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Canonical ensemble

This tedious calculation demonstrates the clumsiness of
the microcanonical ensemble, and explains why it is rarely
used.
It is also a somewhat artificial situation–a system in total
thermal isolation.
The canonical ensemble is appropriate for the description
of a system in thermal equilibrium with a much larger
system, e.g. a glass of water.
So consider two systems described by Hamiltonians H1

and H2 of size N1 and N2 particles, ocupying volumes V1

and V2 respectively, with N1 << N2.

Consider first a microcanonical ensemble of the composite
system, with total energy lying between E and E + 2δE .
The two energies E1 and E2 must satisfy

E < E1 + E2 < E + 2δE .
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Canonical ensemble

The volume of Γ-space occupied by the composite system
is Γ1(E1)Γ2(E2), summed over all values of E1 and E2.
So

Γ(E) =

E/δE
∑

i=1

Γ1(Ei)Γ2(E − Ei)

and Ei is the energy at the centre of each energy interval.
The entropy of the composite system of N = N1 + N2

particles in a volume V = V1 + V2 is

S(E , V ) = k log
E/δE
∑

i=1

Γ1(Ei)Γ2(E − Ei).

Now let the largest term in the sum be Γ1(Ē1)Γ2(Ē2), then

Γ1(Ē1)Γ2(Ē2) ≤ Γ(E) ≤
E
δE

Γ1(Ē1)Γ2(Ē2),
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Canonical ensemble—continued

or

k log[Γ1(Ē1)Γ2(Ē2)] ≤ S(E , V ) ≤ k log[Γ1(Ē1)Γ2(Ē2)]+k log
E
δE

.

Now, as the number of particles in both systems is large,
we expect that log Γ1,2 ∝ N1,2 and E ∝ N1 + N2.

The term k log E
δE can be neglected as δE is independent

of N. so we get

S(E , V ) = S1(Ē1, v1) + S2(Ē2, V2) + O(log N)

which proves the extensive property of the entropy, alluded
to above, and, further, implies that the energies of the
subsystems have the definite values Ē1 and Ē2.
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Canonical ensemble—continued

So in our canonical ensemble, we have Ē2 >> Ē1, and if
we let Γ2(E2) be the volume occupied by system 2 in its
own Γ space, then the probability of finding system 1 in a
state within dp1 dq1 of (p1, q1), regardless of the state of
system 2, is proportional to dp1 dq1Γ2(E2), where
E2 = E − E1.

Thus, up to a multiplicative constant, the density in Γ space
for system 1 is

ρ(p1, q1) ∝ Γ2(E − E1).

Expanding around Ē1, we have

k log Γ2(E−E1) = S2(E−E1) = S2(E)−E1

(

∂S2(E2)

∂E2

)

E2=E
+· · · .
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Canonical ensemble—continued

So

k log Γ2(E − E1) ≈ S2(E)−
E1

T
where T is the temperature of the larger subsystem.
Hence

Γ2(E − E1) ≈ exp
(

S2(E)

k

)

exp
(

−
E1

kT

)

.

The first factor is independent of E1 and is a constant from
the point of view of the small subsystem.
Now E1 = H1(p1, q1), we have (up to a multiplicative
constant)

ρ(p, q) = e−H(p,q)/kT

where we have dropped the subscript 1, since we can
forget about the larger subsystem, apart from the fact that
its temperature is T .
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Canonical ensemble—continued

This ensemble, called the canonical ensemble, is
appropriate for a system whose temperature is determined
through contact with a heat reservoir.

The volume in Γ-space occupied by the canonical
ensemble is called the (canonical) partition function,

ZN(V , T ) ≡

∫

d3Np d3Nq
N!h3N e−βH(p,q),

where β = 1/kT .

The factor h3N is for dimensional correction, while N!
accounts for “correct Boltzmann counting” as discussed
above.

Strictly speaking we should restrict the range of integration,
but for large systems H(p, q) is dominated by a single
value that lies within the allowed range of integration.
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Canonical ensemble—continued

Thermodynamics is obtained by the identity

ZN(V , T ) = e−βA(V ,T ),

where A(V , T ) is the Helmholtz free-energy.

This is justified by showing that (a) A is extensive, which
follows from the factorisation of the partition function of a
system made up of two sub-systems, and (b) A is related
to U and S by A = U − TS.

To prove this, rewrite it as 〈H〉 = A− T
(

∂A
∂T

)

V , and note the
identity

∫

d3Np d3Nq
N!h3N eβ[A(V ,T )−H(p,q)] = 1.

Differentiating w.r.t. β gives the required result.
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Canonical ensemble—continued

All other thermodynamic variables may be found by
appropriate differentiation. Hence it is often said that
statistical mechanics starts and ends with the calculation
of the partition function.

In algebraic combinatorics, we are frequently dealing with
discrete systems.

Then the definition of the partition function involves a sum
over all configurations, rather than an integral, viz:

Z =
∑

all configurations

e−βH.
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Canonical ensemble—ideal gas equation of state

Example: Calculate the equation of state of an ideal gas.

We start as above with H = 1
2m

∑N
i=1 p2

i .

Then the partition function is

ZN(V , T ) ≡

∫

d3Np d3Nq
N!h3N e−βH(p,q)

=
V N

N!h3N

∫

d3Npe−β/2m
P

p2
i .

We don’t even need to calculate the integral, though it is
easy. To refer to it in the future, let’s call it λN .

Since A(V , T ) = − 1
β log Z , and P = −

(

∂A
∂V

)

T , the only term

we need is the term V N , so we immediately obtain
PV = NkT .
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Canonical ensemble—ideal gas equation of state

In going from the microcanonical to the canonical
ensemble we relaxed the rather artificial restriction of an
isolated system.

In reality though we can never exactly specify the number
of particles in a large system. All we know is some sort of
average or approximation.

This motivates the grand canonical ensemble, in which
systems can have any number of particles, determined by
external conditions.

Just as we derived the density function in Γ-space of the
canonical ensemble by considering the microcanonical
ensemble, we will derive the grand canonical density
function from the canonical one.
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Grand Canonical Ensemble

To find ρ(p, q, N) in the GCE, consider the CE for a system
of N particles, with volume V at temperature T .

Focus on a small (but still macroscopic) sub-volume V1.

The density ρ(p1, q1, N1) is proportional to the probability
that in sub-volume V1 there are N1 particles with
coordinates (p1, q1).

Let N2 = N − N1 and V2 = V − V1, and N2 >> N1,
V2 >> V1.

Neglecting interactions between V2 and V1, we must have

ρ(p1, q1, N1) ∝ e−βH(p1,q1,N1)

∫

V2

dp2 dq2 e−βH(p2,q2,N2)

where the integral extends over all p2, but only those
values of q2 which keep N2 particles in the volume V2.
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Grand Canonical Ensemble—continued

It turns out to be convenient to choose the constant of
proportionality so that

ρ(p1, q1, N1) =
N!e

−βH(p1,q1,N1)
R

V2
dp2 dq2 e−βH(p2,q2,N2)

N1!N2!
∫

V dp dq e−βH(p,q,N)
,

or

ρ(p1, q1, N1) =
ZN2

(V2, T )e−βH(p1,q1,N1)

ZN(V , T )N1!h3N1
.

Now

ZN2
(V2, T )

ZN(V , T )
= e−β[A(N2,V2,T )−A(N,V ,T )] = e−β[A(N−N1,V−V1,T )−A(N,V ,T )]

where A is the Helmholtz free energy introduced above.
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Grand Canonical Ensemble–continued

Since N >> N1 and V >> V1 we can write

A(N − N1, V − V1, T )− A(N, V , T ) ≈

−N1

(

∂A(N2, V , T )

∂N2

)

N2=N
− V1

(

∂A(N, V2, T )

∂V2

)

V2=V

= −N1µ + V1P,

where µ is called the chemical potential and P is the
(external) pressure.

If we call z = eβµ the fugacity, we have

ρ(p, q, N) =
zN

N!h3N e−βPV−βH(p,q). (1)

We can drop the subscript 1 as the external system can
now be forgotten, except that it has temperature T ,
pressure P, and chemical potential µ.
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Grand Canonical Ensemble–continued

Defining now the grand partition function as

Q(z, V , T ) ≡

∞
∑

N=0

zNZN(V , T ),

then integrating both sides of eqn (??) over all p and q with
N fixed, and summing N from 0 to ∞, we find

PV
kT

= logQ(z, V , T ).

So the GPF gives P as a function of z, V , and T .

The average number of particles is found from

N = z
∂

∂z
logQ(z, V , T ),
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Grand Canonical Ensemble–continued

The equation of state is found by eliminating z between the
two equations above.

All other thermodynamic functions may be obtained from
the internal energy,

U = −
∂

∂β
logQ(z, V , T ),

or from the Helmholtz free-energy:

A = NkT log z − kT logQ(z, V , T ).

Whether using U or A, it is necessary to eliminate z in
order to obtain U or A as a function of N, V and T .
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Grand Canonical Ensemble–Ideal gas equation of
state

Example: The equation of state of an ideal gas follows
from the expression Z = V NλN

N!h3N , where λ is the value of an
integral we can evaluate, but needn’t. Thus

Q(z, V , T ) = ezVλ/h3
,

and

N =
zVλ

h3 = PV/kT ,

in agreement with the result obtained previously.
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The Lenz-Ising model

In 1920 Lenz proposed a microscopic theory of a
ferromagnetic domain comprised of elementary spin
dipoles constrained in quantized directions.

He then gave it to his student Ernst Ising to work out the
details. Ising did so, and in 1925 published his solution for
a one-dimensional version of the model.

It exhibited no ferromagnetic phase transition.

Ising then incorrectly speculated that this conclusion would
persist in higher dimensions.

As this contradicted experimental observations, interest in
the model died out, and models like those of Heisenberg,
which was fully quantum-mechanical, and itinerant electron
models of Bloch and others were considered necessary.
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The Lenz-Ising model—continued

The Lenz-Ising model was saved from obscurity by its
application as a model of a binary alloy, when the
calculations of Bethe, involving larger clusters of
molecules) justified the Bragg-Williams mean-field theory.

The model (as a model of a ferromagnet) assumes that
“spins” may be up or down.

Thus at each of N sites we have si = ±1.

Each spin interacts with its nearest neighbour only, and
(possibly) with an external magnetic field H.

Thus the Hamiltonian is

H = −J
∑

nearest neighbours

sisj −H
N

∑

i=1

si .

J is the coupling constant, and has units of energy.
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The Lenz-Ising model—continued

The simplest assumption is that both J and H are constant,
but they can be site-dependent.

For ferromagnetism we require J > 0, as this energetically
favours aligned configurations. (For J < 0 we have
anti-ferromagnetism.)

If there are N spins, then the partition function involves the
sum over all 2N configurations (each spin independently
+1 or −1).

Consider a 1-dimensional chain, with spins numbered from
1 to N in zero magnetic field, (H = 0).
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The Lenz-Ising model—continued

Then

Z (N, T ) =
∑

s1=±1

∑

s2=±1

· · ·
∑

sN=±1

eβJ
PN−1

i=1 si si+1

=
∑

s1=±1

∑

s2=±1

· · ·
∑

sN=±1

N−1
∏

i=1

eβJsisi+1 ,

where β = 1/kT .

Consider the sum
∑

sN=±1 . It applies only to the term
eβJsN−1sN , giving 2 cosh βJsN−1 = 2 cosh(βJ) since the
cosh function is an even function, and si = ±1..

Thus Z (N, T ) = 2 cosh(βJ) × Z (N − 1, T ), and
Z (1, T ) = 2, so

Z (N, T ) = 2N(cosh βJ)N−1.
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The Lenz-Ising model—continued

The Helmholtz free-energy per particle is given by

−βA(T ) = lim
N→∞

1/N log ZN = log(2 cosh βJ).

The internal energy

U = −kT 2 ∂βA
∂T

= J tanh βJ .

The specific heat

CV =
∂U
∂T

= −J2/kT 2sech2βJ .

This is a smooth function of temperature for all T > 0,
though it is sometimes used as evidence of a
zero-temperature phase transition.
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The Lenz-Ising model—continued

We now consider the same model with cyclic boundary
conditions, so that sN+1 = s1.

We will also include the external magnetic field, so that we
can calculate other thermodynamic quantities, such as the
magnetisation M(H, T ) = ∂A

∂H and the suscebtibility
χ(H, T ) = ∂M

∂H .

In fact we are usually interested in the zero-field limit
H → 0+, in which case we have the spontaneous
magnetisation and the zero-field susceptibility, respectively.
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The Lenz-Ising model—continued

The partition function is now

Z (N, T ) =
∑

s1=±1

∑

s2=±1

· · ·
∑

sN=±1

eβ
PN

i=1[Jsi si+1+Hsi ]

=
∑

s1=±1

∑

s2=±1

· · ·
∑

sN=±1

eβ
PN

i=1[Jsi si+1+
1
2 H(si+si+1)].

which symmetrises the summand.

Now define the 2× 2 matrix P with elements

ai ,j = eβ[Jsisj+
1
2 H(si +sj)].

Thus

P =

(

eβ(J+H) e−βJ

e−βJ eβ(J−H)

)
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The Lenz-Ising model—continued

In terms of P we may write the partition function

Z (N, T ) =
∑

s1=±1

∑

s2=±1

· · ·
∑

sN=±1

〈s1|P|s2〉〈s2|P|s3〉 · · · 〈sN |P|s1〉

=
∑

s1=±1

〈s1|P
N |s1〉 = TracePN = λN

1 + λN
2 .

Exercise: Show that

λ1,2 = eβJ [cosh(βH)±

√

sinh2(βH) + e−4βJ ].

So for H = 0 the largest eigenvalue is 2 cosh(βJ), in
agreement with the case worked above.
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The Lenz-Ising model—continued

As N →∞ only the larger eigenvalue is relevant, and the
Helmholtz free energy per spin is

−βA(T ) = lim
N→∞

1/N log ZN =

βJ + log[cosh(βH) +

√

cosh2(βH)− 2e−2βJ sinh2(2βJ)].

The magnetisation per spin is

M(H, T ) =
sinh (βH)

√

sinh2 (βH) + e−4βJ
,

and so the spontaneous magnetisation, M(0, T ) vanishes
for all T > 0.
Exercise: Calculate the susceptibility, χ = ∂M

∂H , and show
that, in zero-field (H = 0) there is no singularity for T > 0.
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