CRM CAMP in Nonlinear Analysis

Computer-Assisted Mathematical Proofs in Nonlinear Analysis

May 18, 2021 from 10:00 to 11:00 (Montreal/EST time) Zoom meeting

Bifurcation Points in the Ohta-Kawasaki Model

Seminar presented by Thomas Wanner (George Mason University, USA)

Diblock copolymers are a class of materials formed by the reaction of two linear polymers. The different structures taken on by these polymers grant them special properties, which can prove useful in applications such as the development of new adhesives and asphalt additives. We consider a model for the formation of diblock copolymers first proposed by Ohta and Kawasaki, which is a Cahn-Hilliard-like equation together with a nonlocal term. Unlike the Cahn-Hilliard model, even on one-dimensional spatial domains the steady state bifurcation diagram of the Ohta-Kawasaki model is still not fully understood. We therefore present computer-assisted proof techniques which can be used to validate and continue its bifurcation points. This includes not only fold points, but also pitchfork bifurcations which are the result of a cyclic group action beyond forcing through Z_2 symmetries.