Invariants of exact Lagrangian cobordisms

Ko Honda

Univ. of Southern California and Univ. of Tokyo

June 26, 2007

Joint work with Tobias Ekholm and Tamás Kálmán

Ko Honda (USC/Tokyo)

Exact Lagrangian Cobordisms

June 26, 2007 1 / 26

Introduction

Consider the standard contact ($\mathbf{R}^3, \xi = \ker \alpha$), where $\alpha = dz - ydx$.

A Legendrian knot $L \subset (\mathbb{R}^3, \xi)$ is a knot which is everywhere tangent to ξ , i.e., satisfies dz - ydx = 0.

Figure: A right-handed trefoil in the xy-projection (Lagrangian projection).

Legendrian knot invariants

Given an oriented Legendrian knot L, there are two "classical invariants", the *Thurston-Bennequin number* and the *rotation number*. With respect to the *xy*-projection π , they are given as follows:

- tb(L) is the *writhe* of $\pi(L)$, i.e., the number of positive crossings minus the number of negative crossings.
- 2 r(L) is the degree of the Gauss map (or winding number) of $\pi(L)$.

Example: For the right-handed trefoil example, tb(L) = 1 and r(L) = 0.

Lagrangian cobordisms

The symplectization of (\mathbf{R}^3, ξ) is $\mathbf{R} \times \mathbf{R}^3$ with the symplectic form $\omega = d(e^t \alpha) = e^t (dt \wedge \alpha + d\alpha)$, where t is the first coordinate. This will be our ambient manifold for today.

Definition

Let L, L' be Legendrian knots. A Lagrangian cobordism Λ from L to L' is an embedded Lagrangian surface (i.e., $\omega|_{\Lambda} = 0$) which agrees with a cylinder over L for $t \gg 0$ and a cylinder over L' for $t \ll 0$.

Remark: A cylinder $\mathbf{R} \times L$ over a Legendrian knot L is Lagrangian in the symplectization.

イロト 不得下 イヨト イヨト 二日

Exact Lagrangian cobordisms

Today our Lagrangians Λ will be *exact*: The symplectic form $\omega = d(e^t \alpha)$ is an exact symplectic form. By the Lagrangian condition, $\omega|_{\Lambda} = d(e^t \alpha)|_{\Lambda} = 0$. We say Λ is *exact* if $e^t \alpha|_{\Lambda} = dF$, where F is a function on Λ .

The exactness will be important when we discuss the TQFT properties of Lagrangian cobordisms.

Basic Observations

Theorem (Chantraine)

If Λ is a Lagrangian cobordism from L to L', then

$$tb(L) - tb(L') = -\chi(\Lambda).$$

If $L' = \emptyset$, then, combining with the slice Bennequin inequality (due to Kronheimer-Mrowka/Rudolph):

$$tb(L) \pm r(L) \leq 2g_4(L) - 1,$$

where $g_4(L)$ is the 4-ball genus, we have:

Corollary

If L bounds a Lagrangian surface, then $tb(L) = 2g_4(L) - 1$ and r(L) = 0.

(日) (周) (日) (日)

Examples

Figure: The left-hand cobordism exists, whereas the right-hand one does not.

Constructions

Theorem

There exists an exact Lagrangian cobordism for the following:

- Legendrian isotopy from L to L'.
- O-resolution at a contractible crossing of L in the xy-projection.
- Solution Capping off a tb = -1 unknot with a disk.

Definition

A contractible crossing of L is a crossing so that $z_1 - z_0$ can be shrunk to zero without affecting the other crossings. (Here z_1 is the z-coordinate on the upper strand and z_0 is the z-coordinate on the lower strand.)

0-resolution

Figure: The 0-resolution.

∃ →

A.

An example

Example: (Right-handed trefoil) All three crossings in the middle are contractible. Hence it is possible to 0-resolve each of the b_1 , b_2 , b_3 , in any order.

Figure: The right-handed trefoil in the xy-projection.

Decomposability

Definition

 Λ is decomposable if it is obtained by stacking exact Lagrangians corresponding to the following three operations given above:

- Legendrian isotopy;
- O-resolution;
- Output Capping off an unknot.

Conjecture

Every exact Lagrangian cobordism of L to \emptyset is decomposable.

.

Legendrian contact homology

The combinatorial version is due independently to Chekanov and Eliashberg.

We will work over $\mathbf{Z}/2$ -coefficients.

A(L) = free algebra with unit (= tensor algebra) generated by the double points of the *xy*-projection

The boundary map $\partial : \mathcal{A}(L) \to \mathcal{A}(L)$ is given as follows:

$$\partial y = \sum_{P} w_{P},$$

where the sum is over all immersed polygons P with one positive corner at y and zero or more negative corners (in the xy-projection). If the vertices of P are y, x_1, x_2, x_3 in clockwise order, then $w_P = x_1x_2x_3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Legendrian contact homology, continued

Fact: $\partial^2 = 0$.

We can therefore define the Legendrian contact homology HC(L) as the homology of $(\mathcal{A}(L), \partial)$.

For each Legendrian Reidemeister move $L \rightsquigarrow L'$ (i.e., Legendrian isotopy), there exists a corresponding combinatorial chain map which induces an isomorphism $\Phi : HC(L) \rightarrow HC(L')$.

Recall that every Legendrian isotopy gives rise to an exact Lagrangian cobordism. The combinatorial chain maps of Chekanov arise from the corresponding exact Lagrangian cobordism. (Work of Ekholm-Kálmán, in progress.)

TQFT/SFT package

Theorem

• An exact^a Lagrangian cobordism Λ from L to L' induces a map $\Phi_{\Lambda} : HC(L) \rightarrow HC(L'),$

which is an invariant of Λ up to exact Lagrangian isotopy.

• Given exact Lagrangian cobordisms Λ_1 (from L_1 to L_2) and Λ_2 (from L_2 to L_3),

$$\Phi_{\Lambda_1\circ\Lambda_2}=\Phi_{\Lambda_2}\circ\Phi_{\Lambda_1}.$$

^aThe exactness is crucial here, to prevent boundary bubbling.

< 回 ト < 三 ト < 三 ト

0-resolution map

Theorem

Let $L \rightsquigarrow L'$ be a 0-resolution^a at a contractible double point x, and let Λ be an exact Lagrangian cobordism representing this 0-resolution. Then the combinatorial chain map

$$\Phi_{\Lambda}: \mathcal{A}(L) \rightarrow \mathcal{A}(L')$$

is given as follows:

$$x\mapsto 1,$$

 $y\mapsto y+\sum_P w_P,$

where $y \neq x$ and the sum is over all immersed polygons P with two positive corners, one at x and the other at y, and zero or more negative corners. If the vertices of P are y, x_1, x_2, x, x_3 in clockwise order, for example, then $w_P = x_1 x_2 x_3$.

^a∃ minor technical conditions

Proof of Theorem

First change coordinates:

$$d(e^t(dz - ydx)) = d(e^t) \wedge dz + dx \wedge d(e^ty),$$

and set $u_1 = e^t$, $v_1 = z$, $u_2 = x$, $v_2 = e^t y$. Then Λ is a Lagrangian in the standard (\mathbf{R}^4 , $\sum_i du_i \wedge dv_i$), with an infinity in the u_1 -direction.

Exact Lagrangian means that there is a lift of the Lagrangian to a Legendrian submanifold in the standard contact \mathbf{R}^5 with coordinates (w, u_1, v_1, u_2, v_2) and contact form $dw - \sum_i v_i du_i$.

Use a slight extension of Ekholm's gradient flow tree technique for Legendrian submanifolds, which in turn generalizes Fukaya and Oh's work on gradient flow trees.

イロト 不得 トイヨト イヨト 二日

An example

Example: (Right-handed trefoil)

We resolve the contractible crossings b_1, b_2, b_3 in six different ways.

For example, if we resolve b_1 , b_2 , b_3 in that order, then we obtain the map

$$\varepsilon: \mathcal{A}(L) \to \mathcal{A}(\emptyset) = \mathbf{Z}/2,$$

$$b_1\mapsto 1,\ b_2\mapsto 0,\ b_3\mapsto 0,\ a_i\mapsto 0.$$

Augmentations

A chain map $\varepsilon : \mathcal{A}(L) \to \mathbb{Z}/2$ is called an *augmentation*. (Augmentations are usually required to *linearize* contact homology and compute its E_1 -term with respect to the word length filtration.)

Fact: Algebraically there are 5 augmentations $\varepsilon : \mathcal{A}(L) \to \mathbb{Z}/2$, where L is the right-handed trefoil.

Augmentations, continued

Theorem

- All 5 augmentations are geometric, i.e., arise from an exact Lagrangian cobordism from L to Ø. They are obtained by resolving b₁, b₂, b₃ in different orders.
- All 5 exact Lagrangian cobordisms are distinct via exact Lagrangian isotopy.

A conjecture

Conjecture

Every augmentation of a Legendrian knot is geometric.

I'm deliberately being vague here — for example, do we allow immersed exact Lagrangian cobordisms whose double points have certain Maslov indices, so that the map $HC(L) \rightarrow \mathbb{Z}/2$ is still well-defined and independent of immersed exact Lagrangian isotopy?

Khovanov homology

To each decomposable Λ , there exists a sequence

$$L = L_1, L_2, \ldots, L_n = \sqcup$$
 unknots,

where each $L_i \rightsquigarrow L_{i+1}$ is either a Reidemeister move or a 0-resolution.

In Khovanov homology, there exist maps corresponding to:

- The inverse of a 1-resolution.
- The creation of an unknot.
- Seidemeister moves.

Elements in Khovanov homology

We need to mirror so that Kh(L) becomes $Kh(\overline{L})$ and 0-resolutions become 1-resolutions.

Theorem (Jacobsson)

Given a cobordism Λ of L to \emptyset , there is a corresponding element c_{Λ} in $Kh(\overline{L})$.

If Λ is decomposable, then c_{Λ} is obtained by composing:

$$Kh(\emptyset) \rightarrow Kh(\sqcup \text{ unknots}) \rightarrow \cdots \rightarrow Kh(\overline{L}),$$

where all the arrows after the first are maps for Reidemeister moves or inverses of 1-resolution maps.

イロト 不得下 イヨト イヨト 二日

Relationship to Ng's and Plamenevskaya's works

Example: (Right-handed trefoil) If *L* is the right-handed trefoil, then c_{Λ} for the examples of Λ above are at homological grading 0 and *q*-grading -1.

- The class c_Λ coincides with the transverse knot invariant of Plamenevskaya in Khovanov homology.
- **2** The class c_{Λ} lies on the line given by Ng which indicates an upper bound on the Thurston-Bennequin invariant.

Khovanov homology of left-handed trefoil

Figure: The Khovanov homology of the left-handed trefoil. Each dot represents a Z, and the red dot is the location of c_{Λ} .

Some questions

We can assign to each Legendrian knot L the collection

 $Lag(L) = \{\Lambda \mid \Lambda \text{ Lagrangian which bounds } L\},\$

and hence

$$C(L) = \{c_{\Lambda} \mid \Lambda \in Lag(L)\} \subset Kh(\overline{L})$$

Questions

Is
$$C(L)$$
 a finite set? ($C(L) = \emptyset$ if $tb(L) \neq 2g_4(L) - 1$.)

2 Does C(L) ever have more than one element?

・ 同 ト ・ ヨ ト ・ ヨ ト

Happy Birthday, Yasha!

∃ →

3