$

Exercise: Show that

$$\lambda_{1,2} = e^{\beta J} [\cosh(\beta H) \pm \sqrt{\sinh^2(\beta H)} + e^{-4\beta J}].$$

 So for H = 0 the largest eigenvalue is 2 cosh(βJ), in agreement with the case worked above.

ヘロト 人間 とくほとく ほとう

= 900

 As N → ∞ only the larger eigenvalue is relevant, and the Helmholtz free energy per spin is

$$-\beta A(T) = \lim_{N \to \infty} 1/N \log Z_N =$$

$$\beta J + \log[\cosh(\beta H) + \sqrt{\cosh^2(\beta H) - 2e^{-2\beta J} \sinh^2(2\beta J)}].$$

The magnetisation per spin is

$$M(H, T) = \frac{\sinh{(\beta H)}}{\sqrt{\sinh^2{(\beta H)} + e^{-4\beta J}}},$$

and so the spontaneous magnetisation, M(0, T) vanishes for all T > 0. Exercise: Calculate the susceptibility, $\chi = \frac{\partial M}{\partial H}$, and show

that, in zero-field (H = 0) there is no singularity for T > 0.

★ 3 → 3