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An Illustrative Call Center Model
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Hierarchical System Management

(  Determine capacity vector b = (b1, b2) that remains in force over the time interval [0,T]

(  Choose server allocations Xij(() dynamically based on system status

 The Kinds of Call Centers 

on Which We Focus
(  High volume (need dozens of servers, say)

(  Relatively fast service (in minutes, say)   

(  Relatively fast abandonment (in minutes, say)

 The Very Special Case with 

Homogeneous Customers and Agents



(
(in customers per time unit) evolves 




as a stochastic
process {((t), 0(t(T}






penalty p   



abandonment rate ( 
per aban-


        per time unit per customer

donment
                        in queue






  b = number of servers 



  c = cost per server



  ( = service rate per server

Choose b so as to 

minimize   ((b) ( c b + p E
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Stochastic Processes

((t) = instantaneous arrival rate at time t

Z(t) = number of customers in the system at time t

X(t) = number of servers working (busy) at time t

Q(t) = number of customers waiting at time t



X(t) = Z(t) ( b



Q(t) = [Z(t) – b]+
Cost Structure

p = penalty incurred per abandonment

c = cost of one server

Objective

Choose a pool size (that is, number of servers) b so as to

minimize   ((b) ( c b + p E
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High-Volume Asymptotics

Consider a sequence of models indexed by n = 1, 2, … .  In the nth model one has
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where the stochastic process {((t), 0(t(T} is fixed (indepen-dent of n), as are all other model parameters.  Let the capacity of the nth system be of the form
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and define
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The Limiting Fluid Model

Claim.  zn ( z as n  , where z = {z(t), 0  t  T} is the stochastic fluid model whose sample paths are determined by the following ODE (with stochastic driver ):
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Asymptotically Optimal Staffing

in the Fluid Limit

Define   
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and let * be the value of    that minimizes ((().  The proposed staffing level for the nth system is
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Claim.


and for any sequence of staffing levels {bn} one has   
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Side Comment: 

Steady-State Behavior of a Time-Homogeneous Fluid Model

Consider a fluid model with infinite time horizon and ((t) = ( (a fixed constant) for all t ( 0.  It is easy to show that 

( x(t) ( (( ( (()

and

( q(t) (( – (()+
as t   and hence that 

x(t) ( x( = 
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A Double Limit

Pressing even further in the search for tractability, one may uniformly accelerate arrival, service and abandonment pro-cesses by a factor of k, in addition to the acceleration of arrivals described above.

That is, consider a sequence of models parameterized by k = 1, 2, … in which 

k = k,     k = k,     ck = kc     and
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As before, suppose that capacity of the kth system has the form bk = [n(k)] for some 0.  Now define
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Claim.  zk ( z  and  qk ( q as  k, where
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Asymptotically Optimal Staffing 

in the Double Limit

Define
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and then let * be the value of  0  that minimizes (().  The proposed staffing level for the kth system is
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and for any other sequence of staffing levels {bk} one has
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Simplified Representation of (
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where
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Final Staffing Recommendation

Let
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The proposed staffing level b* is the integer b that minimizes
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The problem of calculating  b*  is a newsvendor problem.

A Numerical Example with Homogeneous Customers and Agents



(
(in customers per minute) evolves 




as a stochastic
process ( see next 





slide






p = $1   


( = 1 abandonment per 

per aban-


         minute per customer

donment
                         in queue






  b    servers (to be chosen)



  T = 480 minutes (one 8-hour day)



  c = $240 per server per day



  ( = 1 service per minute

Choose b so as to 

minimize   ((b) ( c b + p E
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	Simulation Results

	
	Optimal

Pool

Size b*
	Personnel

Cost

for b*
	Abandon

Cost

with b*
	Total

Cost

with b*
	Optimal

Pool

Size b*
	Personnel

Cost

for b*
	Abandon

Cost

with b*
	Total

Cost

with b*

	Doubly Variable

Demand Scenario


	115
	$27,600
	$3,000
	$30,600
	115
	$27,600
	$3,452
	$31,052

	Temporally Variable

Demand Scenario


	112
	$27,000
	$1,050
	$28,050
	112
	$26,880
	$1,958
	$28,838

	Randomly Variable

Demand Scenario


	115
	$27,600
	0
	$27,600
	115
	$27,600
	$1,712
	$29,312

	Constant Demand

Scenario (( ( 100)


	100
	$24,000
	0
	$24,000
	105


	$25,200
	$1,439


	$26,639
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