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π(x): The number of primes ≤ x.

The prime number theorem:

π(x) ∼
x

logx
, as x → ∞.

The average distance between two consecutive
primes in [0, x]:

Average gap ∼
length of [0, x]

x
log x

∼ logx.

Our goal in these talks: Study the distribution
of primes around this average, especially small
gaps.



What is the smallest gap that occurs infinitely

often?

The Twin Prime Conjecture:

pn+1 − pn = 2 infinitely often,

We now can prove this (small) step towards

TPC:

Theorem 1 (Goldston, Pintz, Yildirim 2005)

We have

lim inf
n→∞

(
pn+1 − pn

log pn

)
= 0.



How do we answer questions about primes, and
gaps between primes?

We often use Multiplicative Number Theory.
(Rule 1 of MNT: s = σ + it)

The Riemann zeta-function ζ(s) is defined, for
σ > 1, by the Dirichlet series or Euler product

ζ(s) =
∞∑

n=1

1

ns
=
∏

p

(
1 +

1

ps
+

1

p2s
+

1

p3s
+ · · ·

)

=
∏

p

(
1 −

1

ps

)−1

.

To extract the primes, use the power series for
− log(1 − z), to obtain, for σ > 1,

ζ ′

ζ
(s) :=

ζ ′(s)

ζ(s)
=

d

ds
log ζ(s)

=
d

ds

( ∞∑

m=1

∑

p

1

mpms

)

= −
∞∑

n=1

Λ(n)

ns
,



where the von Mangoldt function Λ(n) is

Λ(n) =

{
log p, if n = pm, p prime, m ≥ 1,
0, otherwise.

The Prime Number Theorem (PNT):

ψ(x) :=
∑

n≤x

Λ(n), ψ(x) ∼ x, as x → ∞

The PNT with the error term obtained by de la
Vallée Poussin(1899): for c a small constant,

ψ(x) = x+O

(
xe−c

√
logx

)
,

which on returning to π(x) gives (c may differ)

π(x) = li(x) +O
(
xe−c

√
logx

)
,

where

li(x) =
∫ x

2

du

logu
.

Often we use: for any constant A > 0

e−c
√

logx �
1

(logx)A
.



Proof of PNT with error:

1. Truncate the Dirichlet series for ζ′
ζ (s) using

1

2πi

2+i∞∫

2−i∞

xs

s
ds =





0, if 0 < x < 1,
1
2, if x = 1,
1, if x > 1.

Thus

1

2πi

2+i∞∫

2−i∞

(
−
ζ ′

ζ
(s)

)
xs

s
ds =

1

2πi

2+i∞∫

2−i∞




∞∑

n=1

Λ(n)

ns


 x

s

s
ds

=
∞∑

n=1

Λ(n)




1

2πi

2+i∞∫

2−i∞

(x/n)s

s
ds




=
∑′

n≤x

Λ(n) = ψ0(x)

where ψ0(x) differs from ψ(x) only by the term
n = x being weighted by 1/2.

Hence

ψ0(x) =
1

2πi

2+i∞∫

2−i∞

(
−
ζ ′

ζ
(s)

)
xs

s
ds.



2. Use the analytic facts that ζ(s) has:

i) a simple pole with residue 1 at s = 1, and is

analytic elsewhere

ii) no zeros to right of L given by

σ = 1 −
c

log(|t| + 2)

iii) ζ′
ζ (s) � (log |t|)2 in this region if |t| ≥ 2.

3. Move the contour to the left to L.

This procedure is the same that we apply in

our recent work on gaps.



Riemann von Mangoldt Explicit Formula

As well as at s = 1, ζ′
ζ (s) has poles at the zeros

of ζ(s).

These occur at:

i) s = −2n, n = 1,2,3, . . ., (the trivial zeros)

ii) ρ = β+ iγ, 0 < β < 1, (the complex zeros)

(ρ, ρ̄, 1 − ρ, and 1 − ρ̄ are all zeros)

The Riemann Hypothesis (RH): β = 1
2

(The $1,000,000 Question)



We count complex zeros up to height T with

N(T ) =
∑′

0<γ≤T

1,

where zeros with γ = T have weight 1/2.

Riemann von Mangoldt formula for N(T ):

N(T ) =
T

2π
log

T

2π
−
T

2π
+

7

8
+ R(T ) + S(T ),

where R(T ) � 1/T , and S(T ) � logT .

Thus

N(T + 1) −N(T ) =
∑

T<γ≤T+1

1 � logT.



In the formula for ψ0(x), move the contour

to the left all the way to −∞, and obtain for

x > 1,

ψ0(x) = x−
∑

ρ

xρ

ρ
− log2π −

1

2
log

(
1 −

1

x2

)
,

(The terms are added with ρ and ρ̄ grouped

together.) For applications we often use:

ψ(x) = x−
∑

|γ|≤T

xρ

ρ
+O

(
x

T
(logxT )2

)
+O(logx).

Assuming RH:

xρ

ρ
�

x
1
2

|γ|
,

Thus in above take T = x to obtain (von Koch

1901)

ψ(x) = x+O

(
x

1
2(logx)2

)
.



This also implies RH, and therefore is equiva-

lent to the RH.

Actually even π(x) = li(x) + O

(
x

1
2+ε

)
for any

ε > 0 is equivalent to RH.

Now consider gaps between primes on RH. Re-

moving prime powers,

ψ(x) =
∑

p≤x

log p+O
(
x

1
2

)
.

Differencing:

∑

x<p≤x+h

logp = h+O

(
x

1
2(logx)2

)
.

Taking h = Cx
1
2(logx)2, with large constant

C, the sum is positive:

(x, x+ h] contains � h
log x primes and

pn+1 − pn < h� pn
1
2(log pn)2.



Selberg improving Cramér a little, proved on

RH

1

X

∫ 2X

X
(ψ(x+ h) − ψ(x) − h)2 dx � h(logX)2

To go further, we need: Pair Correlation

Conjecture For any fixed β > 0,

1

N(T )

∑

0<γ,γ′≤T

0<γ′−γ≤ 2πβ
logT

1 ∼
∫ β

0
1 −

(
sinπu

πu

)2
du.

Actually we need a stronger version of this (or

Montgomery’s F(α) conjecture) By work of

Gallagher and Mueller(1976), Heath-Brown(1982),

Goldston-Montgomery(1986):

On RH, (Strong)PC is equivalent to

1

X

∫ 2X

X
(ψ(x+ h) − ψ(x) − h)2 dx ∼ h log

X

h

for 1 ≤ h ≤ X1−ε



In particular, with h = λ logx, we have

1

X

∫ 2X

X
(π(x+ λ logx) − π(x))2 dx ∼ (λ+ λ2)X

This is the second moment for a Poisson dis-

tribution!

Theorem 2 Assuming RH and Strong PC We

have

lim inf
n→∞

(
pn+1 − pn

log pn

)
= 0.

Proof If not, for small enough λ, (x, x+λ logx]

contains only zero or one prime. Thus

(π(x+λ logx)−π(x))2 = (π(x+λ logx)−π(x))1

Thus variance = expected value ∼ λ, contra-

dicting above.



Next step: Prove RH and PC.

Basic Problem: Deeper properties of ζ(s) are
proved using number theory, often prime num-
ber theory.

Alternative: Additive Number Theory

Theorem 3 (Bombieri-Davenport 1965) We have

lim inf
n→∞

(
pn+1 − pn

log pn

)
≤

1

2
.

In fact, their method proves

1

X

∫ 2X

X
(π(x+λ logx)−π(x))2 dx > ((

1

2
−ε)λ+λ2)X

This uses the circle method.

Question Where does the circle method gather
its information about primes?



The Circle Method - a Wooley Intro

The twin prime conjecture: Solve

x1 − x2 = 2, x1, x2 ∈ P = {primes}

Circle Method: For k an integer,

e(u) := e2πiu,
∫ 1

0
e(kα) dα =

{
1, if k = 0,
0, k 6= 0.

Thus the number of twin primes in [1,N ] is
∫ 1

0

∑

x1,x2∈P∩[1,N]

e((x1 − x2 − 2)α)) dα

=
∫ 1

0

∣∣∣∣∣
∑

1≤x≤N
x∈P

e(xα)

∣∣∣∣∣

2

e(−2α) dα

Now analyze the generating function, major,

minor arcs, . . .



Let

S(α) =
∑

n≤N

Λ(n) e(nα), e(u) = e2πiu.

Now

|S(α)| ≤ S(0) =
∑

n≤N

Λ(n)

= ψ(N) ∼ N.

Next, if α is small, by partial summation,

S(α) =
∫ N

1
e(αu)dψ(u)

=
∫ N

1
e(αu)du+

∫ N

1
e(αu)dR(u)

=
∑

n≤N

e(αn) + error := I(α) + error,

where R(u) = ψ(u)−u. Thus S(α) has a spike

shaped like I(α) for small α.



Hardy-Littlewood: At fraction a
q , (a, q) = 1,

S(
a

q
+ β) =

∑

n≤N

Λ(n)e(n
a

q
)e(nβ)

=
∑

1≤m≤q

e(
ma

q
)

∑

1≤n≤N
n≡m(mod q)

Λ(n)e(nβ).

If β = 0, inner sum is

ψ(N ; q,m) =
∑

1≤n≤N
n≡m(mod q)

Λ(n).

de la Vallée Poisson also proved in 1899, if

(m, q) = 1, (fixed q)

ψ(N ; q,m) ∼
N

φ(q)
.



Hence by partial summation we find

S(
a

q
+ β) =


 ∑

1≤m≤q
(m,q)=1

e(
ma

q
)


 1

φ(q)
I(β) + error

=
cq(m)

φ(q)
I(β) + error

=
µ(q)

φ(q)
I(β) + error,

where cq(m) is the Ramanujan sum, and

cq(m) = µ(q) if (m, q) = 1.

Two questions:

1. Can we prove this approximation is good?

2. How can we stitch these local approxima-

tions together?

Answers: 1. Not really. 2. I don’t know.



Let

R(β; q, a) = S(
a

q
+ β) −

µ(q)

φ(q)
I(β).

On GRH:

R(β; q, a) � q1/2
(
N1/2 + β1/2N

)
log2(qN)

Unconditionally Vinogradov, Vaughan:

For |β| ≤ 1
q2

,

R(β; q, a) � q1/2
(
N1/2 +

N

q

)
log4(qN)

+N4/5 log4(qN)

For binary problems these are killers, but for

ternary problems they are useful.

However, Hardy-Littlewood still had a trick up

their sleeves (next lecture).



How do we stitch these local approxima-

tions together?

Hardy-Littlewood: Introduce the Farey decom-
position:

1. Pick a parameter Q and consider the Farey
fractions of order Q:

{
a

q
: 1 ≤ q ≤ Q, 0 ≤ a ≤ q, where (a, q) = 1

}
.

Define Farey arcs around each fractions (ex-
cept 0/1 which we exclude) For consecutive
fractions:

a′

q′
<
a

q
<
a′′

q′′

the Farey arc around a/q is

MQ(q, a) =

(
a+ a′

q + q′
,
a+ a′′

q + q′′

]
, for

a

q
6=

1

1
, a 6= 0,



and

MQ(1,1) =

(
1 −

1

Q+ 1
,1 +

1

Q+ 1

]
.

These intervals are disjoint and their union

covers the interval ( 1
Q+1,1 + 1

Q+1]. For frac-

tions with denominator q these arcs vary in

length a bit: “Littlewood’s fuzzy ends”

(This is the origin of Kloosterman sums)

Denote a Farey arc shifted to the origin by

θQ(q, a). Then
(

−1

2qQ
,

1

2qQ

)
⊆ θQ(q, a) ⊆

(
−1

qQ
,

1

qQ

)
.

Thus Hardy-Littlewood use the (major arc) ap-

proximation for S(α)

JQ(α) =
∑

q≤Q

∑

1≤a≤q
(a,q)=1

µ(q)

φ(q)
I(α−

a

q
)χQ(α,

a

q
)



where χQ(α, a
q) is the characteristic function of

the Farey arc, or sometimes some subinterval
of this.

Returning to the twin prime problem
(now p− p′ = k)

Z(N ; k) : =
∑

n
1≤n,n+k≤N

Λ(n)Λ(n+ k)

=
∫ 1

0
|S(α)|2e(−kα) dα.

Usual procedure: breaking this into Farey in-
tervals and approximate S.

This is equivalent to replacing S by JQ. Be-
cause each spike has its own support, the spikes
are orthogonal to each other, and trivially

|JQ(α)|2 =
∑

q≤q

∑

1≤a≤q
(a,q)=1

µ(q)2

φ(q)2
|I(α −

a

q
)|2χQ(α,

a

q
)



Thus our approximation of Z(N, k) is
∫ 1

0
|JQ(α)|2e(−kα) dα

=
∑

q≤Q

∑

1≤a≤q
(a,q)=1

µ(q)2

φ(q)2
e(−

ka

q
)
∫

θQ(a
q)

|I(β)|2e(−kβ) dβ.

Using |I(β)| � min(N, 1
|β|),

∫

θQ(a
q)

|I(β)|2e(−kβ) dβ =
∫ 1

0
· · · +O(qQ)

=
∑

n
1≤n,n+k≤N

1 +O(qQ)

= (N − |k|) +O(qQ).

Substituting we get

(S(k) + o(1))(N − |k|) +O(Q2).

where for k odd S(k) = 0, and for even k 6= 0

S(k) = 2C
∏

p|k
p>2

(
p− 1

p− 2

)
, C =

∏

p>2

(
1−

1

(p− 2)2

)
.



This provides the conjectured formula for Z(N, k).

Evidence for the Twin Prime Conjecture?

We can check one case: k = 0.

By Parseval and PNT
∫ 1

0
|S(α)|2 dα =

∑

n≤N

Λ(n)2 ∼ N logN.

Above gives
∫ 1

0
|JQ(α)|2 dα = N(1 + o(1)) logQ+O(Q2).

Thus for Q ≤ N1/2 we get wrong answer.

Actually for larger Q we still get the wrong

answer:

Using trivial estimate

∫

θQ(a
q)

|I(β)|2 �
N2

qQ



we get a contribution above of only O(N) from
terms q > N/Q. Thus for 1 ≤ Q ≤ N

∫ 1

0
|JQ(α)|2 dα ∼ N log

(
min(Q,

N

Q
)
)
.

Thus the best we can do is when Q = N1/2

and this is only half of what we should get.

Solution of this problem (1990): DROP χQ(α, a
q).

VQ(α) =
∑

q≤Q

∑

1≤a≤q
(a,q)=1

µ(q)

φ(q)
I(α −

a

q
)

=
∑

n≤N


∑

q≤Q

µ(q)

φ(q)
cq(−n)


 e(nα)

=
∑

n≤N

λQ(n)e(nα)

This is supposed to be an approximation of

S(α) =
∑

n≤N

Λ(n)e(nα).



This suggests that the content of the circle
method is to approximate Λ(n) by λQ(n). Now

λQ(n) =
∑

q≤Q

µ(q)2

φ(q)

∑

d|q
d|n

dµ(d).

Changing the order of summation:

λQ(n) =
∑

d|n
d≤Q

dµ(d)

φ(d)

∑

q≤Q/d
(q,d)=1

µ(q)2

φ(q)

Thus λQ(n) is a divisor sum of n with divisors
less than Q. Now

∑

q≤Q
(q,d)=1

µ(q)2

φ(q)

=
φ(d)

d




logQ+A0 + A1

∑

p|d

log p

p− 1
+O(

dε

Q1/4
)




.

Thus a simple approximation of λQ(n) is just

ΛQ(n) =
∑

d|n
d≤Q

µ(d) log(Q/d),



but from elementary number theory

Λ(n) =
∑

d|n
µ(d) log(1/d).

Thus the content of the circle method for primes

is reduced to a short smoothed truncation of

this elementary formula.


