# EXERCISES <br> SCHOOL : COMBINATORICS AND STATISTICAL MECHANICS <br> Gilbert Labelle <br> Val-Morin, Québec, February 2007 

1) Let $A$ and $a$ respectively denote the species of trees and of rooted trees.
a) Prove, by making appropriate drawings, the following combinatorial equation

$$
X^{2} a^{\prime \prime}=\left(E_{2}(A)\right)^{\bullet} .
$$

b) Deduce from it an identity involving the family of numbers $n^{n-1}$.
2) Let $L_{+}$denote the species of non-empty lists and $C$ be the species of oriented cycles. Define the species Oct by the combinatorial equation Oct $=C\left(L_{+}\right)$.
a) Explain why an Oct-structure should be called an octopus.
b) Prove, by making appropriate drawings, the following combinatorial equations

$$
\operatorname{Oct}(X)+C(X)=C(2 X), \quad \operatorname{Oct}^{\prime}(X)=L(X) L(2 X)
$$

where $L=1+L_{+}$is the species of (possibly empty) lists.
c) Deduce a closed formula for the number of $n$-octopuses from any one of these equations.
d) Prove that for all $n \geq 0$, the $n$-fold composition $L_{+} \circ L_{+} \circ \cdots \circ L_{+} \quad$ satisfies

$$
L_{+} \circ L_{+} \circ \cdots \circ L_{+}=X L(n X) .
$$

3) It is well-known that a permutation of $[n]=\{1,2, \ldots, n\}$ is called even if can be expressed as a product of an even number of transpositions. But this definition uses the underlying total order of the set $[n]$ and cannot be extended to a permutation of an arbitrary (non-ordered) finite set.
a) Define an « order-free» notion of even permutation which is applicable to any finite $U$ (hint : use of the cyclic decomposition of arbitrary permutations).
b) Show that the corresponding species $S_{\text {alt }}$ of even permutations satisfies the combinatorial equation $S_{\text {alt }}=E\left(C_{1}+C_{3}+C_{5}+\cdots\right) E_{\text {even }}\left(C_{2}+C_{4}+C_{6}+\cdots\right)$ where, $E_{\text {even }}$ denotes the species of sets having an even number of elements.
c) It is well-known that the species End of endofunctions satisfies End $=S(A)$. By analogy, define the species End ${ }_{\text {alt }}$ of even endofunctions by the formula $\operatorname{End}_{\text {alt }}=S_{\text {alt }}(A)$ Find a closed formula for the number of even endofunctions on an $n$-element set.
4) (Counting enriched trees and rooted trees) The sequence of binomial type associated to a species $F$ is, by definition, the sequence of functions $\left(f_{n}(\lambda)\right)_{n \geq 0}$ such that

$$
(F(x))^{\lambda}=\sum_{n \geq 0} f_{n}(\lambda) \frac{x^{n}}{n!}
$$

We use the notation $F \diamond\left(f_{n}(\lambda)\right)_{n \geq 0}$ to express this fact.
a) Show that if $F \diamond\left(f_{n}(\lambda)\right)_{n \geq 0}$, then the following family of «binomial identities» hold

$$
f_{n}(\lambda+\mu)=\sum_{k=0}^{n}\binom{n}{k} f_{k}(\lambda) f_{n-k}(\mu) .
$$

b) It has been combinatorially proven that if $R \diamond\left(r_{n}(\lambda)\right)_{n \geq 0}$ and $R^{\prime} \diamond\left(\rho_{n}(\lambda)\right)_{n \geq 0}$ then $r_{n-1}(n)=$ the number of $R$-enriched rooted trees on $n$ elements, for $n \geq 1 ;$ $\rho_{n-2}(n)=$ the number of $R$-enriched trees on $n$ elements, for $n \geq 2 ;(=R(0)$, for $n=1)$.

Apply these formulas in the following contexts :
(i) $R=E$;
(ii) $R=1+C$;
(iii) $R=L$;
(iv) $R=1+X$;
(v) $R=1+X+E_{k}$.
c) (Generalized Abel identities) The classical identities of Abel are stated as

$$
\begin{gathered}
(u+v+n)^{n}=\sum_{i+j=n}\binom{n}{i} u \cdot(u+i)^{i-1}(v+j)^{j}, \\
(u+v)(u+v+n)^{n-1}=\sum_{i+j=n}\binom{n}{i} u \cdot(u+i)^{i-1} v \cdot(v+j)^{j-1} .
\end{gathered}
$$

Their $R$-enriched versions are as follows : if $R \diamond\left(r_{n}(\lambda)\right)_{n \geq 0}$, then

$$
\begin{gathered}
r_{n}(u+v+n)=\sum_{i+j=n}\binom{n}{i} u \cdot \frac{r_{i}(u+i)}{u+i} r_{j}(v+j), \\
(u+v) \frac{r_{n}(u+v+n)}{u+v+n}=\sum_{i+j=n}\binom{n}{i} u \cdot \frac{r_{i}(u+i)}{u+i} v \cdot \frac{r_{j}(v+j)}{v+j} .
\end{gathered}
$$

The classical identities correspond to the case $R=E$. Prove these identities by considering the combinatorial identities $\quad A_{R}^{[u+\nu]}=A_{R}^{u} \cdot A_{R}^{[\nu]} \quad$ and $\quad A_{R}^{u+\nu}=A_{R}^{u} \cdot A_{R}^{v} \quad$ where $A_{R}^{[k]}$ denotes the species of « hedges » formed from $k R$-enriched rooted trees where the last rooted tree is pointed. Hint : note that $v A_{R}^{[v]}(x)=\left(A^{v}\right)^{\bullet}(x)$.
5) Compute, from scratch, the cycle index series $Z_{E_{2}}\left(x_{1}, x_{2}, \ldots\right)$ and the asymmetry index series $\Gamma_{E_{2}}\left(x_{1}, x_{2}, \ldots\right)$ of the species $E_{2}$ of 2-element sets. Deduce that the combinatorial equation $X^{2}=2 E_{2}$ is false (although the species $X^{2}$ and $2 E_{2}$ are equipotent).
6) Prove that

$$
\begin{aligned}
& Z_{E}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\exp \left(x_{1}+x_{2} / 2+x_{3} / 3+\ldots\right), \quad \Gamma_{E}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\exp \left(x_{1}-x_{2} / 2+x_{3} / 3-\ldots\right), \\
& Z_{C}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=-\sum_{k \geq 1} \frac{\phi(k)}{k} \log \left(1-x_{k}\right), \quad \Gamma_{C}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=-\sum_{k \geq 1} \frac{\mu(k)}{k} \log \left(1-x_{k}\right) .
\end{aligned}
$$

7) Prove the following enriched version of the dissymmetry theorem for the species $a_{R}$ of $R$ enriched trees and the species $A_{R}$ of $R$-enriched rooted trees:

$$
X R\left(A_{R^{\prime}}\right)+E_{2}\left(A_{R^{\prime}}\right)=a_{R}+\left(A_{R^{\prime}}\right)^{2},
$$

and write the corresponding combinatorial equations in the cases
(i) $R=E$;
(ii) $R=1+C$;
(iii) $R=L$;
(iv) $R=1+X$;
(v) $R=1+X+E_{k}$.
8) Let $S$ be the species of permutations. Assuming that $\Gamma_{S}=\left(1-x_{2}\right) /\left(1-x_{1}\right)$, show that the number $\overline{a_{n}}$ of asymmetric $S$-enriched rooted trees satisfy the recurrence

$$
\overline{a_{0}}=0, \quad \overline{a_{1}}=1, \quad \overline{a_{n+1}}=\left(\overline{a_{1}} \overline{a_{n}}+\overline{a_{2}} \overline{a_{n-1}}+\cdots+\overline{a_{n}} \overline{a_{1}}\right)-\chi(n \text { even }) \overline{a_{n / 2}} .
$$

9) Let $G r$ denote the species of simple graphs. It can be shown that

$$
\mathrm{fix} G r[\sigma]=2^{1 / 2 \sum_{i, j \geq 1} \operatorname{gcd}(i, j) \sigma_{i} \sigma_{j}-1 / 2} \sum_{k \geq 1}(k \bmod 2) \sigma_{k} .
$$

Devise a recursive method to count unlabelled connected graphs on $n$ points, $n=0,1,2, \ldots$.
10) By making appropriate drawings, write the first terms, up to degree 4 , of the molecular decomposition of the species $G r_{w}$ of graphs weighted according to connected components, that is, $w(g)=t^{\text {number of connected components of } g}$, for any graph $g$.
11) Let $\delta$ be the species of triangular cacti (that is, connected graphs whose blocks are triangles) and $\Delta=\delta^{\bullet}$. Prove that

$$
\Delta=X E\left(E_{2}(\Delta)\right) \quad \text { and } \quad \delta+\Delta E_{2}(\Delta)=\Delta+E_{3}(\Delta)
$$

12) Show that if $f:[0, \infty) \rightarrow \mathrm{R}$ is measurable and bounded then, for $\varepsilon>0$,

$$
|f(r)|=\mathrm{O}\left(1 / r^{d+2 \varepsilon}\right) \Rightarrow \int_{0}^{\infty} r^{d+\varepsilon-1}|f(r)| d r<\infty
$$

13) Compute the coefficients $\gamma_{2}(T)$ and $\gamma_{3}(T)$ of the virial expansion

$$
\frac{P}{k T}=\frac{\bar{N}}{V}+\gamma_{2}(T)\left(\frac{\bar{N}}{V}\right)^{2}+\gamma_{3}(T)\left(\frac{\bar{N}}{V}\right)^{3}+\cdots
$$

in the case of a gaussian interaction.
14) It can be shown that the second Mayer's weight $w\left(K_{N}\right)$ of the complete graph $K_{N}$ for the hard-core continuum gas in one dimension is given by

$$
w\left(K_{N}\right)=(-1)^{n(n-1) / 2} N .
$$

Verify this, for $N=2$ and $N=3$, by evaluating the corresponding integrals $(f(r)=\chi(r<1)$ ).

