Lecture 1: Small Prime Gaps: From the Riemann Zeta-Function and Pair Correlation to the Circle Method

Daniel Goldston
$\pi(x)$: The number of primes $\leq x$.
The prime number theorem:

$$
\pi(x) \sim \frac{x}{\log x}, \quad \text { as } x \rightarrow \infty .
$$

The average distance between two consecutive primes in $[0, x]$:

$$
\text { Average gap } \sim \frac{\text { length of }[0, x]}{\frac{x}{\log x}} \sim \log x .
$$

Our goal in these talks: Study the distribution of primes around this average, especially small gaps.

What is the smallest gap that occurs infinitely often?

The Twin Prime Conjecture:

$$
p_{n+1}-p_{n}=2 \text { infinitely often }
$$

We now can prove this (small) step towards TPC:

Theorem 1 (Goldston, Pintz, Yildirim 2005) We have

$$
\liminf _{n \rightarrow \infty}\left(\frac{p_{n+1}-p_{n}}{\log p_{n}}\right)=0
$$

How do we answer questions about primes, and gaps between primes?

We often use Multiplicative Number Theory. (Rule 1 of MNT: $s=\sigma+i t$)

The Riemann zeta-function $\zeta(s)$ is defined, for $\sigma>1$, by the Dirichlet series or Euler product

$$
\begin{aligned}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} & =\prod_{p}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\frac{1}{p^{3 s}}+\cdots\right) \\
& =\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
\end{aligned}
$$

To extract the primes, use the power series for $-\log (1-z)$, to obtain, for $\sigma>1$,

$$
\begin{aligned}
\frac{\zeta^{\prime}}{\zeta}(s):=\frac{\zeta^{\prime}(s)}{\zeta(s)} & =\frac{d}{d s} \log \zeta(s) \\
& =\frac{d}{d s}\left(\sum_{m=1}^{\infty} \sum_{p} \frac{1}{m p^{m s}}\right) \\
& =-\sum_{n=1}^{\infty} \frac{\wedge(n)}{n^{s}},
\end{aligned}
$$

where the von Mangoldt function $\Lambda(n)$ is

$$
\Lambda(n)= \begin{cases}\log p, & \text { if } n=p^{m}, p \text { prime, } m \geq 1, \\ 0, & \text { otherwise. }\end{cases}
$$

The Prime Number Theorem (PNT):

$$
\psi(x):=\sum_{n \leq x} \wedge(n), \quad \psi(x) \sim x, \quad \text { as } x \rightarrow \infty
$$

The PNT with the error term obtained by de la Vallée Poussin(1899): for c a small constant,

$$
\psi(x)=x+O\left(x e^{-c \sqrt{\log x}}\right)
$$

which on returning to $\pi(x)$ gives (c may differ)

$$
\pi(x)=\mathrm{li}(x)+O\left(x e^{-c \sqrt{\log x}}\right)
$$

where

$$
\operatorname{li}(x)=\int_{2}^{x} \frac{d u}{\log u}
$$

Often we use: for any constant $A>0$

$$
e^{-c \sqrt{\log x}} \ll \frac{1}{(\log x)^{A}} .
$$

Proof of PNT with error:

1. Truncate the Dirichlet series for $\frac{\zeta^{\prime}}{\zeta}(s)$ using

$$
\frac{1}{2 \pi i} \int_{-i \infty}^{2+i \infty} \frac{x^{s}}{s} d s= \begin{cases}0, & \text { if } 0<x<1, \\ \frac{1}{2}, & \text { if } x=1 \\ 1, & \text { if } x>1\end{cases}
$$

Thus

$$
\begin{gathered}
\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty}\left(-\frac{\zeta^{\prime}}{\zeta}(s)\right) \frac{x^{s}}{s} d s=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty}\left(\sum_{n=1}^{\infty} \frac{\wedge(n)}{n^{s}}\right) \frac{x^{s}}{s} d s \\
=\sum_{n=1}^{\infty} \wedge(n)\left(\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{(x / n)^{s}}{s} d s\right) \\
=\sum_{n \leq x}^{\prime} \wedge(n)=\psi_{0}(x)
\end{gathered}
$$

where $\psi_{0}(x)$ differs from $\psi(x)$ only by the term $n=x$ being weighted by $1 / 2$.

Hence

$$
\psi_{0}(x)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty}\left(-\frac{\zeta^{\prime}}{\zeta}(s)\right) \frac{x^{s}}{s} d s
$$

2. Use the analytic facts that $\zeta(s)$ has:
i) a simple pole with residue 1 at $s=1$, and is analytic elsewhere
ii) no zeros to right of \mathcal{L} given by

$$
\sigma=1-\frac{c}{\log (|t|+2)}
$$

iii) $\frac{\zeta^{\prime}}{\zeta}(s) \ll(\log |t|)^{2}$ in this region if $|t| \geq 2$.
3. Move the contour to the left to \mathcal{L}.

This procedure is the same that we apply in our recent work on gaps.

Riemann von Mangoldt Explicit Formula

As well as at $s=1, \frac{\zeta^{\prime}}{\zeta}(s)$ has poles at the zeros of $\zeta(s)$.

These occur at:
i) $s=-2 n, n=1,2,3, \ldots$, (the trivial zeros)
ii) $\rho=\beta+i \gamma, \quad 0<\beta<1$, (the complex zeros)
($\rho, \bar{\rho}, 1-\rho$, and $1-\bar{\rho}$ are all zeros)

The Riemann Hypothesis (RH): $\beta=\frac{1}{2}$
(The \$1,000,000 Question)

We count complex zeros up to height T with

$$
N(T)=\sum_{0<\gamma \leq T}^{\prime} 1,
$$

where zeros with $\gamma=T$ have weight $1 / 2$.

Riemann von Mangoldt formula for $N(T)$:

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{7}{8}+R(T)+S(T),
$$

where $R(T) \ll 1 / T$, and $S(T) \ll \log T$.

Thus

$$
N(T+1)-N(T)=\sum_{T<\gamma \leq T+1} 1 \ll \log T .
$$

In the formula for $\psi_{0}(x)$, move the contour to the left all the way to $-\infty$, and obtain for $x>1$,

$$
\psi_{0}(x)=x-\sum_{\rho} \frac{x^{\rho}}{\rho}-\log 2 \pi-\frac{1}{2} \log \left(1-\frac{1}{x^{2}}\right),
$$

(The terms are added with ρ and $\bar{\rho}$ grouped together.) For applications we often use:
$\psi(x)=x-\sum_{|\gamma| \leq T} \frac{x^{\rho}}{\rho}+O\left(\frac{x}{T}(\log x T)^{2}\right)+O(\log x)$.

Assuming RH:

$$
\frac{x^{\rho}}{\rho} \ll \frac{x^{\frac{1}{2}}}{|\gamma|},
$$

Thus in above take $T=x$ to obtain (von Koch 1901)

$$
\psi(x)=x+O\left(x^{\frac{1}{2}}(\log x)^{2}\right) .
$$

This also implies RH, and therefore is equivalent to the RH.

Actually even $\pi(x)=\mathrm{li}(x)+O\left(x^{\frac{1}{2}+\epsilon}\right)$ for any $\epsilon>0$ is equivalent to RH .

Now consider gaps between primes on RH. Removing prime powers,

$$
\psi(x)=\sum_{p \leq x} \log p+O\left(x^{\frac{1}{2}}\right) .
$$

Differencing:

$$
\sum_{x<p \leq x+h} \log p=h+O\left(x^{\frac{1}{2}}(\log x)^{2}\right) .
$$

Taking $h=C x^{\frac{1}{2}}(\log x)^{2}$, with large constant C, the sum is positive:
($x, x+h$] contains $\gg \frac{h}{\log x}$ primes and

$$
p_{n+1}-p_{n}<h \ll p_{n} \frac{1}{2}\left(\log p_{n}\right)^{2} .
$$

Selberg improving Cramér a little, proved on RH

$$
\frac{1}{X} \int_{X}^{2 X}(\psi(x+h)-\psi(x)-h)^{2} d x \ll h(\log X)^{2}
$$

To go further, we need: Pair Correlation Conjecture For any fixed $\beta>0$,

$$
\frac{1}{N(T)} \sum_{\substack{0<\gamma, \gamma^{\prime} \leq T \\ 0<\gamma^{\prime}-\gamma \leq \frac{2 \pi \beta}{\log T}}} 1 \sim \int_{0}^{\beta} 1-\left(\frac{\sin \pi u}{\pi u}\right)^{2} d u
$$

Actually we need a stronger version of this (or Montgomery's $F(\alpha)$ conjecture) By work of Gallagher and Mueller(1976), Heath-Brown(1982), Goldston-Montgomery(1986):

On RH, (Strong)PC is equivalent to

$$
\frac{1}{X} \int_{X}^{2 X}(\psi(x+h)-\psi(x)-h)^{2} d x \sim h \log \frac{X}{h}
$$

for $1 \leq h \leq X^{1-\epsilon}$

In particular, with $h=\lambda \log x$, we have
$\frac{1}{X} \int_{X}^{2 X}(\pi(x+\lambda \log x)-\pi(x))^{2} d x \sim\left(\lambda+\lambda^{2}\right) X$
This is the second moment for a Poisson distribution!

Theorem 2 Assuming RH and Strong PC We

 have$$
\liminf _{n \rightarrow \infty}\left(\frac{p_{n+1}-p_{n}}{\log p_{n}}\right)=0
$$

Proof If not, for small enough $\lambda,(x, x+\lambda \log x]$ contains only zero or one prime. Thus
$(\pi(x+\lambda \log x)-\pi(x))^{2}=(\pi(x+\lambda \log x)-\pi(x))^{1}$
Thus variance $=$ expected value $\sim \lambda$, contradicting above.

Next step: Prove RH and PC.

Basic Problem: Deeper properties of $\zeta(s)$ are proved using number theory, often prime number theory.

Alternative: Additive Number Theory
Theorem 3 (Bombieri-Davenport 1965) We have

$$
\liminf _{n \rightarrow \infty}\left(\frac{p_{n+1}-p_{n}}{\log p_{n}}\right) \leq \frac{1}{2} .
$$

In fact, their method proves

$$
\frac{1}{X} \int_{X}^{2 X}(\pi(x+\lambda \log x)-\pi(x))^{2} d x>\left(\left(\frac{1}{2}-\epsilon\right) \lambda+\lambda^{2}\right) X
$$

This uses the circle method.

Question Where does the circle method gather its information about primes?

The Circle Method - a Wooley Intro

The twin prime conjecture: Solve

$$
x_{1}-x_{2}=2, \quad x_{1}, x_{2} \in P=\{\text { primes }\}
$$

Circle Method: For k an integer,

$$
e(u):=e^{2 \pi i u}, \quad \int_{0}^{1} e(k \alpha) d \alpha= \begin{cases}1, & \text { if } k=0 \\ 0, & k \neq 0\end{cases}
$$

Thus the number of twin primes in $[1, N]$ is $\left.\int_{0}^{1} \sum_{x_{1}, x_{2} \in P \cap[1, N]} e\left(\left(x_{1}-x_{2}-2\right) \alpha\right)\right) d \alpha$

$$
=\int_{0}^{1}\left|\sum_{\substack{1 \leq x \leq N \\ x \in P}} e(x \alpha)\right|^{2} e(-2 \alpha) d \alpha
$$

Now analyze the generating function, major, minor arcs, . . .

Let

$$
S(\alpha)=\sum_{n \leq N} \wedge(n) e(n \alpha), \quad e(u)=e^{2 \pi i u}
$$

Now

$$
\begin{aligned}
|S(\alpha)| \leq S(0) & =\sum_{n \leq N} \wedge(n) \\
& =\psi(N) \sim N
\end{aligned}
$$

Next, if α is small, by partial summation,

$$
\begin{aligned}
S(\alpha) & =\int_{1}^{N} e(\alpha u) d \psi(u) \\
& =\int_{1}^{N} e(\alpha u) d u+\int_{1}^{N} e(\alpha u) d R(u) \\
& =\sum_{n \leq N} e(\alpha n)+\text { error }:=I(\alpha)+\text { error }
\end{aligned}
$$

where $R(u)=\psi(u)-u$. Thus $S(\alpha)$ has a spike shaped like $I(\alpha)$ for small α.

Hardy-Littlewood: At fraction $\frac{a}{q},(a, q)=1$,

$$
\begin{aligned}
S\left(\frac{a}{q}+\beta\right) & =\sum_{n \leq N} \wedge(n) e\left(n \frac{a}{q}\right) e(n \beta) \\
& =\sum_{1 \leq m \leq q} e\left(\frac{m a}{q}\right) \sum_{\substack{1 \leq n \leq N \\
n \equiv m(\bmod q)}} \wedge(n) e(n \beta) .
\end{aligned}
$$

If $\beta=0$, inner sum is

$$
\psi(N ; q, m)=\sum_{\substack{1 \leq n \leq N \\ n \equiv m(\bmod q)}} \wedge(n) .
$$

de la Vallée Poisson also proved in 1899, if $(m, q)=1$, (fixed $q)$

$$
\psi(N ; q, m) \sim \frac{N}{\phi(q)} .
$$

Hence by partial summation we find

$$
\begin{aligned}
S\left(\frac{a}{q}+\beta\right) & =\left(\sum_{\substack{1 \leq m \leq q \\
(m, q \leq 1}} e\left(\frac{m a}{q}\right)\right) \frac{1}{\phi(q)} I(\beta)+\text { error } \\
& =\frac{c_{q}(m)}{\phi(q)} I(\beta)+\text { error } \\
& =\frac{\mu(q)}{\phi(q)} I(\beta)+\text { error, }
\end{aligned}
$$

where $c_{q}(m)$ is the Ramanujan sum, and

$$
c_{q}(m)=\mu(q) \quad \text { if } \quad(m, q)=1
$$

Two questions:

1. Can we prove this approximation is good?
2. How can we stitch these local approximations together?

Answers: 1. Not really. 2. I don't know.

Let

$$
R(\beta ; q, a)=S\left(\frac{a}{q}+\beta\right)-\frac{\mu(q)}{\phi(q)} I(\beta)
$$

On GRH:

$$
R(\beta ; q, a) \ll q^{1 / 2}\left(N^{1 / 2}+\beta^{1 / 2} N\right) \log ^{2}(q N)
$$

Unconditionally Vinogradov, Vaughan:

For $|\beta| \leq \frac{1}{q^{2}}$,

$$
\begin{aligned}
R(\beta ; q, a) \ll q^{1 / 2} & \left(N^{1 / 2}+\frac{N}{q}\right) \log ^{4}(q N) \\
& +N^{4 / 5} \log ^{4}(q N)
\end{aligned}
$$

For binary problems these are killers, but for ternary problems they are useful.

However, Hardy-Littlewood still had a trick up their sleeves (next lecture).

How do we stitch these local approximations together?

Hardy-Littlewood: Introduce the Farey decomposition:

1. Pick a parameter Q and consider the Farey fractions of order Q :

$$
\left\{\frac{a}{q}: 1 \leq q \leq Q, \quad 0 \leq a \leq q, \text { where }(a, q)=1\right\} .
$$

Define Farey arcs around each fractions (except $0 / 1$ which we exclude) For consecutive fractions:

$$
\frac{a^{\prime}}{q^{\prime}}<\frac{a}{q}<\frac{a^{\prime \prime}}{q^{\prime \prime}}
$$

the Farey arc around a / q is
$\mathcal{M}_{Q}(q, a)=\left(\frac{a+a^{\prime}}{q+q^{\prime}}, \frac{a+a^{\prime \prime}}{q+q^{\prime \prime}}\right], \quad$ for $\frac{a}{q} \neq \frac{1}{1}, a \neq 0$,
and

$$
\mathcal{M}_{Q}(1,1)=\left(1-\frac{1}{Q+1}, 1+\frac{1}{Q+1}\right]
$$

These intervals are disjoint and their union covers the interval $\left(\frac{1}{Q+1}, 1+\frac{1}{Q+1}\right]$. For fractions with denominator q these arcs vary in length a bit: "Littlewood's fuzzy ends"
(This is the origin of Kloosterman sums)

Denote a Farey arc shifted to the origin by $\theta_{Q}(q, a)$. Then

$$
\left(\frac{-1}{2 q Q}, \frac{1}{2 q Q}\right) \subseteq \theta_{Q}(q, a) \subseteq\left(\frac{-1}{q Q}, \frac{1}{q Q}\right) .
$$

Thus Hardy-Littlewood use the (major arc) approximation for $S(\alpha)$

$$
J_{Q}(\alpha)=\sum_{q \leq Q} \sum_{\substack{1 \leq a \leq q \\(a, q)=1}} \frac{\mu(q)}{\phi(q)} I\left(\alpha-\frac{a}{q}\right) \chi_{Q}\left(\alpha, \frac{a}{q}\right)
$$

where $\chi_{Q}\left(\alpha, \frac{a}{q}\right)$ is the characteristic function of the Farey arc, or sometimes some subinterval of this.

Returning to the twin prime problem
(now $p-p^{\prime}=k$)

$$
\begin{aligned}
Z(N ; k): & =\sum_{\substack{n \\
1 \leq n, n+k \leq N}} \wedge(n) \wedge(n+k) \\
& =\int_{0}^{1}|S(\alpha)|^{2} e(-k \alpha) d \alpha .
\end{aligned}
$$

Usual procedure: breaking this into Farey intervals and approximate S.

This is equivalent to replacing S by J_{Q}. Because each spike has its own support, the spikes are orthogonal to each other, and trivially

$$
\left|J_{Q}(\alpha)\right|^{2}=\sum_{\substack{q \leq q}} \sum_{\substack{1 \leq a \leq q \\(a, q)=1}} \frac{\mu(q)^{2}}{\phi(q)^{2}}\left|I\left(\alpha-\frac{a}{q}\right)\right|^{2} \chi_{Q}\left(\alpha, \frac{a}{q}\right)
$$

Thus our approximation of $Z(N, k)$ is
$\int_{0}^{1}\left|J_{Q}(\alpha)\right|^{2} e(-k \alpha) d \alpha$
$=\sum_{q \leq Q} \sum_{\substack{1 \leq a \leq q \\(a, q)=1}} \frac{\mu(q)^{2}}{\phi(q)^{2}} e\left(-\frac{k a}{q}\right) \int_{\theta_{Q}\left(\frac{a}{q}\right)}|I(\beta)|^{2} e(-k \beta) d \beta$.
Using $|I(\beta)| \ll \min \left(N, \frac{1}{|\beta|}\right)$,

$$
\begin{aligned}
\int_{\theta_{Q}\left(\frac{a}{q}\right)}|I(\beta)|^{2} e(-k \beta) d \beta & =\int_{0}^{1} \cdots+O(q Q) \\
& =\sum_{n} 1+O(q Q) \\
& =(N-|k|)+O(q Q) .
\end{aligned}
$$

Substituting we get

$$
(\mathfrak{S}(k)+o(1))(N-|k|)+O\left(Q^{2}\right)
$$

where for k odd $\mathfrak{S}(k)=0$, and for even $k \neq 0$
$\mathfrak{S}(k)=2 C \prod_{\substack{p \mid k \\ p>2}}\left(\frac{p-1}{p-2}\right), C=\prod_{p>2}\left(1-\frac{1}{(p-2)^{2}}\right)$.

This provides the conjectured formula for $Z(N, k)$.

Evidence for the Twin Prime Conjecture?

We can check one case: $k=0$.
By Parseval and PNT

$$
\int_{0}^{1}|S(\alpha)|^{2} d \alpha=\sum_{n \leq N} \wedge(n)^{2} \sim N \log N
$$

Above gives

$$
\int_{0}^{1}\left|J_{Q}(\alpha)\right|^{2} d \alpha=N(1+o(1)) \log Q+O\left(Q^{2}\right)
$$

Thus for $Q \leq N^{1 / 2}$ we get wrong answer.

Actually for larger Q we still get the wrong answer:

Using trivial estimate

$$
\int_{\theta_{Q}\left(\frac{a}{q}\right)}|I(\beta)|^{2} \ll \frac{N^{2}}{q Q}
$$

we get a contribution above of only $O(N)$ from terms $q>N / Q$. Thus for $1 \leq Q \leq N$

$$
\int_{0}^{1}\left|J_{Q}(\alpha)\right|^{2} d \alpha \sim N \log \left(\min \left(Q, \frac{N}{Q}\right)\right) .
$$

Thus the best we can do is when $Q=N^{1 / 2}$ and this is only half of what we should get.

Solution of this problem (1990): DROP $\chi_{Q}\left(\alpha, \frac{a}{q}\right)$.

$$
\begin{aligned}
V_{Q}(\alpha) & =\sum_{q \leq Q} \sum_{\substack{1 \leq a \leq q \\
(a, q)=1}} \frac{\mu(q)}{\phi(q)} I\left(\alpha-\frac{a}{q}\right) \\
& =\sum_{n \leq N}\left(\sum_{q \leq Q} \frac{\mu(q)}{\phi(q)} c_{q}(-n)\right) e(n \alpha) \\
& =\sum_{n \leq N} \lambda_{Q}(n) e(n \alpha)
\end{aligned}
$$

This is supposed to be an approximation of

$$
S(\alpha)=\sum_{n \leq N} \wedge(n) e(n \alpha) .
$$

This suggests that the content of the circle method is to approximate $\Lambda(n)$ by $\lambda_{Q}(n)$. Now

$$
\lambda_{Q}(n)=\sum_{q \leq Q} \frac{\mu(q)^{2}}{\phi(q)} \sum_{d \mid q} d \mu(d)
$$

Changing the order of summation:

$$
\lambda_{Q}(n)=\sum_{\substack{d \mid n \\ d \leq Q}} \frac{d \mu(d)}{\phi(d)} \sum_{\substack{q \leq Q / d \\(q, d)=1}} \frac{\mu(q)^{2}}{\phi(q)}
$$

Thus $\lambda_{Q}(n)$ is a divisor sum of n with divisors less than Q. Now

$$
\begin{aligned}
& \sum_{\substack{q \leq Q \\
(q, d)=1}} \frac{\mu(q)^{2}}{\phi(q)} \\
& \quad=\frac{\phi(d)}{d}\left\{\log Q+A_{0}+A_{1} \sum_{p \mid d} \frac{\log p}{p-1}+O\left(\frac{d^{\epsilon}}{Q^{1 / 4}}\right)\right\} .
\end{aligned}
$$

Thus a simple approximation of $\lambda_{Q}(n)$ is just

$$
\wedge_{Q}(n)=\sum_{\substack{d \mid n \\ d \leq Q}} \mu(d) \log (Q / d)
$$

but from elementary number theory

$$
\wedge(n)=\sum_{d \mid n} \mu(d) \log (1 / d) .
$$

Thus the content of the circle method for primes is reduced to a short smoothed truncation of this elementary formula.

