Invariants of exact Lagrangian cobordisms

Ko Honda
Univ. of Southern California and Univ. of Tokyo

June 26, 2007

Joint work with Tobias Ekholm and Tamás Kálmán

Introduction

Consider the standard contact ($\left.\mathbf{R}^{3}, \xi=\operatorname{ker} \alpha\right)$, where $\alpha=d z-y d x$.
A Legendrian knot $L \subset\left(\mathbf{R}^{3}, \xi\right)$ is a knot which is everywhere tangent to ξ, i.e., satisfies $d z-y d x=0$.

Figure: A right-handed trefoil in the $x y$-projection (Lagrangian projection).

Legendrian knot invariants

Given an oriented Legendrian knot L, there are two "classical invariants", the Thurston-Bennequin number and the rotation number. With respect to the $x y$-projection π, they are given as follows:
(1) $t b(L)$ is the writhe of $\pi(L)$, i.e., the number of positive crossings minus the number of negative crossings.
(2) $r(L)$ is the degree of the Gauss map (or winding number) of $\pi(L)$.

Example: For the right-handed trefoil example, $t b(L)=1$ and $r(L)=0$.

Lagrangian cobordisms

The symplectization of $\left(\mathbf{R}^{3}, \xi\right)$ is $\mathbf{R} \times \mathbf{R}^{3}$ with the symplectic form $\omega=d\left(e^{t} \alpha\right)=e^{t}(d t \wedge \alpha+d \alpha)$, where t is the first coordinate. This will be our ambient manifold for today.

Definition

Let L, L^{\prime} be Legendrian knots. A Lagrangian cobordism Λ from L to L^{\prime} is an embedded Lagrangian surface (i.e., $\left.\omega\right|_{\Lambda}=0$) which agrees with a cylinder over L for $t \gg 0$ and a cylinder over L^{\prime} for $t \ll 0$.

Remark: A cylinder $\mathbf{R} \times L$ over a Legendrian knot L is Lagrangian in the symplectization.

Exact Lagrangian cobordisms

Today our Lagrangians Λ will be exact: The symplectic form $\omega=d\left(e^{t} \alpha\right)$ is an exact symplectic form. By the Lagrangian condition, $\left.\omega\right|_{\Lambda}=\left.d\left(e^{t} \alpha\right)\right|_{\Lambda}=0$. We say Λ is exact if $\left.e^{t} \alpha\right|_{\Lambda}=d F$, where F is a function on Λ.

The exactness will be important when we discuss the TQFT properties of Lagrangian cobordisms.

Basic Observations

Theorem (Chantraine)

If \wedge is a Lagrangian cobordism from L to L^{\prime}, then

$$
t b(L)-t b\left(L^{\prime}\right)=-\chi(\Lambda)
$$

If $L^{\prime}=\emptyset$, then, combining with the slice Bennequin inequality (due to Kronheimer-Mrowka/Rudolph):

$$
t b(L) \pm r(L) \leq 2 g_{4}(L)-1
$$

where $g_{4}(L)$ is the 4-ball genus, we have:

Corollary

If L bounds a Lagrangian surface, then $t b(L)=2 g_{4}(L)-1$ and $r(L)=0$.

Examples

Figure: The left-hand cobordism exists, whereas the right-hand one does not.

Constructions

Theorem

There exists an exact Lagrangian cobordism for the following:
(1) Legendrian isotopy from L to L^{\prime}.
(2) 0-resolution at a contractible crossing of L in the $x y$-projection.
(3) Capping off a $t b=-1$ unknot with a disk.

Definition

A contractible crossing of L is a crossing so that $z_{1}-z_{0}$ can be shrunk to zero without affecting the other crossings. (Here z_{1} is the z-coordinate on the upper strand and z_{0} is the z-coordinate on the lower strand.)

0 -resolution

Figure: The 0-resolution.

An example

Example: (Right-handed trefoil) All three crossings in the middle are contractible. Hence it is possible to 0 -resolve each of the b_{1}, b_{2}, b_{3}, in any order.

Figure: The right-handed trefoil in the $x y$-projection.

Decomposability

Definition

Λ is decomposable if it is obtained by stacking exact Lagrangians corresponding to the following three operations given above:
(1) Legendrian isotopy;
(2) 0-resolution;
(3) Capping off an unknot.

Conjecture

Every exact Lagrangian cobordism of L to \emptyset is decomposable.

Legendrian contact homology

The combinatorial version is due independently to Chekanov and Eliashberg.

We will work over $\mathbf{Z} /$ 2-coefficients.
$\mathcal{A}(L)=$ free algebra with unit ($=$ tensor algebra) generated by the double points of the $x y$-projection

The boundary map $\partial: \mathcal{A}(L) \rightarrow \mathcal{A}(L)$ is given as follows:

$$
\partial y=\sum_{P} w_{P}
$$

where the sum is over all immersed polygons P with one positive corner at y and zero or more negative corners (in the $x y$-projection). If the vertices of P are y, x_{1}, x_{2}, x_{3} in clockwise order, then $w_{P}=x_{1} x_{2} x_{3}$.

Legendrian contact homology, continued

Fact: $\partial^{2}=0$.

We can therefore define the Legendrian contact homology $H C(L)$ as the homology of $(\mathcal{A}(L), \partial)$.

For each Legendrian Reidemeister move $L \rightsquigarrow L^{\prime}$ (i.e., Legendrian isotopy), there exists a corresponding combinatorial chain map which induces an isomorphism $\Phi: H C(L) \rightarrow H C\left(L^{\prime}\right)$.

Recall that every Legendrian isotopy gives rise to an exact Lagrangian cobordism. The combinatorial chain maps of Chekanov arise from the corresponding exact Lagrangian cobordism. (Work of Ekholm-Kálmán, in progress.)

TQFT/SFT package

Theorem

- An exact ${ }^{a}$ Lagrangian cobordism \wedge from L to L^{\prime} induces a map

$$
\Phi_{\Lambda}: H C(L) \rightarrow H C\left(L^{\prime}\right)
$$

which is an invariant of Λ up to exact Lagrangian isotopy.

- Given exact Lagrangian cobordisms Λ_{1} (from L_{1} to L_{2}) and Λ_{2} (from L_{2} to L_{3}),

$$
\Phi_{\Lambda_{1} \circ \Lambda_{2}}=\Phi_{\Lambda_{2}} \circ \Phi_{\Lambda_{1}} .
$$

${ }^{a}$ The exactness is crucial here, to prevent boundary bubbling.

0-resolution map

Theorem

Let $L \rightsquigarrow L^{\prime}$ be a 0 -resolution at a contractible double point x, and let Λ be an exact Lagrangian cobordism representing this 0-resolution. Then the combinatorial chain map

$$
\Phi_{\Lambda}: \mathcal{A}(L) \rightarrow \mathcal{A}\left(L^{\prime}\right)
$$

is given as follows:

$$
\begin{gathered}
x \mapsto 1 \\
y \mapsto y+\sum_{P} w_{P}
\end{gathered}
$$

where $y \neq x$ and the sum is over all immersed polygons P with two positive corners, one at x and the other at y, and zero or more negative corners. If the vertices of P are $y, x_{1}, x_{2}, x, x_{3}$ in clockwise order, for example, then $w_{P}=x_{1} x_{2} x_{3}$.

[^0]
Proof of Theorem

First change coordinates:

$$
d\left(e^{t}(d z-y d x)\right)=d\left(e^{t}\right) \wedge d z+d x \wedge d\left(e^{t} y\right)
$$

and set $u_{1}=e^{t}, v_{1}=z, u_{2}=x, v_{2}=e^{t} y$. Then Λ is a Lagrangian in the standard $\left(\mathbf{R}^{4}, \sum_{i} d u_{i} \wedge d v_{i}\right)$, with an infinity in the u_{1}-direction.

Exact Lagrangian means that there is a lift of the Lagrangian to a Legendrian submanifold in the standard contact \mathbf{R}^{5} with coordinates ($w, u_{1}, v_{1}, u_{2}, v_{2}$) and contact form $d w-\sum_{i} v_{i} d u_{i}$.

Use a slight extension of Ekholm's gradient flow tree technique for Legendrian submanifolds, which in turn generalizes Fukaya and Oh's work on gradient flow trees.

An example

Example: (Right-handed trefoil)
We resolve the contractible crossings b_{1}, b_{2}, b_{3} in six different ways.
For example, if we resolve b_{1}, b_{2}, b_{3} in that order, then we obtain the map

$$
\begin{gathered}
\varepsilon: \mathcal{A}(L) \rightarrow A(\emptyset)=\mathbf{Z} / 2, \\
b_{1} \mapsto 1, \quad b_{2} \mapsto 0, \quad b_{3} \mapsto 0, \quad a_{i} \mapsto 0
\end{gathered}
$$

Augmentations

A chain map $\varepsilon: \mathcal{A}(L) \rightarrow \mathbf{Z} / 2$ is called an augmentation. (Augmentations are usually required to linearize contact homology and compute its E_{1}-term with respect to the word length filtration.)

Fact: Algebraically there are 5 augmentations $\varepsilon: \mathcal{A}(L) \rightarrow \mathbf{Z} / 2$, where L is the right-handed trefoil.

Augmentations, continued

Theorem

(1) All 5 augmentations are geometric, i.e., arise from an exact Lagrangian cobordism from L to \emptyset. They are obtained by resolving b_{1}, b_{2}, b_{3} in different orders.
(2) All 5 exact Lagrangian cobordisms are distinct via exact Lagrangian isotopy.

A conjecture

Conjecture

Every augmentation of a Legendrian knot is geometric.

I'm deliberately being vague here - for example, do we allow immersed exact Lagrangian cobordisms whose double points have certain Maslov indices, so that the map $H C(L) \rightarrow \mathbf{Z} / 2$ is still well-defined and independent of immersed exact Lagrangian isotopy?

Khovanov homology

To each decomposable Λ, there exists a sequence

$$
L=L_{1}, L_{2}, \ldots, L_{n}=\sqcup \text { unknots },
$$

where each $L_{i} \rightsquigarrow L_{i+1}$ is either a Reidemeister move or a 0-resolution.

In Khovanov homology, there exist maps corresponding to:
(1) The inverse of a 1-resolution.
(2) The creation of an unknot.
(3) Reidemeister moves.

Elements in Khovanov homology

We need to mirror so that $K h(L)$ becomes $K h(\bar{L})$ and 0 -resolutions become 1-resolutions.

Theorem (Jacobsson)

Given a cobordism Λ of L to \emptyset, there is a corresponding element c_{Λ} in $K h(\bar{L})$.

If Λ is decomposable, then c_{Λ} is obtained by composing:

$$
K h(\emptyset) \rightarrow K h(\sqcup \text { unknots }) \rightarrow \cdots \rightarrow K h(\bar{L})
$$

where all the arrows after the first are maps for Reidemeister moves or inverses of 1 -resolution maps.

Relationship to Ng's and Plamenevskaya's works

Example: (Right-handed trefoil) If L is the right-handed trefoil, then c_{\wedge} for the examples of Λ above are at homological grading 0 and q-grading -1 .
(1) The class c_{Λ} coincides with the transverse knot invariant of Plamenevskaya in Khovanov homology.
(2) The class c_{Λ} lies on the line given by Ng which indicates an upper bound on the Thurston-Bennequin invariant.

Khovanov homology of left-handed trefoil

Figure: The Khovanov homology of the left-handed trefoil. Each dot represents a \mathbf{Z}, and the red dot is the location of c_{Λ}.

Some questions

We can assign to each Legendrian knot L the collection

$$
\operatorname{Lag}(L)=\{\Lambda \mid \Lambda \text { Lagrangian which bounds } L\}
$$

and hence

$$
C(L)=\left\{c_{\Lambda} \mid \Lambda \in \operatorname{Lag}(L)\right\} \subset K h(\bar{L})
$$

Questions

(1) Is $C(L)$ a finite set? $\left(C(L)=\emptyset\right.$ if $t b(L) \neq 2 g_{4}(L)-1$.)
(2) Does $C(L)$ ever have more than one element?

Happy Birthday, Yasha!

[^0]: ${ }^{a} \exists$ minor technical conditions

