Statistical Analysis of a Telephone Call Center:
A Queueing-Science Perspective

Haipeng Shen \(^a \) \(^b \)

Department of Statistics and Operations Research
University of North Carolina at Chapel Hill

July 24, 2004

\(^a\) Joint work with Larry Brown, Noah Gans and Linda Zhao at Wharton, Avi Mandelbaum, Anat Sakov and Sergey Zeltyn at Technion.

\(^b\) Available at http://www.unc.edu/~haipeng.
Research Goal

- Analyze data collected at a small Israeli financial call center.
- Model/understand call center operations.
 ▶ Primitives: arrivals, service durations and patience
 ▶ Performance measure: waiting time
- Provide forecasting for arrivals and workload.
- Serve as a prototype for further work.
 ▶ Call-by-call data, instead of aggregated data.
 ▶ ongoing analysis of a moderate US call center network.
Outline

1. Queueing Theory
2. *Bank Anonymous* Call Center Data
3. Analysis
 (a) Arrivals
 (b) Service Durations
 (c) Queueing Behavior
 (d) Forecasting of Workload
4. Application of Queueing Science
5. Summary
Classical Erlang-C ($M/M/N$)
A Call Center of Bank Anonymous of Israel

• Small: 15 seats at most.

• Types of service:
 ▶ information for current and prospective customers
 ▶ transactions for bank accounts
 ▶ stock-trading
 ▶ IT support for users of the bank’s website

• Working hours:
 ▶ Sundays-Thursdays: 7AM – 12AM
 ▶ Fridays: 7AM – 2PM
 ▶ Saturdays: 8PM – 12AM
Event history of an incoming call

(units of rates are calls per month)
The Call Center Data

- Data ⇒ whole history of every agent-seeking call in 1999.
- 450,000 observations.
- Two operational changes:
 - Separate agent pool for Internet Consulting since Aug;
 - One aspect of the service-time data changed since Nov.
- Focus on
 - weekdays of Nov and Dec.
 - normal business hours – 7AM to midnight.
Arrivals: Inhomogeneous Poisson

Figure 1: Arrivals (to queue or service) – “Regular” Calls
Figure 2: Arrivals (to queue or service) – Other Calls

<table>
<thead>
<tr>
<th>Time (24-hour clock)</th>
<th>Stock Trading</th>
<th>Internet Consulting</th>
<th>New Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24</td>
<td>0 5 10 15 20 25</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
A Test for Inhomogeneous Poisson Process

1. Break up the interval of a day into short blocks of time, say \(I \) (equal-length) blocks of length \(L \).

2. Let \(T_{i0} = 0 \) and
 \(T_{ij} \): the \(j \)-th ordered relative arrival time in the \(i \)-th block, \(i = 1, \ldots, I \) and \(j = 1, \ldots, J(i) \),
 then define
 \[
 R_{ij} = (J(i) + 1 - j) \left(-\log \left(\frac{L - T_{ij}}{L - T_{i,j-1}} \right) \right).
 \]

3. Under the null hypothesis that the arrival rate is constant within each given time interval, the \(\{R_{ij}\} \) will be independent standard exponential variables.

4. Test for the exponential distribution; for example, Anderson-Darling \((A^2) \) test (D’Agostino and Stephens 1986).
Figure 3: Exponential ($\lambda=1$) Quantile plot for $\{R_{ij}\}$ from Regular calls (11:12am – 11:18am)

$L = 6$ min, $n = 420$, Anderson-Darling statistic $A^2 = 0.6422$ and the P-value is 0.61.
Arrival Rate

- Determines the whole arrival process.

- Not a deterministic function of available covariates like service type, day-of-week and time-of-day.
 - Brown and Zhao (2002).

- Has to be modelled as a stochastic process.
 - Doubly-Stochastic Poisson process.

- More on this later.
Service Times

- Service time distribution is another key input for queueing theory. The mean is especially important, also the second moment.
 ▶ system delay
 ▶ workload
 ▶ staffing
Figure 4: Service time cumulative distribution function (by type)
Figure 5: Histogram of Service Times (in seconds)

Jan-Oct

Mean = 185
SD = 238

7.2%
Figure 6: Histogram of Service Times (in seconds)

Mean = 200
SD = 249

Nov-Dec
Service Times are Lognormal

Figure 7: Histogram of Log(Service Time) (Nov–Dec)
Figure 8: Log-normal QQ Plot of Service Time (Nov–Dec)
Lognormality

• Queueing data:
 ▶ telecommunication - line usage (Bolotin 1994).
 ▶ psychology - parallel information process time (Ulrich and Miller 1993, Breukelen 1995).
 ▶ data from a large US financial call center ...

• So What???
 ▶ Distribution assumption; parameter estimation.
Analysis of Service Times

• Lognormality holds
 ▶ Overall, and at
 ▶ Lower levels:
 * when conditioning on time-of-day;
 * for types of service, priorities of customers, individual servers and days of the week.

• Analysis: Data with lognormal errors
 ▶ Mean service time across different categories, like service types, day-of-week
 ▶ Mean service time as a function of time-of-day
Inference of A Lognormal Mean

Suppose $Y_i = \log (Z_i)$ $i.i.d. \sim N(\mu, \sigma^2)$ for $i = 1, \ldots, n$. Want to estimate the lognormal mean

$$\nu = e^{\mu + \frac{1}{2} \sigma^2}$$

with confidence interval.

Define $S^2 = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$,

- Estimator for ν: $e^{\bar{Y} + \frac{S^2}{2(n+4)}}$
 - smaller squared error risk than \bar{Z}, $e^{\bar{Y}}$, $e^{\bar{Y} + \frac{S^2}{2n}}$.

- Cox’s confidence interval (Land 1972):
 $$e^{\bar{Y} + \frac{1}{2(n-1)} S^2 \pm Z_{1-\alpha/2} \sqrt{\frac{S^2}{n(n-1)} + \frac{S^4}{2(n-1)^3}}}}.$$
Figure 9: Mean Service Time vs. Service Time (95% CI)
Nonparametric Regression with Lognormal Errors

The data:

\[\{X_i, Z_i\}_{i=1}^n \overset{i.i.d.}{\sim} \{X, Z\} \]

where \(Z|X = x \) has a lognormal distribution with

\[\log(Z)|X = x \sim N(\mu(x), \sigma(x)^2). \]

For example, in our call center setup,

\[X : \text{the time-of-day of a call} \]

and

\[Z : \text{the corresponding service time.} \]

We are interested in estimating

\[\nu(x) = \mathbb{E}(Z|X = x) = e^{\mu(x) + \sigma(x)^2/2} \]

with confidence band attached.
Application

- Problem:
 Model the changing pattern of the mean service time across a day.

- Data:
 ▶ The weekdays of November and December in 1999.
 ▶ The normal business hours – 7AM to midnight.
 ▶ Service types:
 * Regular Services (PS)
 * Internet Consulting (IN)
Figure 10: Mean Service Time (Regular) vs. Time-of-day (95% CI) \((n = 42613) \)
Figure 11: Mean Service Time (Internet Consulting) vs. Time-of-day (95% CI) \((n = 5066)\)
Similarity between Arrival and Service Time Patterns

- Bi-modal with similar mode locations.

- Three hypotheses:
 1. **Different mix of customers; more customers with lengthier service.**
 2. Agents slow down during peak periods.
 3. More abandonments; customers with relatively short service times.

- **Negative** correlation between the number of calls and average service time (of each quarter hour).

- Independent conditional on time-of-day.
Customer Patience and Abandonment Behavior

- Need to distinguish 3 Times:
 - Virtual waiting time V: the time a customer needs to wait before reaching an agent;
 - Time willing to wait R: the time a customer is willing to wait before abandoning the system;
 - Waiting time $W = V \land R$: actual observed time a customer waits.
 - approximately exponential.
 - Heavily loaded system without abandonment. (Whitt 2002)

- Also observe the indicator $I_{R < V}$.

- Thus, V and R are censored.
Stochastic Order between R, V and W
Figure 12: Survival curves for time willing to wait (Nov–Dec)

IN = INternet Consulting; NE = Stock Exchange; NW = New Customer Service; PS = Regular Service.
Figure 13: Hazard rate for the time willing to wait for Regular calls (Nov–Dec)
Figure 14: Comparison Between Different Priority Customers

Hazard Rate: Empirical (Im)Patience
Let the means of V and R be m_V and m_R, and define

$$\text{Patience Index} \triangleq \frac{m_R}{m_V}.$$

- new customer: 2.36; stock trading: 5.6.
- Problem: Call-by-call data; High-censoring.
- Ancillary measure:

$$\text{Empirical Index} \triangleq \frac{\# \text{ served}}{\# \text{ abandoned}}.$$

▷ The usual plug-in MLE for Patience Index if V and R are independent exponential.
▷ Works (surprisingly) well empirically.
Figure 15: Patience Indices: empirical vs. theoretical ($R^2 = 0.94$)
Suppose at time t, the arrival rate is $\Lambda(t)$ and the mean service time is $\nu(t)$, then the **workload** at time t is defined as

$$L(t) = \Lambda(t)\nu(t).$$

- the expected time units of work arriving per unit of time.
- primitive quantity in building various queueing models and setting staffing levels.
 > Safety-Staffing (Whitt 1992; Garnett, Mandelbaum, Reiman (2002); Borst, Mandelbaum, Reiman (2002)):

$$N = \left\lceil L(t) + \beta(t)\sqrt{L(t)} \right\rceil.$$

- need an accurate forecast for $L(t)$ (maybe) with prediction confidence bounds.
Prediction of Arrival Rate $\Lambda(t)$

- Important for workload forecasting, agent staffing and capacity planning.

- Regularity:
 - Inter-day dependence: today/tomorrow, weekly, monthly, seasonal, yearly, ...
 - Intra-day dependence: morning/afternoon/night, ...

- Anomaly:
 - Holiday, Promotion, System (hardware/software) failure, ...
 - Shen and Huang (2004): anomaly detection, feature extraction
Prediction of $\Lambda(t)$

- $\Lambda(t)$ is not a deterministic function of time of day, day of week and type of customer.
 - Verified by a formal test in Brown and Zhao (2002).
 - Jongbloed and Koole (2001): Gamma-Poisson model

- **Random-effects** model.
 - Regular (non-holiday) weekdays from Aug. to Dec. indexed by j;
 - Divide the regular working hours from 7AM through midnight into 68 quarter hours indexed by k;
Prediction of $\Lambda(t)$

- N_{jk}: number of arrivals within the k-th quarter hour of the j-th day.

\[N_{jk} = \text{Poiss}(\Lambda_{jk}) \]
\[\Lambda_{jk} = R_j \tau_k + \varepsilon_{jk}, \]

where

- τ_k: fixed deterministic quarter-hourly effects with $\sum \tau_k = 1$;
- R_j: suitable random daily effects;
- ε_{jk}: (Gamma) random errors.

- Similar to Jongbloed and Koole (2001).
 - one-way vs. two-way
 - Estimation model, not a prediction model.
 - Correlation structure should be added.
A Property of Poisson Variables

Suppose $X \sim \text{Poiss}(\lambda)$, then Brown, Zhang and Zhao (2002) showed that, asymptotically,

$$V = \sqrt{X + 1/4} \overset{app.}{\sim} N(\sqrt{\lambda}, \frac{1}{4})$$

with good accuracy even for small λ.

An Equivalent Gaussian Model

- Let $V_{jk} = \sqrt{N_{jk} + \frac{1}{4}}$;

- Gaussian model:

\[V_{jk} = \theta_{jk} + \varepsilon^*_{jk} \quad \text{with} \quad \varepsilon^*_{jk} \sim N \left(0, \frac{1}{4}\right), \]

\[\theta_{jk} = \alpha_j \beta_k + \varepsilon'_{jk}, \]

\[\alpha_j = \mu + \gamma V_{j-1,+} + \varepsilon^{**}_j, \]

where $\varepsilon^{**}_j \sim N(0, \sigma^{**2})$, $\varepsilon'_{jk} \sim N(0, \sigma^2_{\varepsilon})$, $V_{j,+} = \sum_k V_{jk}$, and ε^{**}_j and ε'_{jk} are independent of each other and of values of $V_{j',k}$ for $j' < j$.

- α_j: random effect with an AR(1) type structure.

- $\sum \beta^2_k = 1.$
Prediction of Tomorrow’s Λ_k

- Following today’s value of V_+, tomorrow’s θ_k is predicted to be
 \[\hat{\theta}_k = \hat{\beta}_k (\hat{\mu} + \hat{\gamma}V_+) \]
 as an estimate of
 \[\theta_k = \beta_k (\mu + \gamma V_+ + \varepsilon^{**}) + \varepsilon \]
 where $\varepsilon^{**} \sim N(0, \sigma^{**2})$ and $\varepsilon \sim N(0, \sigma^2_\varepsilon)$ are independent.

- \[\hat{\Lambda}_k = \hat{\theta}_k^2 = \hat{\beta}_k^2 (\hat{\mu} + \hat{\gamma}V_+)^2 \].

- $\text{Var}(\hat{\theta}_k)$ can be derived from (1), which can be used to calculate prediction interval for $\hat{\theta}_k$.

- The above interval can be squared to get prediction interval for $\hat{\Lambda}_k$.

42
Figure 16: 95% prediction intervals for Λ, following a day with $V_+ = 340$. ("$V_+ = 340$" \Rightarrow "$N_+ = 1800$" ($> \overline{N}_+ = 1570$))

Vertical axis is prediction of # of arrivals/qtr. hr.
Forecasting of the Load

- Point estimate: $\hat{L}(t) = \hat{\Lambda}(t)\hat{\nu}(t)$.
- Approx. 95% Prediction Interval:

$$\hat{L}(t) \pm 2\hat{L}(t)\widehat{PCV}(\hat{L})(t)$$

where $PCV = \text{“Prediction CV”} = \frac{\text{Prediction S.E.}}{\text{Mean}}$

and

$$\widehat{PCV}(\hat{L})(t)$$

$$= \sqrt{\hat{PCV}^2(\hat{\Lambda})(t) + \hat{PCV}^2(\hat{\nu})(t) + \hat{PCV}^2(\hat{\Lambda})(t) \cdot \hat{PCV}^2(\hat{\nu})(t)}$$

$$\approx \sqrt{\hat{PCV}^2(\hat{\Lambda})(t) + \hat{PCV}^2(\hat{\nu})(t)}$$

given the conditional independence of $\hat{\Lambda}(t)$ and $\hat{\nu}(t)$.
Figure 17: 95% prediction intervals for the load, L, following a day with $V_+ = 340$.

Vertical axis is workload/qtr. hr..
Applications of Queueing Science

• On Patience and Waiting
• On Efficiency and Service Levels
• Fitting the $M/M/N + M$ model (Erlang-A)
\% Abandoment = \frac{E(W)}{E(R)}

- Exponential patience. (Zohar et al. 2002)

- Mandelbaum and Zeltyn (2004):
 - Impact of patience dist. on $M/M/N + G$ performance.
On Efficiency and Service Levels

- $M/G/N$ model
- Heavy traffic analogy of the Khintchine-Pollaczek Formula (Whitt 1993):

\[
\frac{N}{E(G)}w \approx KG \frac{\rho}{1-\rho}.
\]

▷ w: average waiting time in system;
▷ ρ: agent occupancy;
▷ Approximate linear relationship between w and $\frac{\rho}{1-\rho}$.
Failure!

The graph shows the relationship between the natural logarithm of the ratio of expected workload (E(W)) to expected service (E(S)) multiplied by staffing and the natural logarithm of the ratio of occupancy to (1−occupancy). The vertical axis represents Ln((E(W)/E(S)) * Staffing), and the horizontal axis represents Ln(Occupancy / (1−Occupancy)). The data points form a curved line, indicating a non-linear relationship.
Robustness of Erlang-A

Figure 18: Waiting Time: Data Ave. vs. Erlang-A Prediction
Summary

- **Arrivals**
 - Testing inhomogeneous Poisson process
 - Test for applicability of fixed effects model
 - Forecasting Poisson arrival rate
 - Sqrt-Gaussian Model with an AR structure

- **Service Times**
 - Lognormal
 - Stochastic order among service types
 - Model daily average service time

- **Abandonment Behavior, Customer Patience**
 - Stochastic order among patience of different types/priorities of customers
 - Patience index

- **Workload Forecasting**

- **Applications of Queueing Science**
Future Research

• Analysis of a much larger US bank call center
• Gamma-Poisson model of call center arrivals
• Mixture modelling of service times
• Survival analysis under high-censoring with large sample size
• Learning curve modelling