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I. INTRODUCTION
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The zeta function of a Formal Language L is defined as [Berstel

and Reutenauer, 1990]

ζ(L) = exp

( ∞
∑

n=1

an

Tn

n

)

where an = |L ∩An| is the number of words of length n in L.
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The zeta function of a Formal Language L is defined as [Berstel

and Reutenauer, 1990]

ζ(L) = exp

( ∞
∑

n=1

an

Tn

n

)

where an = |L ∩An| is the number of words of length n in L.

Furthermore, a Language is cyclic if it is closed under conjugation

and powers (i.e. uv ∈ L if and only if vu in L and w in L implies

that wm ∈ L for all m.)
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The zeta function of a Formal Language L is defined as [Berstel

and Reutenauer, 1990]

ζ(L) = exp

( ∞
∑

n=1

an

Tn

n

)

where an = |L ∩An| is the number of words of length n in L.

Furthermore, a Language is cyclic if it is closed under conjugation

and powers (i.e. uv ∈ L if and only if vu in L and w in L implies

that wm ∈ L for all m.)

Theorem 1. If L is a cyclic language which is recognizable by a

finite automaton, then its zeta function is rational.
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The zeta function of a Formal Language L is defined as [Berstel

and Reutenauer, 1990]

ζ(L) = exp

( ∞
∑

n=1

an

Tn

n

)

where an = |L ∩An| is the number of words of length n in L.

Furthermore, a Language is cyclic if it is closed under conjugation

and powers (i.e. uv ∈ L if and only if vu in L and w in L implies

that wm ∈ L for all m.)

Theorem 1. If L is a cyclic language which is recognizable by a

finite automaton, then its zeta function is rational.

We compare with the theory of zeta functions for algebraic

varieties.
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We let K be Fq, a finite field containing q elements, where q is a

power of a prime.

We can also let K be a field extension of Fq, such as Fqk , or even

the algebraic closure Fq.
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We let K be Fq, a finite field containing q elements, where q is a

power of a prime.

We can also let K be a field extension of Fq, such as Fqk , or even

the algebraic closure Fq.

A model for a non-singular projective curve (with a rational point)

defined over K is the zero locus of an equation f(x, y) with

coefficients in K, plus a single point at infinity. We denote such a

curve as C.
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We let K be Fq, a finite field containing q elements, where q is a

power of a prime.

We can also let K be a field extension of Fq, such as Fqk , or even

the algebraic closure Fq.

A model for a non-singular projective curve (with a rational point)

defined over K is the zero locus of an equation f(x, y) with

coefficients in K, plus a single point at infinity. We denote such a

curve as C.

C(Fq), C(Fqk), or C(Fq) will denote the curve C over these fields,

respectively. (This means that solutions (x, y) to equation f have

coordinates in Fq, Fqk and Fq, respectively.)

C(Fq) ⊂ C(Fqk1 ) ⊂ C(Fqk2 ) ⊂ · · · ⊂ C(Fq)

for any sequence of natural numbers 1|k1|k2| . . . .
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Curve C over field K has defining equation f(x, y) = 0 with

coefficients in K.

Such a curve consists of a single point at infinity, P∞, and affine

points expressed as a pair of coordinates over K.

The Frobenius map π acts on curve C over finite field Fq via

π(a, b) = (aq, bq) and π(P∞) = P∞.

Fact 1. For point P ∈ C(Fq),

π(P ) ∈ C(Fq).

Fact 2. For point P ∈ C(Fqk),

πk(P ) = P.
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Let Nm be the number of points on curve C, over finite field Fqm .

Alternatively, Nm counts the number of points in C(Fq) which are

fixed by the mth power of the Frobenius map, πm.

Using this sequence, we define the zeta function of an algebraic

variety, which can be written several different ways, including as

an exponential generating function.

Z(C, T ) = exp

( ∞
∑

m=1

Nm

Tm

m

)

=
∏

p

1

1 − T deg p
where p is a prime ideal

ζ(s) =
∏

p prime integer

1

1 − p−s
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Theorem 2 (Rationality - Weil 1948).

Z(C, T ) =
(1 − α1T )(1 − α2T ) · · · (1 − α2g−1T )(1 − α2gT )

(1 − T )(1 − qT )

for complex numbers αi’s, where g is the genus of the curve C.

Furthermore, the numerator of Z(C, T ), which we will denote as

L(C, T ), has integer coefficients.

Theorem 3 (Functional Equation - Weil 1948).

Z(C, T ) = qg−1T 2g−2Z(C, 1/qT )
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Theorem 2 (Rationality - Weil 1948).

Z(C, T ) =
(1 − α1T )(1 − α2T ) · · · (1 − α2g−1T )(1 − α2gT )

(1 − T )(1 − qT )

for complex numbers αi’s, where g is the genus of the curve C.

Furthermore, the numerator of Z(C, T ), which we will denote as

L(C, T ), has integer coefficients.

Theorem 3 (Functional Equation - Weil 1948).

Z(C, T ) = qg−1T 2g−2Z(C, 1/qT )

In particular, the zeta function for a cyclic language and the zeta

function for an algebraic curve are both rational.
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Theorem 2 (Rationality - Weil 1948).

Z(C, T ) =
(1 − α1T )(1 − α2T ) · · · (1 − α2g−1T )(1 − α2gT )

(1 − T )(1 − qT )

for complex numbers αi’s, where g is the genus of the curve C.

Furthermore, the numerator of Z(C, T ), which we will denote as

L(C, T ), has integer coefficients.

Theorem 3 (Functional Equation - Weil 1948).

Z(C, T ) = qg−1T 2g−2Z(C, 1/qT )

In particular, the zeta function for a cyclic language and the zeta

function for an algebraic curve are both rational.

Question: Is there a cyclic language whose zeta function agrees

with the zeta function for an elliptic curve?
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II. ELLIPTIC CURVES
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Specializing to the case of an elliptic curve E, or a genus one curve,

a lot more is known and there is additional structure.

Fact 3. E can be represented as the zero locus in P
2 of the equation

y2 = x3 +Ax+B

for A,B ∈ Fq. (if p 6= 2, 3)

Fact 4. E has a group structure where two points on E can be

added to yield another point on the curve.

Fact 5. The Frobenius map is compatible with the group structure:

π(P ⊕Q) = π(P ) ⊕ π(Q).
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Draw Chord/Tangent Line and then reflect about horizontal axis

P

Q

R

P + Q = R
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If P1 = (x1, y1), P2 = (x2, y2), then

P1 ⊕ P2 = P3 = (x3, y3) where

1) If x1 6= x2 then

x3 = m2 − x1 − x2 and y3 = m(x1 − x3)− y1 with m =
y2 − y1
x2 − x1

.

2) If x1 = x2 but (y1 6= y2, or y1 = 0 = y2) then P3 = P∞.

3) If P1 = P2 and y1 6= 0, then

x3 = m2 − 2x1 and y3 = m(x1 − x3) − y1 with m =
3x2

1 + A

2y1
.

4) P∞ acts as the identity element in this addition.
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Rationality (Weil 1948, Hasse 1933)

Z(E, T ) =
(1 − α1T )(1 − α2T )

(1 − T )(1 − qT )
=

1 − (1 + q −N1)T + qT 2

(1 − T )(1 − qT )

for complex numbers α1 and α2. (In fact |α1| = |α2| =
√
q.)

Functional Equation (Weil 1948)

Z(E, 1/qT ) = Z(E, T ).

Nk = pk[1 + q − α1 − α2]

= 1 + qk − αk
1 − αk

2

and the Functional Equation implies

α1α2 = q.

Thus the entire sequence of Nk’s, for elliptic curve E, only depends

on q and N1.
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Theorem 4 (Garsia 2004). For an elliptic curve, we can write

Nk as a polynomial in terms of N1 and q such that

Nk =
k

∑

i=1

(−1)i−1Pk,i(q)N
i
1

where each Pk,i is a polynomial in q with positive integer

coefficients.
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Theorem 4 (Garsia 2004). For an elliptic curve, we can write

Nk as a polynomial in terms of N1 and q such that

Nk =

k
∑

i=1

(−1)i−1Pk,i(q)N
i
1

where each Pk,i is a polynomial in q with positive integer

coefficients.

N2 = (2 + 2q)N1 −N2
1

N3 = (3 + 3q + 3q2)N1 − (3 + 3q)N2
1 +N3

1

N4 = (4 + 4q + 4q2 + 4q3)N1 − (6 + 8q + 6q2)N2
1 + (4 + 4q)N3

1 −N4
1

N5 = (5 + 5q + 5q2 + 5q3 + 5q4)N1 − (10 + 15q + 15q2 + 10q3)N2
1

+ (10 + 15q + 10q2)N3
1 − (5 + 5q)N4

1 +N5
1

Question 1. What is a combinatorial interpretation of these

expressions, i.e. of the Pk,i’s?
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III. A COMBINATORIAL INTERPRETATION OF Nk.
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Fibonacci Numbers

Fn = Fn−1 + Fn−2

F0 = 1, F1 = 1

1, 1, 2, 3, 5, 8, 13, 21, 34 . . .

Counts the number of subsets of {1, 2, . . . , n− 1} with no two

elements consecutive

e.g. F5 = 8 : { }, {1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 4}
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Lucas Numbers

Ln = Ln−1 + Ln−2

L1 = 1, L2 = 3

1, 3, 4, 7, 11, 18, 29, 47, . . .

Counts the number of subsets of {1, 2, . . . ,n} with no two elements

circularly consecutive

e.g. L4 = 7 : { }, {1}, {2}, {3}, {4}, {1, 3}, {2, 4}

By Convention and Recurrence: L0 = 2

University of California, San Diego Slide 25



Elliptic Curves and Chip-Firing Games Gregg Musiker

Definition 1. We define the (q, t)−Lucas numbers to be a

sequence of polynomials in variables q and t such that Ln(q, t) is

defined as

Ln(q, t) =
∑

S

q# even elements in S t ⌊n
2
⌋−#S

where the sum is over subsets S of {1, 2, . . . , n} such that no two

numbers are circularly consecutive.

Theorem 5.

L2k(q, t) = 1 + qk −Nk

∣

∣

∣

∣

N1=−t

The L2k(q, t)’s satisfy recurrence relation

L2k+2(q, t) = (1 + q + t)L2k(q, t) − qL2k−2(q, t).
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Symmetric Function Aside: We can also think of this

plethystically as

L2k(q,−N1) = 1 + qk − pk[1 + q − α1 − α2].
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Symmetric Function Aside: We can also think of this

plethystically as

L2k(q,−N1) = 1 + qk − pk[1 + q − α1 − α2].

Symmetric Functions give rise to other identities including:

# Positive Divisors of degree k = hk[1 + q − α1 − α2] and

(−1)kF2k−1(q,−N1) = ek[1 + q − α1 − α2]

for suitably defined bivariate Fibonacci polynomials.
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Question 2. Is there a generating function equal to Nk directly?
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Question 2. Is there a generating function equal to Nk directly?

We can come close.
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We let Wn denote the wheel graph which consists of n vertices on a

circle and a central vertex which is adjacent to every other vertex.
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We let Wn denote the wheel graph which consists of n vertices on a

circle and a central vertex which is adjacent to every other vertex.

We note that a spanning tree will consist of arcs on the rim and

spokes. We orient the arcs clockwise and designate the head of each

arc.
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Definition 2.

Wk(q, t) =
∑

spanning trees of Wk

qtotal dist from spokes to tails t# spokes.

Theorem 6.

Wk(q, t) = −Nk

∣

∣

N1=−t
=

k
∑

i=1

Pk,i(q) t
i for all k ≥ 1.

q2t3

dist = 1

dist = 1

dist = 0

q3t3

dist = 0

dist = 1

dist = 2

The proof uses combinatorial facts from [Eğeciouğlu-Remmel 1990]

and [Benjamin-Yerger 2004].
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IV. A DETERMINANTAL FORMULA FOR Nk
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Let M1 = [−N1], M2 =





1 + q −N1 −1 − q

−1 − q 1 + q −N1



, and for k ≥ 3,

let Mk be the k-by-k “three-line” circulant matrix


























1 + q −N1 −1 0 . . . 0 −q
−q 1 + q −N1 −1 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . −q 1 + q −N1 −1 0

0 . . . 0 −q 1 + q −N1 −1

−1 0 . . . 0 −q 1 + q −N1



























.

Theorem 7. The sequence of integers Nk = #E(Fqk) satisfies the

relation

Nk = − detMk for all k ≥ 1.

Analogously, Wk(q, t) = detMk|N1=−t.
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q2t3

dist = 1

dist = 1

dist = 0

 t = 2
q = 3
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Proof by the Matrix-Tree Theorem:

The Laplacian Matrix for Wk(q, t) is

L =































1 + q + t −1 0 . . . 0 −q −t
−q 1 + q + t −1 0 . . . 0 −t
. . . . . . . . . . . . . . . . . . −t
0 . . . −q 1 + q + t −1 0 −t
0 . . . 0 −q 1 + q + t −1 −t
−1 0 . . . 0 −q 1 + q + t −t
−t −t −t . . . −t −t kt































.

The last row and column correspond to hub vertex, the root.

By the Matrix-Tree theorem, the number of directed rooted

spanning trees is detL0 where L0 is matrix L with the last row and

last column deleted.
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V. CHIP-FIRING GAMES
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Let G be a finite loopless directed multi-graph.

That is G = (V,E) where V is a finite set {v1, v2, . . . , vn} and E is

a multiset whose elements are pairs from V × V .

For every vertex vi let Ci be a nonnegative integer representing the

number of chips on vertex vi.
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Let G be a finite loopless directed multi-graph.

That is G = (V,E) where V is a finite set {v1, v2, . . . , vn} and E is

a multiset whose elements are pairs from V × V .

For every vertex vi let Ci be a nonnegative integer representing the

number of chips on vertex vi.

If there is an edge e = (vi, vj) in E, we say that vi and vj are

adjacent, and that edge e is directed from vi to vj .

The outdegree of a vertex vi, di is the number of edges in E with

first coordinate vi.

We call vertex vj a neighbor of vi if edge (vi, vj) ∈ E.

Finally, we let dij be the number of edges (vi, vj) in E.
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Chip-Firing: (Björner, Lovász, Shor)

1. Start with vertex v1.

2. If Ci, the number of chips on vi, is greater than the outdegree

of vi, then vertex vi fires. Otherwise move on to vi+1.

3. If vertex vi fires, then we take di chips off of vi and distribute

them to vi’s neighbors.

4. Now Ci := Ci − di and Cj := Cj + di,j if vj is a neighbor of vi.

5. We continue until we get to vn.

6. We then start over with v1 and repeat.

7. We continue forever or terminate when all Ci < di.
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We consider a variant due to Norman Biggs known as the Dollar

Game:

1. We designate one vertex v0 to be the bank, and allow C0 to be

negative. All the other Ci’s still must be nonnegative.

2. To limit extraneous configurations, we presume that the sum
∑#V −1

i=0 Ci = 0. (Thus in particular, C0 will be non-positive.)

3. The bank, i.e. vertex v0, is only allowed to fire if no other

vertex can fire. Note that since we now allow C0 to be negative,

v0 is allowed to fire even when it is smaller than its outdegree.
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A configuration is stable if v0 is the only vertex that can fire

A configuration C is recurrent if there is firing sequence which

will lead back to C.

(Note that this will necessarily require the use of v0 firing.)

We call a configuration critical if it is both stable and recurrent.
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A configuration is stable if v0 is the only vertex that can fire

A configuration C is recurrent if there is firing sequence which

will lead back to C.

(Note that this will necessarily require the use of v0 firing.)

We call a configuration critical if it is both stable and recurrent.

Theorem 8 (Biggs 1999). For any initial configuration C with
∑k

i=0Ci = 0 and Ci ≥ 0 for all 1 ≤ i ≤ k, there exists a unique

critical configuration that can be reached by an allowable firing

sequence.
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For example, consider the following two wheels with chip

distributions as given. These are both critical configurations.

We do not label the number of chips on the hub vertex since forced.

1

4

3

0

5

3

2

4

3

0

1

1

If we add these together pointwise we obtain
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2

6

7

5

4

3

This is not a critical configuration, but by the theorem, reduces to

a unqiue critical configuration.
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2

6

7

5

4

3
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2

6

7

5

4

3

1

4
9

2 5

4
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2

6

7

5

4

3

1

4
9

2 5

4

2

5

3
4

5

4

This last one is critical.
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The critical group of graph G, with respect to vertex v0, to be

the set of critical configurations, with addition given by

C1 ⊕ C2 = C1 + C2.

Here + signifies the usual pointwise vector addition and C

represents the unique critical configuration reachable from C.

When v0 is understood, we will abbreviate this group as the critical

group of graph G, and denote it as C(G).
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The critical group of graph G, with respect to vertex v0, to be

the set of critical configurations, with addition given by

C1 ⊕ C2 = C1 + C2.

Here + signifies the usual pointwise vector addition and C

represents the unique critical configuration reachable from C.

When v0 is understood, we will abbreviate this group as the critical

group of graph G, and denote it as C(G).

Theorem 9 (Biggs 1999). C(G) is an abelian (associative) group.
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The critical group of graph G, with respect to vertex v0, to be

the set of critical configurations, with addition given by

C1 ⊕ C2 = C1 + C2.

Here + signifies the usual pointwise vector addition and C

represents the unique critical configuration reachable from C.

When v0 is understood, we will abbreviate this group as the critical

group of graph G, and denote it as C(G).

Theorem 9 (Biggs 1999). C(G) is an abelian (associative) group.

Alternative definition:

C(G) ∼= Z
|V (G)|−1

/

Im L0 Z
|V (G)|−1

where L0 is the Laplacian matrix of graph G with the last row and

last column deleted.
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We get in particular that

|C(G)| = #Spanning Trees in Graph G

(using the Matrix-Tree Theorem again.)
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We get in particular that

|C(G)| = #Spanning Trees in Graph G

(using the Matrix-Tree Theorem again.)

Proposition 1. There exists a natural bijection between rooted

spanning trees of the directed (q, t)-wheel multi-graph on k rim

vertices, and critical configurations of the same graph. (Multi-graph

analogue of Biggs-Winkler 1997 for this special case.)

Note: We abbreviate the configuration vector as

[C1, C2, . . . , C#V (G)−1], leaving off coefficient C0, which is forced by

the relation
#V (G)−1

∑

i=0

Ci = 0.
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VI. CRITICAL GROUPS OF (q, t)-WHEEL GRAPHS
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Understanding the sequence of Critical Groups:

C(W1(q, t)), C(W2(q, t)), C(W3(q, t)), . . .

The set

{

Elements of the critical group C(Wk(q, t))

}

is a subset of

the set of length k words in alphabet {0, 1, 2, . . . , q + t}.

Proposition 2. The map ψ : w → www . . . w is an injective group

homomorphism between C(Wk1
(q, t)) and C(Wk2

(q, t)) whenever

k1|k2. Here map ψ replaces w with k2/k1 copies of w.

University of California, San Diego Slide 56



Elliptic Curves and Chip-Firing Games Gregg Musiker

Example: [2, 4, 2] ⊕ [0, 4, 1] ≡ [1, 0, 4] in W3(q = 3, t = 2) versus

2
2

4

⊕ 0

4

1

=
1

0

4

[2, 4, 2, 2, 4, 2] ⊕ [0, 4, 1, 0, 4, 1] ≡ [1, 0, 4, 1, 0, 4] in W6(q = 3, t = 2)

4

4

2
2

22

⊕
1

4

0

1

4

0

=

4

0

1

4

0

1

Chip-firing is a local process.
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Proposition 2. The map ψ : w → www . . . w is an injective group

homomorphism between C(Wk1
(q, t)) and C(Wk2

(q, t)) whenever

k1|k2. Here map ψ replaces w with k2/k1 copies of w.

Define ρ to be the rotation map on C(Wk(q, t)).

If we consider elements of the critical group to be configuration

vectors, then we mean clockwise rotation of elements to the right.

Equivalently, ρ acts by rotating the rim vertices of Wk clockwise if

we view elements of C(Wk(q, t)) as spanning trees.

Proposition 3. The kernel of (1 − ρk1) acting on C(Wk2
(q, t)) is

isomorphic to the subgroup C(Wk1
(q, t)) whenever k1|k2.
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Proposition 3. The kernel of (1 − ρk1) acting on C(Wk2
(q, t)) is

isomorphic to the subgroup C(Wk1
(q, t)) whenever k1|k2.

We therefore can define a direct limit

C(W (q, t)) ∼=
∞
⋃

k=1

C(Wk(q, t))

where ρ provides the transition maps.

Another view of C(W (q, t)):

The set of bi-infinite words which are (1) periodic, and (2) have

fundamental subword, i.e. pattern, equal to a configuration vector

in C(Wk(q, t)) for some k ≥ 1.

In this interpretation, map ρ acts on C(W (q, t)) as the shift map.
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In particular we obtain

C(Wk(q, t)) ∼= Ker(1 − ρk) : C(W (q, t)) → C(W (q, t)).

We now can describe a combinatorial interpretation for the

factorizations of Wk(q, t) = |C(Wk(q, t))| into irreducible integral

polynomials.
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In particular we obtain

C(Wk(q, t)) ∼= Ker(1 − ρk) : C(W (q, t)) → C(W (q, t)).

We now can describe a combinatorial interpretation for the

factorizations of Wk(q, t) = |C(Wk(q, t))| into irreducible integral

polynomials.

Let ρ denote the shift map, Cycd(x) be the dth cyclotomic

polynomial

(

xk − 1 =
∏

d|k Cycd(x)

)

, and C(W (q, t)) be the direct

limit of the sequence {C(Wk(q, t))}∞k=1.

Theorem 10.

Wk(q, t) =
∏

d|k

WCycd(q, t) and

WCycd =

∣

∣

∣

∣

Ker

(

Cycd(ρ)

)

: C(W (q, t)) → C(W (q, t))

∣

∣

∣

∣

.
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Shift map ρ is the wheel graph-analogue of the Frobenius map π on

elliptic curves.

1. We have an analogous family of bivariate integral polynomials

and factorizations

Nk(q, t) =
∏

d|k

ECycd(q, t) and

ECycd =

∣

∣

∣

∣

Ker

(

Cycd(π)

)

: E(Fq) → E(Fq)

∣

∣

∣

∣

where for d ≥ 2, ECycd(q,N1) = WCycd(q, t)|t=−N1
.

2.

C(Wk(q, t)) ∼= Ker(1 − ρk) : C(W (q, t)) → C(W (q, t)) just as

E(Fqk) = Ker(1 − πk) : E(Fq) → E(Fq).
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3. We get the equation ρ2 − (1 + q + t)ρ+ q = 0 on C(W (q, t)).

This can be read off from matrix

Mk =

























1 + q − N1 −1 0 . . . 0 −q

−q 1 + q − N1 −1 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . −q 1 + q − N1 −1 0

0 . . . 0 −q 1 + q − N1 −1

−1 0 . . . 0 −q 1 + q − N1

























and the configuration vectors’ images under clockwise and

counter-clockwise rotation. This is a direct analogue of the

characteristic equation π2 − (1 + q −N1)π + q = 0 on E(Fq).
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VII. CONNECTION TO CYCLIC LANGUAGES.
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Spanning trees of wheel graphs have cyclic symmetry, and

Consist of disconnected arcs on the rim

(one such piece for each spoke)
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Spanning trees of wheel graphs have cyclic symmetry, and

Consist of disconnected arcs on the rim

(one such piece for each spoke).

We can characterize (conjugates of) critical configurations of the

wheel graph (q, t)-Wk as a concatonation of blocks with form

B,M1, . . . ,Mr

with the properties

1. B ∈ {q + 1, . . . , q + t},

2. Mi ∈ {0, 1, . . . , q}, and

3. if Mj = 0, then Mj+1 = · · · = Mr = q.
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Spanning trees of wheel graphs have cyclic symmetry, and

Consist of disconnected arcs on the rim

(one such piece for each spoke).

We can characterize (conjugates of) critical configurations of the

wheel graph (q, t)-Wk as a concatonation of blocks with form

B,M1, . . . ,Mr

with the properties

1. B ∈ {q + 1, . . . , q + t}, (Need at least one element > q

2. Mi ∈ {0, 1, . . . , q} for config to be recurrent.)

3. if Mj = 0, then Mj+1 = · · · = Mr = q. (Recurrent also forces.)

Considering these as elements of C(Wk(q, t)) ⊂ C(W (q, t)), we

identity C1, . . . , Ck with periodic string

. . . Ck, C1, C2, . . . Ck−1, Ck, C1, . . .
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{1+q, 2+q, ... , q+t} 

{0}

{0}

{1, 2, ... , q}

{q}

{1+q, 2+ q, ... , q+t} 

{1, 2, ... , q}

{1+q, 2+q, ... , q+t} 

t     0     1

t     q     1

t     q     1
C

B

A

Critical Configurations correspond to Closed Paths in this DFA, D,

which go through state A.
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{1+q, 2+q, ... , q+t} 

{0}

{0}

{1, 2, ... , q}

{q}

{1+q, 2+ q, ... , q+t} 

{1, 2, ... , q}

{1+q, 2+q, ... , q+t} 

t     0     1

t     q     1

t     q     1
C

B

A

Critical Configurations correspond to Closed Paths in this DFA, D,

which go through state A.

Thus we disallow cycles containing only state B and cycles

containing only state C.
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Recall the zeta function of a Cyclic Language L is

ζ(L, T ) = exp

( ∞
∑

k=1

Wk

T k

k

)

where Wk is the number of words of length k.
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Recall the zeta function of a Cyclic Language L is

ζ(L, T ) = exp

( ∞
∑

k=1

Wk

T k

k

)

where Wk is the number of words of length k.

Also can write

ζ(L, T ) = exp

(

∑

allowed closed paths P

# words admissible by path P T k

)

.
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Recall the zeta function of a Cyclic Language L is

ζ(L, T ) = exp

( ∞
∑

k=1

Wk

T k

k

)

where Wk is the number of words of length k.

Also can write

ζ(L, T ) = exp

(

∑

allowed closed paths P

# words admissible by path P T k

)

.

The trace of an automaton A is the language of words generated

by closed paths in A, and satisfies

ζ(trace(A)) =
1

det(I −M · T )
,

where M encodes the number of directed edges between state i and

state j in A.
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Let L(W (q, t)) be the language of patterns for set C((W )(q, t)).

Language L(W (q, t)) also equals the set
⋃∞

k=1 C(Wk(q, t)).
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Let L(W (q, t)) be the language of patterns for set C((W )(q, t)).

Language L(W (q, t)) also equals the set
⋃∞

k=1 C(Wk(q, t)).

L(W (q, t)) = trace(D) − trace(B) − trace(C)

where we let B (resp. C) signify the DFA we get by taking D and

removing states A and C (resp. A and B).
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{1+q, 2+q, ... , q+t} 

{0}

{0}

{1, 2, ... , q}

{q}

{1+q, 2+ q, ... , q+t} 

{1, 2, ... , q}

{1+q, 2+q, ... , q+t} 

t     0     1

t     q     1

t     q     1
C

B

A

Critical Configurations correspond to Closed Paths in this DFA, D,

which go through state A. Thus we disallow cycles containing only

state B and cycles containing only state C.

det(I −M · T ) = 1 − (1 + q + t)T − qT 2.
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Let L(W (q, t)) be the language of patterns for set C((W )(q, t)).

Language L(W (q, t)) also equals the set
⋃∞

k=1 C(Wk(q, t)).

L(W (q, t)) = trace(D) − trace(B) − trace(C)

where we let B (resp. C) signify the DFA we get by taking D and

removing states A and C (resp. A and B).

Theorem 11.

ζ(L(W (q, t))) =
(1 − T )(1 − qT )

1 − (1 + q + t)T − qT 2
.
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Let L(W (q, t)) be the language of patterns for set C((W )(q, t)).

Language L(W (q, t)) also equals the set
⋃∞

k=1 C(Wk(q, t)).

L(W (q, t)) = trace(D) − trace(B) − trace(C)

where we let B (resp. C) signify the DFA we get by taking D and

removing states A and C (resp. A and B).

Theorem 11.

ζ(L(W (q, t))) =
(1 − T )(1 − qT )

1 − (1 + q + t)T − qT 2
.

Compare with:

Z(E, T ) =
1 − (1 + q −N1)T − qT 2

(1 − T )(1 − qT )
.
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