QUANTUM STRUCTURES FOR LAGRANGIAN SUBMANIFOLDS

> YASHA FEST Stanford June 2007

Paul Biran, Tel-Aviv University

Joint work with Octav Cornea, University of Montreal

 (M, ω) symplectic manifold.

 (M, ω) symplectic manifold. \rightsquigarrow quantum homology $QH_*(M)$.

 (M, ω) symplectic manifold. \rightsquigarrow quantum homology $QH_*(M)$. $L \subset M$ Lagrangian.

 (M, ω) symplectic manifold. \rightsquigarrow quantum homology $QH_*(M)$. $L \subset M$ Lagrangian. \rightsquigarrow Floer homology $HF_*(L) = HF_*(L, L)$.

 (M, ω) symplectic manifold. \sim quantum homology $QH_*(M)$. $L \subset M$ Lagrangian. \sim Floer homology $HF_*(L) = HF_*(L, L)$. In this talk:

(M, ω) symplectic manifold.
~ quantum homology QH_{*}(M).
L ⊂ M Lagrangian.
~ Floer homology HF_{*}(L) = HF_{*}(L, L).
In this talk:
Relations between HF(L) and QH(M).

 (M, ω) symplectic manifold. \rightsquigarrow quantum homology $QH_*(M)$. $L \subset M$ Lagrangian. \rightsquigarrow Floer homology $HF_*(L) = HF_*(L,L)$. In this talk: Relations between HF(L) and QH(M). Computations related to the quantum product of HF(L).

 (M, ω) symplectic manifold. \sim quantum homology $QH_*(M)$. $L \subset M$ Lagrangian. \sim Floer homology $HF_*(L) = HF_*(L, L)$. In this talk:

- Relations between HF(L) and QH(M).
- Computations related to the quantum product of HF(L).
- Applications to topology of Lagrangians, quantum homology, symplectic packing.

 (M, ω) symplectic manifold. \sim quantum homology $QH_*(M)$. $L \subset M$ Lagrangian. \sim Floer homology $HF_*(L) = HF_*(L, L)$. In this talk:

- Relations between HF(L) and QH(M).
- Computations related to the quantum product of HF(L).
- Applications to topology of Lagrangians, quantum homology, symplectic packing.

Our goal is **NOT** Lagrangian intersections!!!

The pearl complex (suggested by Fukaya, Oh).

 $L \subset M \text{ monotone.}$ $\omega(A) > 0 \text{ iff } \mu(A) > 0, A \in \pi_2(M, L).$ $N_L = \text{min. Maslov number} \ge 2.$ $\mathsf{Put } \bar{\mu} = \frac{1}{N_L} \mu : \pi_2(M, L) \to \mathbb{Z}.$

The pearl complex (suggested by Fukaya, Oh).

 $L \subset M \text{ monotone.}$ $\omega(A) > 0 \text{ iff } \mu(A) > 0, A \in \pi_2(M, L).$ $N_L = \text{min. Maslov number} \ge 2.$ $\mathsf{Put } \bar{\mu} = \frac{1}{N_L} \mu : \pi_2(M, L) \to \mathbb{Z}.$

 $f: L \to \mathbb{R} \text{ Morse. } \mathcal{C}_*(f) = \mathbb{Z}_2 \langle \operatorname{Crit}(f) \rangle \otimes \Lambda_*.$ $\Lambda_* = \mathbb{Z}_2[t, t^{-1}], \deg t := -N_L.$

The pearl complex (suggested by Fukaya, Oh). $L \subset M$ monotone. $\omega(A) > 0$ iff $\mu(A) > 0$, $A \in \pi_2(M, L)$. $N_L = \min$. Maslov number ≥ 2 . Put $\bar{\mu} = \frac{1}{N_I} \mu : \pi_2(M, L) \to \mathbb{Z}.$ $f: L \to \mathbb{R}$ Morse. $\mathcal{C}_*(f) = \mathbb{Z}_2 \langle \mathsf{Crit}(f) \rangle \otimes \Lambda_*$. $\Lambda_* = \mathbb{Z}_2[t, t^{-1}], \deg t := -N_L.$ Floer differential. $d : \mathcal{C}_*(f) \to \mathcal{C}_{*-1}(f)$. $d(x) = \sum_{\mathbf{A},y} n_I(x,y;J,\mathbf{A})y t^{\bar{\mu}(\mathbf{A})}.$

y

The pearl complex (suggested by Fukaya, Oh). $\square L \subset M$ monotone. $\omega(A) > 0$ iff $\mu(A) > 0$, $A \in \pi_2(M, L)$. $N_L = \min$. Maslov number ≥ 2 . Put $\bar{\mu} = \frac{1}{N_I} \mu : \pi_2(M, L) \to \mathbb{Z}.$ $I : L \to \mathbb{R}$ Morse. $C_*(f) = \mathbb{Z}_2 \langle \mathsf{Crit}(f) \rangle \otimes \Lambda_*.$ $\Lambda_* = \mathbb{Z}_2[t, t^{-1}], \deg t := -N_L.$ Floer differential. $d : \mathcal{C}_*(f) \to \mathcal{C}_{*-1}(f)$. $d(x) = \sum_{\mathbf{A},y} n_I(x,y;J,\mathbf{A}) y t^{\bar{\mu}(\mathbf{A})}.$ x

PSS-Albers argument \implies $H_*(\mathcal{C}(f), d) \cong HF_*(L, L).$

y

Y

• $f_1, f_2, f_3: L \to \mathbb{R}$ Morse.

 $f_1, f_2, f_3: L \to \mathbb{R}$ Morse.

$$x \otimes y \longmapsto x * y := \sum_{z,\mathbf{A}} n_{II}(x,y,z;J,\mathbf{A}) z t^{\overline{\mu}(\mathbf{A})}$$

 $f_1, f_2, f_3: L \to \mathbb{R}$ Morse.

$$x \otimes y \longmapsto x * y := \sum_{z,\mathbf{A}} n_{II}(x,y,z;J,\mathbf{A}) z t^{\bar{\mu}(\mathbf{A})}$$

Possible to work with 2 functions (i.e. $f_3 = f_1$). Possible to work with $Crit(f_3) = Crit(f_2) = Crit(f_1)$.

 $f_1, f_2, f_3: L \rightarrow \mathbb{R}$ Morse.

$$x \otimes y \longmapsto x * y := \sum_{z,\mathbf{A}} n_{II}(x,y,z;J,\mathbf{A}) z t^{\overline{\mu}(\mathbf{A})}$$

Possible to work with 2 functions (i.e. f₃ = f₁).
Possible to work with Crit(f₃) = Crit(f₂) = Crit(f₁).
HF(L) becomes a (<u>NON COMMUTATIVE</u>) ring with a unity w ∈ HF_n(L). Actually, w = [max].

Quantum homology: $QH_i(M) \otimes QH_j(M) \rightarrow QH_{i+j-2n}(M)$

 $QH_*(M) = H_*(M) \otimes \Lambda_*.$

Quantum homology: $QH_i(M) \otimes QH_j(M) \rightarrow QH_{i+j-2n}(M)$

 $QH_*(M) = H_*(M) \otimes \Lambda_*.$

 $g_1, g_2, g_3 : M \to \mathbb{R}$ Morse. Define $C_i(g_1) \otimes C_j(g_2) \to C_{i+j-2n}(g_3)$ by counting:

Quantum homology: $QH_i(M) \otimes QH_j(M) \rightarrow QH_{i+j-2n}(M)$

 $QH_*(M) = H_*(M) \otimes \Lambda_*.$

□ $g_1, g_2, g_3 : \overline{M} \to \mathbb{R}$ Morse. Define $C_i(g_1) \otimes C_j(g_2) \to C_{i+j-2n}(g_3)$ by counting:

■ $QH_*(M)$ becomes a (commutative) ring. Unity = fundamental class $u = [M] \in QH_{2n}(M)$.

External operations

Pick $f: L \to \mathbb{R}, g: M \to \mathbb{R}$ Morse.

– p.6

External operations

Pick $f: L \to \mathbb{R}, g: M \to \mathbb{R}$ Morse.
Define $\mathcal{C}_i(M;g) \otimes \mathcal{C}_j(L;f) \to \mathcal{C}_{i+j-2n}(L;g)$ $a \otimes x \longmapsto a * x := \sum_{y,\mathbf{A}} n_{III}(a,x,y;J,\mathbf{A})y t^{\bar{\mu}(\mathbf{A})}.$

External operations

Pick f: L → R, g: M → R Morse.
Define C_i(M; g) ⊗ C_j(L; f) → C_{i+j-2n}(L; g) a ⊗ x ↦ a * x := ∑_{y,A} n_{III}(a, x, y; J, A)y t^{µ(A)}.

<u>IMPORTANT</u>: The 3 points on the disk marked by the $-\nabla g$ and $-\nabla f$ trajectories must lie on the same hyperbolic geodesic.

<u>Thm:</u> The map $a \otimes x \mapsto a * x$ is a chain map. \rightsquigarrow operation $QH_i(M) \otimes HF_j(L) \rightarrow HF_{i+j-2n}(L)$.

<u>Thm:</u> The map $a \otimes x \mapsto a * x$ is a chain map. \rightsquigarrow operation $QH_i(M) \otimes HF_j(L) \rightarrow HF_{i+j-2n}(L)$.

Moreover, HF(L) becomes a two-sided module, in fact algebra, over $QH_*(M)$.

<u>Thm:</u> The map $a \otimes x \mapsto a * x$ is a chain map. \rightsquigarrow operation $QH_i(M) \otimes HF_j(L) \rightarrow HF_{i+j-2n}(L)$.

Moreover, HF(L) becomes a two-sided module, in fact algebra, over $QH_*(M)$.

 $\forall a, b \in QH(M), \gamma, \delta \in HF(L)$:

$$a * (b * \gamma) = (a * b) * \gamma,$$

$$a * (\gamma * \delta) = (a * \gamma) * \delta = \gamma * (a * \delta),$$

 $u * \gamma = \gamma$ etc.

Augmentation: $\epsilon_L : HF_*(L) \to \Lambda_*$, induced by $\min_f \mapsto 1 \in \Lambda$.

Augmentation: $\epsilon_L : HF_*(L) \to \Lambda_*$, induced by $\min_f \mapsto 1 \in \Lambda$.

Quantum inclusion: $i_L : HF_*(L) \to QH_*(M)$ $QH_*(M)$ -module morphism. (A quantum analogue of work of Albers).

Augmentation: $\epsilon_L : HF_*(L) \to \Lambda_*$, induced by $\min_f \mapsto 1 \in \Lambda$.

Quantum inclusion: $i_L : HF_*(L) \to QH_*(M)$ $QH_*(M)$ -module morphism. (A quantum analogue of work of Albers). Defined by counting:

Augmentation: $\epsilon_L : HF_*(L) \to \Lambda_*$, induced by $\min_f \mapsto 1 \in \Lambda$.

Quantum inclusion: $i_L : HF_*(L) \to QH_*(M)$ $QH_*(M)$ -module morphism. (A quantum analogue of work of Albers). Defined by counting:

Everything is compatible with duality: $\forall h \in H_*(M), \alpha \in HF_*(L): \langle PD(h), i_L(\alpha) \rangle = \epsilon_L(h * \alpha).$

Spectral sequences (in the spirit of Y.-G. Oh)

– p.9

Spectral sequences (in the spirit of Y.-G. Oh)

Degree filtration on Λ :

Spectral sequences (in the spirit of Y.-G. Oh)

Degree filtration on Λ :

$$\mathcal{F}^p \Lambda = \Big\{ \sum_{i \ge p} a_i t^i \Big\}.$$

 \rightsquigarrow filtration on $\mathcal{C}(f;\Lambda) = \mathbb{Z}_2 \langle \operatorname{Crit}(f) \rangle \otimes \Lambda$.
Degree filtration on Λ :

$$\mathcal{F}^p \Lambda = \Big\{ \sum_{i \ge p} a_i t^i \Big\}.$$

 \rightsquigarrow filtration on $\mathcal{C}(f;\Lambda) = \mathbb{Z}_2 \langle \operatorname{Crit}(f) \rangle \otimes \Lambda$. The Floer differential respects this filtration

Degree filtration on Λ :

$$\mathcal{F}^p \Lambda = \Big\{ \sum_{i \ge p} a_i t^i \Big\}.$$

→ filtration on $C(f; \Lambda) = \mathbb{Z}_2 \langle \operatorname{Crit}(f) \rangle \otimes \Lambda$. The Floer differential respects this filtration → spectral sequence $\{E_{*,*}^r, d_r\}$ converging to HF(L). The E^1 -term comes from the singular homology $H_*(L)$.

Degree filtration on Λ :

$$\mathcal{F}^p \Lambda = \Big\{ \sum_{i \ge p} a_i t^i \Big\}.$$

→ filtration on $C(f; \Lambda) = \mathbb{Z}_2 \langle \operatorname{Crit}(f) \rangle \otimes \Lambda$. The Floer differential respects this filtration → spectral sequence $\{E_{*,*}^r, d_r\}$ converging to HF(L). The E^1 -term comes from the singular homology $H_*(L)$. All operations above compatible with the filtration. \Rightarrow Operations on the spectral sequence.

Degree filtration on Λ :

$$\mathcal{F}^p \Lambda = \Big\{ \sum_{i \ge p} a_i t^i \Big\}.$$

→ filtration on $C(f; \Lambda) = \mathbb{Z}_2 \langle \operatorname{Crit}(f) \rangle \otimes \Lambda$. The Floer differential respects this filtration → spectral sequence $\{E_{*,*}^r, d_r\}$ converging to HF(L). The E^1 -term comes from the singular homology $H_*(L)$. All operations above compatible with the filtration. \Rightarrow Operations on the spectral sequence.

(Compatibility with the quantum product was previously noticed by Buhovsky and by Fukaya-Oh-Ohta-Ono).

There is also PD for $HF_*(L) \rightsquigarrow$ non-degenerate bilinear map $HF(L) \otimes HF(L) \rightarrow \Lambda$.

There is also PD for $HF_*(L) \rightsquigarrow$ non-degenerate bilinear map $HF(L) \otimes HF(L) \rightarrow \Lambda$.

Action of symplectomorphisms: $\phi \in Symp(M, L)$

There is also PD for $HF_*(L) \rightsquigarrow$ non-degenerate bilinear map $HF(L) \otimes HF(L) \rightarrow \Lambda$.

Action of symplectomorphisms: $\phi \in Symp(M, L)$ induces a chain map $C_*(L; f) \rightarrow C_*(L; f)$ which respects the degree filtration.

There is also PD for $HF_*(L) \rightsquigarrow$ non-degenerate bilinear map $HF(L) \otimes HF(L) \rightarrow \Lambda$.

Action of symplectomorphisms: $\phi \in Symp(M, L)$ induces a chain map $\mathcal{C}_*(L; f) \to \mathcal{C}_*(L; f)$ which respects the degree filtration. It induces an isomorphism in homology $\overline{\phi} : HF_*(L) \to HF_*(L)$ which coincides on the E^1 term of the spectral sequence with the classical map ϕ_* induced on singular homology.

There is also PD for $HF_*(L) \rightsquigarrow$ non-degenerate bilinear map $HF(L) \otimes HF(L) \rightarrow \Lambda$.

Action of symplectomorphisms: $\phi \in Symp(M, L)$ induces a chain map $\mathcal{C}_*(L; f) \to \mathcal{C}_*(L; f)$ which respects the degree filtration. It induces an isomorphism in homology $\overline{\phi} : HF_*(L) \to HF_*(L)$ which coincides on the E^1 term of the spectral sequence with the classical map ϕ_* induced on singular homology.

We actually get a representation $\lambda : Symp(M, L) \longrightarrow Aut(HF_*(L)), \phi \longmapsto \overline{\phi}.$

There is also PD for $HF_*(L) \rightsquigarrow$ non-degenerate bilinear map $HF(L) \otimes HF(L) \rightarrow \Lambda$.

Action of symplectomorphisms: $\phi \in Symp(M, L)$ induces a chain map $\mathcal{C}_*(L; f) \to \mathcal{C}_*(L; f)$ which respects the degree filtration. It induces an isomorphism in homology $\overline{\phi} : HF_*(L) \to HF_*(L)$ which coincides on the E^1 term of the spectral sequence with the classical map ϕ_* induced on singular homology.

We actually get a representation

 $\lambda : Symp(M, L) \longrightarrow Aut(HF_*(L)), \phi \longmapsto \overline{\phi}.$ The restriction of λ to $Symp_0(M) \cap Symp(M, L)$ gives automorphisms of $HF_*(L)$ as an algebra over $QH_*(M)$.

We can also work with $\Lambda^+ = \mathbb{Z}_2[t]$ (instead of $\mathbb{Z}_2[t, t^{-1}]$). We get a chain complex $\mathcal{C}^+_*(L, f)$. $\rightsquigarrow HF^+_*(L)$.

We can also work with $\Lambda^+ = \mathbb{Z}_2[t]$ (instead of $\mathbb{Z}_2[t, t^{-1}]$). We get a chain complex $\mathcal{C}^+_*(L, f)$. $\rightsquigarrow HF^+_*(L)$.

Everything above remains valid, except that now $HF_*^+(L)$ is in general <u>NOT</u> HF(L,L) anymore.

We can also work with $\Lambda^+ = \mathbb{Z}_2[t]$ (instead of $\mathbb{Z}_2[t, t^{-1}]$). We get a chain complex $\mathcal{C}^+_*(L, f)$. $\rightsquigarrow HF^+_*(L)$.

Everything above remains valid, except that now $HF_*^+(L)$ is in general <u>NOT</u> HF(L,L) anymore.

 $HF_*^+(L)$ is still invariant of f, J. It looks very relevant for purposes of enumerative geometry.

We can also work with $\Lambda^+ = \mathbb{Z}_2[t]$ (instead of $\mathbb{Z}_2[t, t^{-1}]$). We get a chain complex $\mathcal{C}^+_*(L, f)$. $\rightsquigarrow HF^+_*(L)$.

Everything above remains valid, except that now $HF_*^+(L)$ is in general <u>NOT</u> HF(L,L) anymore.

 $HF_*^+(L)$ is still invariant of f, J. It looks very relevant for purposes of enumerative geometry.

(A similar object has been studied in the context of Lagrangian intersections by Fukaya-Oh-Ohta-Ono).

Main blocks of the proof

Transversality.

We need all 0-dim & 1-dim moduli spaces of pearly trajectories to be smooth and of expected dimensions.

Transversality for holomorphic disks requires them to be *absolutely distinct* + somewhere injective. This can be achieved using works of Lazzarini, Kwon-Oh + some combinatorics.

Main blocks of the proof

Transversality.

We need all 0-dim & 1-dim moduli spaces of pearly trajectories to be smooth and of expected dimensions.

Transversality for holomorphic disks requires them to be *absolutely distinct* + somewhere injective. This can be achieved using works of Lazzarini, Kwon-Oh + some combinatorics.

Compactification of the 1-dim moduli spaces of pearls.

Transversality.

We need all 0-dim & 1-dim moduli spaces of pearly trajectories to be smooth and of expected dimensions.

Transversality for holomorphic disks requires them to be *absolutely distinct* + somewhere injective. This can be achieved using works of Lazzarini, Kwon-Oh + some combinatorics.

Compactification of the 1-dim moduli spaces of pearls.

Gluing.

Existence: we followed Fukaya-Oh-Ohta-Ono. Uniqueness: we proved surjectivity of the gluing map for 0 and 1-dim moduli spaces.

Suppose $a \in QH_i(M)$ is invertible.

Suppose $a \in QH_i(M)$ is invertible. $\implies a * (-) : HF_*(L) \xrightarrow{\cong} HF_{*+i-2n}(L)$ isomorphism.

Suppose $a \in QH_i(M)$ is invertible. $\implies a * (-) : HF_*(L) \xrightarrow{\cong} HF_{*+i-2n}(L)$ isomorphism.

Ex. $M = \mathbb{C}P^n$. $h \in H_{2n-2}(\mathbb{C}P^n)$ hyperplane, $p \in H_0(\mathbb{C}P^n)$ point, $u = [\mathbb{C}P^n] \in H_{2n}(\mathbb{C}P^n)$.

Suppose $a \in QH_i(M)$ is invertible. $\implies a * (-) : HF_*(L) \xrightarrow{\cong} HF_{*+i-2n}(L)$ isomorphism.

Ex. $M = \mathbb{C}P^n$. $h \in H_{2n-2}(\mathbb{C}P^n)$ hyperplane, $p \in H_0(\mathbb{C}P^n)$ point, $u = [\mathbb{C}P^n] \in H_{2n}(\mathbb{C}P^n)$.

Quantum homology: $h^{*j} = \overline{h^{\cap j}}, \forall 0 \le j \le n$.

Suppose $a \in QH_i(M)$ is invertible. $\implies a * (-) : HF_*(L) \xrightarrow{\cong} HF_{*+i-2n}(L)$ isomorphism.

Ex. $M = \mathbb{C}P^n$. $h \in H_{2n-2}(\mathbb{C}P^n)$ hyperplane, $p \in H_0(\mathbb{C}P^n)$ point, $u = [\mathbb{C}P^n] \in H_{2n}(\mathbb{C}P^n)$.

Quantum homology: $h^{*j} = h^{\cap j}$, $\forall 0 \le j \le n$. $h^{\cap (n+1)} = 0$ but $h^{*(n+1)} = ut^{(2n+2)/N_L}$. (Recall deg $t = -N_L$).

Suppose $a \in QH_i(M)$ is invertible. $\implies a * (-) : HF_*(L) \xrightarrow{\cong} HF_{*+i-2n}(L)$ isomorphism.

Ex. $M = \mathbb{C}P^n$. $h \in H_{2n-2}(\mathbb{C}P^n)$ hyperplane, $p \in H_0(\mathbb{C}P^n)$ point, $u = [\mathbb{C}P^n] \in H_{2n}(\mathbb{C}P^n)$.

Quantum homology: $h^{*j} = h^{\cap j}$, $\forall 0 \le j \le n$. $h^{\cap(n+1)} = 0$ but $h^{*(n+1)} = ut^{(2n+2)/N_L}$. (Recall deg $t = -N_L$). So $h \in QH_{2n-2}(\mathbb{C}P^n)$ is invertible !

Suppose $a \in QH_i(M)$ is invertible. $\implies a * (-) : HF_*(L) \xrightarrow{\cong} HF_{*+i-2n}(L)$ isomorphism.

Ex. $M = \mathbb{C}P^n$. $h \in H_{2n-2}(\mathbb{C}P^n)$ hyperplane, $p \in H_0(\mathbb{C}P^n)$ point, $u = [\mathbb{C}P^n] \in H_{2n}(\mathbb{C}P^n)$.

Quantum homology: $h^{*j} = h^{\cap j}, \forall 0 \le j \le n$. $h^{\cap(n+1)} = 0$ but $h^{*(n+1)} = ut^{(2n+2)/N_L}$. (Recall deg $t = -N_L$). So $h \in QH_{2n-2}(\mathbb{C}P^n)$ is invertible !

<u>Cor</u>: \forall monotone $L \subset \mathbb{C}P^n$, $HF_*(L) \cong HF_{*-2}(L)$.

Suppose $a \in QH_i(M)$ is invertible. $\implies a * (-) : HF_*(L) \xrightarrow{\cong} HF_{*+i-2n}(L)$ isomorphism.

Ex. $M = \mathbb{C}P^n$. $h \in H_{2n-2}(\mathbb{C}P^n)$ hyperplane, $p \in H_0(\mathbb{C}P^n)$ point, $u = [\mathbb{C}P^n] \in H_{2n}(\mathbb{C}P^n)$.

Quantum homology: $h^{*j} = h^{\cap j}$, $\forall 0 \le j \le n$. $h^{\cap(n+1)} = 0$ but $h^{*(n+1)} = ut^{(2n+2)/N_L}$. (Recall deg $t = -N_L$). So $h \in QH_{2n-2}(\mathbb{C}P^n)$ is invertible !

<u>Cor</u>: \forall monotone $L \subset \mathbb{C}P^n$, $HF_*(L) \cong HF_{*-2}(L)$. (Previously proved by other methods by Seidel).

Suppose $a \in QH_i(M)$ is invertible. $\implies a * (-) : HF_*(L) \xrightarrow{\cong} HF_{*+i-2n}(L)$ isomorphism.

Ex. $M = \mathbb{C}P^n$. $h \in H_{2n-2}(\mathbb{C}P^n)$ hyperplane, $p \in H_0(\mathbb{C}P^n)$ point, $u = [\mathbb{C}P^n] \in H_{2n}(\mathbb{C}P^n)$.

Quantum homology: $h^{*j} = h^{\cap j}$, $\forall 0 \le j \le n$. $h^{\cap(n+1)} = 0$ but $h^{*(n+1)} = ut^{(2n+2)/N_L}$. (Recall deg $t = -N_L$). So $h \in QH_{2n-2}(\mathbb{C}P^n)$ is invertible !

<u>Cor</u>: \forall monotone $L \subset \mathbb{C}P^n$, $HF_*(L) \cong HF_{*-2}(L)$. (Previously proved by other methods by Seidel).

Very useful if we know that $HF_i(L) \neq 0$ for some *i*.

$\mathbb{R}P^n \subset \mathbb{C}P^n$ is a monotone Lagrangian with $N_L = n + 1$. Note that $H_1(\mathbb{R}P^n; \mathbb{Z}) = \mathbb{Z}_2$ and $H_i(\mathbb{R}P^n; \mathbb{Z}_2) = \mathbb{Z}_2 \ \forall i$.

 $\mathbb{R}P^n \subset \mathbb{C}P^n$ is a monotone Lagrangian with $N_L = n + 1$. Note that $H_1(\mathbb{R}P^n; \mathbb{Z}) = \mathbb{Z}_2$ and $H_i(\mathbb{R}P^n; \mathbb{Z}_2) = \mathbb{Z}_2 \ \forall i$.

<u>Thm:</u> $L \subset \mathbb{C}P^n$, $2H_1(L;\mathbb{Z}) = 0$. Then $N_L = n + 1$ and:

 $\mathbb{R}P^n \subset \mathbb{C}P^n$ is a monotone Lagrangian with $N_L = n + 1$. Note that $H_1(\mathbb{R}P^n; \mathbb{Z}) = \mathbb{Z}_2$ and $H_i(\mathbb{R}P^n; \mathbb{Z}_2) = \mathbb{Z}_2 \ \forall i$.

Thm: $L \subset \mathbb{C}P^n$, $2H_1(L;\mathbb{Z}) = 0$. Then $N_L = n + 1$ and: 1. $H_i(L) = \mathbb{Z}_2 \ \forall i$.

 $\mathbb{R}P^n \subset \mathbb{C}P^n$ is a monotone Lagrangian with $N_L = n + 1$. Note that $H_1(\mathbb{R}P^n; \mathbb{Z}) = \mathbb{Z}_2$ and $H_i(\mathbb{R}P^n; \mathbb{Z}_2) = \mathbb{Z}_2 \ \forall i$.

Thm: $L \subset \mathbb{C}P^n$, $2H_1(L;\mathbb{Z}) = 0$. Then $N_L = n + 1$ and:

1. $H_i(L) = \mathbb{Z}_2 \ \forall i$.

2. Let $\alpha_{n-2} \in H_{n-2}(L)$ be the generator. Then $\alpha_{n-2} \cap (-) : H_i(L) \xrightarrow{\cong} H_{i-2}(L) \quad \forall i \ge 2.$

 $\mathbb{R}P^n \subset \mathbb{C}P^n$ is a monotone Lagrangian with $N_L = n + 1$. Note that $H_1(\mathbb{R}P^n; \mathbb{Z}) = \mathbb{Z}_2$ and $H_i(\mathbb{R}P^n; \mathbb{Z}_2) = \mathbb{Z}_2 \ \forall i$.

<u>Thm:</u> $L \subset \mathbb{C}P^n$, $2H_1(L;\mathbb{Z}) = 0$. Then $N_L = n + 1$ and:

1.
$$H_i(L) = \mathbb{Z}_2 \ \forall i$$
.

2. Let $\alpha_{n-2} \in H_{n-2}(L)$ be the generator. Then $\alpha_{n-2} \cap (-) : H_i(L) \xrightarrow{\cong} H_{i-2}(L) \quad \forall i \geq 2.$

3. inc_{*} : $H_i(L) \xrightarrow{\cong} H_i(\mathbb{C}P^n) \ \forall i = \text{even.}$

 $\mathbb{R}P^n \subset \mathbb{C}P^n$ is a monotone Lagrangian with $N_L = n + 1$. Note that $H_1(\mathbb{R}P^n; \mathbb{Z}) = \mathbb{Z}_2$ and $H_i(\mathbb{R}P^n; \mathbb{Z}_2) = \mathbb{Z}_2 \ \forall i$.

Thm: $L \subset \mathbb{C}P^n$, $2H_1(L;\mathbb{Z}) = 0$. Then $N_L = n + 1$ and: 1. $H_i(L) = \mathbb{Z}_2 \ \forall i$.

- 2. Let $\alpha_{n-2} \in H_{n-2}(L)$ be the generator. Then $\alpha_{n-2} \cap (-) : H_i(L) \xrightarrow{\cong} H_{i-2}(L) \quad \forall i \ge 2.$
- **3.** inc_{*} : $H_i(L) \xrightarrow{\cong} H_i(\mathbb{C}P^n) \ \forall i = \text{even.}$

Statement 1 was proved before by Seidel by other methods. An alternative proof by B.
Let α_i be the generator of HF_i . So that $\alpha_{-1} = \alpha_n t$, $\alpha_{i+l(n+1)} = \alpha_i t^{-l}$ etc.

Let α_i be the generator of HF_i . So that $\alpha_{-1} = \alpha_n t$, $\alpha_{i+l(n+1)} = \alpha_i t^{-l}$ etc.

In other words for L as before we have:

i	 -1	0	1	 n-1	n	n+1	
HF_i	 $\mathbb{Z}_2 lpha_n t$	$\mathbb{Z}_2 lpha_0$	$\mathbb{Z}_2 lpha_1$	 $\mathbb{Z}_2 \alpha_{n-1}$	$\mathbb{Z}_2 lpha_n$	$\mathbb{Z}_2 \alpha_0 t^{-1}$	

Let α_i be the generator of HF_i . So that $\alpha_{-1} = \alpha_n t$, $\alpha_{i+l(n+1)} = \alpha_i t^{-l}$ etc.

The action of h:

i	 -1	0	1		n-1	n	n+1	
HF_i	 $\mathbb{Z}_2 lpha_n t$	$\mathbb{Z}_2 lpha_0$	$\mathbb{Z}_2 \alpha_1$	•••	$\mathbb{Z}_{2} \alpha_{n-1}$	$\mathbb{Z}_2 lpha_n$	$\mathbb{Z}_2 \alpha_0 t^{-1}$	•••

Let α_i be the generator of HF_i . So that $\alpha_{-1} = \alpha_n t$, $\alpha_{i+l(n+1)} = \alpha_i t^{-l}$ etc.

The action of *h*:

<u>Thm:</u> If $n = \text{even or } L \approx \mathbb{R}P^n$ then $\alpha_j * \alpha_k = \alpha_{j+k-n} \quad \forall k, j \in \mathbb{Z}.$

Quantum inclusion map $i_L : HF_*(L) \to QH_*(\mathbb{C}P^n)$.

Quantum inclusion map $i_L : HF_*(L) \to QH_*(\mathbb{C}P^n)$. Denote by $a_j \in H_j(\mathbb{C}P^n; \mathbb{Z}_2)$ the generator, $0 \le j \le 2n$.

Quantum inclusion map $i_L : HF_*(L) \to QH_*(\mathbb{C}P^n)$. Denote by $a_j \in H_j(\mathbb{C}P^n; \mathbb{Z}_2)$ the generator, $0 \le j \le 2n$.

<u>Thm:</u> Let $L \subset \mathbb{C}P^n$ as above.

Quantum inclusion map $i_L : HF_*(L) \to QH_*(\mathbb{C}P^n)$. Denote by $a_j \in H_j(\mathbb{C}P^n; \mathbb{Z}_2)$ the generator, $0 \le j \le 2n$.

Thm: Let $L \subset \mathbb{C}P^n$ as above.

1. If n = even then:

 $i_L(\alpha_{2k}) = a_{2k}, \quad \forall 0 \le 2k \le n,$ $i_L(\alpha_{2k+1}) = a_{2k+n+2}t, \quad \forall 1 \le 2k+1 \le n-1.$

Quantum inclusion map $i_L : HF_*(L) \to QH_*(\mathbb{C}P^n)$. Denote by $a_j \in H_j(\mathbb{C}P^n; \mathbb{Z}_2)$ the generator, $0 \le j \le 2n$.

Thm: Let $L \subset \mathbb{C}P^n$ as above.

1. If n = even then:

 $i_L(\alpha_{2k}) = a_{2k}, \quad \forall 0 \le 2k \le n,$ $i_L(\alpha_{2k+1}) = a_{2k+n+2}t, \quad \forall 1 \le 2k+1 \le n-1.$

2. If n = odd then:

 $i_L(\alpha_{2k}) = a_{2k} + a_{2k+n+1}t, \quad \forall 0 \le 2k \le n,$ $i_L(\alpha_{2k+1}) = 0, \quad \forall k.$

<u>Thm:</u> Let $L \subset \mathbb{C}P^n$ with $2H_1(L;\mathbb{Z}) = 0$. If n =even or $L \approx \mathbb{R}P^n$ then $\forall x', x'' \in L$ and $\forall J$, $\exists J$ -holomorphic disk $u : (D, \partial D) \rightarrow (\mathbb{C}P^n, L)$ with u(-1) = x', u(1) = x''& $\mu([u]) = n + 1$. The # of such disks (upto parametrization) is even ≥ 2 .

<u>Thm:</u> Let $L \subset \mathbb{C}P^n$ with $2H_1(L;\mathbb{Z}) = 0$. If n =even or $L \approx \mathbb{R}P^n$ then $\forall x', x'' \in L$ and $\forall J$, $\exists J$ -holomorphic disk $u : (D, \partial D) \rightarrow (\mathbb{C}P^n, L)$ with u(-1) = x', u(1) = x''& $\mu([u]) = n + 1$. The # of such disks (upto parametrization) is even ≥ 2 .

<u>**Proof.**</u> The point is that $\alpha_0 * \alpha_0 = \alpha_1 t$.

<u>Thm:</u> Let $L \subset \mathbb{C}P^n$ with $2H_1(L;\mathbb{Z}) = 0$. If n =even or $L \approx \mathbb{R}P^n$ then $\forall x', x'' \in L$ and $\forall J$, $\exists J$ -holomorphic disk $u : (D, \partial D) \rightarrow (\mathbb{C}P^n, L)$ with u(-1) = x', u(1) = x''& $\mu([u]) = n + 1$. The # of such disks (upto parametrization) is even ≥ 2 .

Proof. The point is that $\alpha_0 * \alpha_0 = \alpha_1 t$.

<u>Thm:</u> Let $L \subset \mathbb{C}P^n$ be a Lagrangian with $2H_1(L;\mathbb{Z}) = 0$.

Thm: Let $L \subset \mathbb{C}P^n$ be a Lagrangian with $2H_1(L;\mathbb{Z}) = 0$. 1. $\forall p \in \mathbb{C}P^n \& \forall J \in \mathcal{J}, \exists a J$ -holomorphic disk $u: (D, \partial D) \to (\mathbb{C}P^n, L)$ with $\mu([u]) = n + 1$ and u(0) = p. <u>Thm:</u> Let $L \subset \mathbb{C}P^n$ be a Lagrangian with $2H_1(L;\mathbb{Z}) = 0$.

- 1. $\forall p \in \mathbb{C}P^n \& \forall J \in \mathcal{J}, \exists a J$ -holomorphic disk $u: (D, \partial D) \rightarrow (\mathbb{C}P^n, L) \text{ with } \mu([u]) = n + 1 \text{ and}$ u(0) = p.
- 2. Let $x \in L$, $p \in \mathbb{C}P^n \setminus L$. Then for generic $J \in \mathcal{J}$, \exists a *J*-holomorphic disk $u : (D, \partial D) \to (\mathbb{C}P^n, L)$ with $\mu([u]) = 2n + 2$ and u(0) = p, u(-1) = x.

<u>Thm:</u> Let $L \subset \mathbb{C}P^n$ be a Lagrangian with $2H_1(L;\mathbb{Z}) = 0$.

- 1. $\forall p \in \mathbb{C}P^n \& \forall J \in \mathcal{J}, \exists a J$ -holomorphic disk $u: (D, \partial D) \rightarrow (\mathbb{C}P^n, L) \text{ with } \mu([u]) = n + 1 \text{ and}$ u(0) = p.
- 2. Let $x \in L$, $p \in \mathbb{C}P^n \setminus L$. Then for generic $J \in \mathcal{J}$, \exists a *J*-holomorphic disk $u : (D, \partial D) \to (\mathbb{C}P^n, L)$ with $\mu([u]) = 2n + 2$ and u(0) = p, u(-1) = x.
- 3. Suppose n = 2 and $L \approx \mathbb{R}P^2$. Let $x', x'' \in L$ two distinct points, $p \in \mathbb{C}P^2 \setminus L$. Then for generic J, \exists a *J*-holomorphic disk $u : (D, \partial D) \rightarrow (\mathbb{C}P^2, L)$ with $\mu([u]) = 6$ and u(-1) = x', u(1) = x'' and u(0) = p. The number of such disks is odd.

The quadric $Q = \{z_0^2 + \dots + z_{n+1}^2 = 0\} \subset \mathbb{C}P^{n+1}$.

The quadric $Q = \{z_0^2 + \dots + z_{n+1}^2 = 0\} \subset \mathbb{C}P^{n+1}$.

<u>Thm:</u> Assume $\dim_{\mathbb{C}} Q = \text{even.} L \subset Q$ with $H_1(L; \mathbb{Z}) = 0$. Then $H_*(L; \mathbb{Z}_2) \cong H_*(S^n; \mathbb{Z}_2)$.

The quadric $Q = \{z_0^2 + \cdots + z_{n+1}^2 = 0\} \subset \mathbb{C}P^{n+1}$.

<u>Thm:</u> Assume $\dim_{\mathbb{C}} Q = \text{even}$. $L \subset Q$ with $H_1(L; \mathbb{Z}) = 0$. Then $H_*(L; \mathbb{Z}_2) \cong H_*(S^n; \mathbb{Z}_2)$.

 $\alpha_0 := [pt] \in H_0(Q), \ \alpha_n := [L] \in H_n(L),$ $p := [pt] \in H_0(Q), \ u := [Q] \in H_{2n}(Q).$

The quadric $Q = \{z_0^2 + \cdots + z_{n+1}^2 = 0\} \subset \mathbb{C}P^{n+1}$.

<u>Thm:</u> Assume $\dim_{\mathbb{C}} Q = \text{even}$. $L \subset Q$ with $H_1(L; \mathbb{Z}) = 0$. Then $H_*(L; \mathbb{Z}_2) \cong H_*(S^n; \mathbb{Z}_2)$.

 $\alpha_0 := [pt] \in H_0(Q), \ \alpha_n := [L] \in H_n(L),$ $p := [pt] \in H_0(Q), \ u := [Q] \in H_{2n}(Q).$ <u>Thm:</u> Let $L \subset Q$ with $H_1(L; \mathbb{Z}) = 0$. Then:

The quadric $Q = \{z_0^2 + \cdots + z_{n+1}^2 = 0\} \subset \mathbb{C}P^{n+1}$.

<u>Thm:</u> Assume $\dim_{\mathbb{C}} Q = \text{even.} L \subset Q$ with $H_1(L; \mathbb{Z}) = 0$. Then $H_*(L; \mathbb{Z}_2) \cong H_*(S^n; \mathbb{Z}_2)$.

 $\alpha_0 := [pt] \in H_0(Q), \ \alpha_n := [L] \in H_n(L),$ $p := [pt] \in H_0(Q), \ u := [Q] \in H_{2n}(Q).$ <u>Thm:</u> Let $L \subset Q$ with $H_1(L; \mathbb{Z}) = 0$. Then:

1. $p * \alpha_0 = \alpha_0 t$, $p * \alpha_n = \alpha_n t$.

The quadric $Q = \{z_0^2 + \dots + z_{n+1}^2 = 0\} \subset \mathbb{C}P^{n+1}$.

<u>Thm:</u> Assume $\dim_{\mathbb{C}} Q = \text{even.} L \subset Q$ with $H_1(L; \mathbb{Z}) = 0$. Then $H_*(L; \mathbb{Z}_2) \cong H_*(S^n; \mathbb{Z}_2)$.

 $\alpha_{0} := [pt] \in H_{0}(Q), \ \alpha_{n} := [L] \in H_{n}(L),$ $p := [pt] \in H_{0}(Q), \ u := [Q] \in H_{2n}(Q).$ <u>Thm:</u> Let $L \subset Q$ with $H_{1}(L; \mathbb{Z}) = 0$. Then: 1. $p * \alpha_{0} = \alpha_{0}t, \ p * \alpha_{n} = \alpha_{n}t.$

2. $i_L(\alpha_0) = p - ut$.

The quadric $Q = \{z_0^2 + \dots + z_{n+1}^2 = 0\} \subset \mathbb{C}P^{n+1}$.

<u>Thm:</u> Assume $\dim_{\mathbb{C}} Q = \text{even.} L \subset Q$ with $H_1(L; \mathbb{Z}) = 0$. Then $H_*(L; \mathbb{Z}_2) \cong H_*(S^n; \mathbb{Z}_2)$.

 $\alpha_{0} := [pt] \in H_{0}(Q), \ \alpha_{n} := [L] \in H_{n}(L),$ $p := [pt] \in H_{0}(Q), \ u := [Q] \in H_{2n}(Q).$ <u>Thm:</u> Let $L \subset Q$ with $H_{1}(L; \mathbb{Z}) = 0$. Then: 1. $p * \alpha_{0} = \alpha_{0}t, \ p * \alpha_{n} = \alpha_{n}t.$ 2. $i_{L}(\alpha_{0}) = p - ut.$

3. If *n* is even then $\alpha_0 * \alpha_0 = \alpha_n t$.

The quadric $Q = \{z_0^2 + \dots + z_{n+1}^2 = 0\} \subset \mathbb{C}P^{n+1}$.

<u>Thm:</u> Assume $\dim_{\mathbb{C}} Q = \text{even.} L \subset Q$ with $H_1(L; \mathbb{Z}) = 0$. Then $H_*(L; \mathbb{Z}_2) \cong H_*(S^n; \mathbb{Z}_2)$.

 $\alpha_0 := [pt] \in H_0(Q), \ \alpha_n := [L] \in H_n(L),$ $p := [pt] \in H_0(Q), \ u := [Q] \in H_{2n}(Q).$ <u>Thm:</u> Let $L \subset Q$ with $H_1(L; \mathbb{Z}) = 0$. Then:

1.
$$p * \alpha_0 = \alpha_0 t$$
, $p * \alpha_n = \alpha_n t$.

2. $i_L(\alpha_0) = p - ut$.

3. If *n* is even then $\alpha_0 * \alpha_0 = \alpha_n t$.

Results in the same spirit hold for Fano complete intersections. (The point is that we know QH by work of Beauville.)

– p.20

A commutative algebra A over a field \mathbb{F} is semi-simple if it splits into a direct sum of finite dimensional vector spaces over \mathbb{F} , $A = A_1 \oplus \cdots \oplus A_r$ s.t. $\forall A_i$ is a <u>field</u> & the splitting is compatible with the multiplication of A.

A commutative algebra A over a field \mathbb{F} is semi-simple if it splits into a direct sum of finite dimensional vector spaces over \mathbb{F} , $A = A_1 \oplus \cdots \oplus A_r$ s.t. $\forall A_i$ is a <u>field</u> & the splitting is compatible with the multiplication of A.

 (M, ω) monotone. $\mathbb{F} = \mathbb{Q}[t]]$. $QH^{ev}_{*}(M; \mathbb{F}) = \bigoplus_{j=0}^{n} H_{2j}(M; \mathbb{Q}) \otimes \mathbb{F}$

A commutative algebra A over a field \mathbb{F} is semi-simple if it splits into a direct sum of finite dimensional vector spaces over \mathbb{F} , $A = A_1 \oplus \cdots \oplus A_r$ s.t. $\forall A_i$ is a <u>field</u> & the splitting is compatible with the multiplication of A.

 (M, ω) monotone. $\mathbb{F} = \mathbb{Q}[t]].$ $QH^{ev}_{*}(M; \mathbb{F}) = \bigoplus_{j=0}^{n} H_{2j}(M; \mathbb{Q}) \otimes \mathbb{F}$

<u>Q</u>: When is $QH_*^{ev}(M; \mathbb{F})$ semi-simple?

A commutative algebra A over a field \mathbb{F} is semi-simple if it splits into a direct sum of finite dimensional vector spaces over \mathbb{F} , $A = A_1 \oplus \cdots \oplus A_r$ s.t. $\forall A_i$ is a <u>field</u> & the splitting is compatible with the multiplication of A.

 (M, ω) monotone. $\mathbb{F} = \mathbb{Q}[t]].$ $QH^{ev}_{*}(M; \mathbb{F}) = \bigoplus_{j=0}^{n} H_{2j}(M; \mathbb{Q}) \otimes \mathbb{F}$

Q: When is $QH_*^{ev}(M; \mathbb{F})$ semi-simple? (semi-simplicity of QH played important role in work of Entov-Polterovich on quasi-morphisms.)

A commutative algebra A over a field \mathbb{F} is semi-simple if it splits into a direct sum of finite dimensional vector spaces over \mathbb{F} , $A = A_1 \oplus \cdots \oplus A_r$ s.t. $\forall A_i$ is a <u>field</u> & the splitting is compatible with the multiplication of A.

 (M, ω) monotone. $\mathbb{F} = \mathbb{Q}[t]].$ $QH^{ev}_{*}(M; \mathbb{F}) = \bigoplus_{j=0}^{n} H_{2j}(M; \mathbb{Q}) \otimes \mathbb{F}$

Q: When is $QH_*^{ev}(M; \mathbb{F})$ semi-simple? (semi-simplicity of QH played important role in work of Entov-Polterovich on quasi-morphisms.)

<u>Remark</u>: This notion of semi-simplicity is somewhat different than semi-simplicity in the sense of Dubrovin (we work with different coefficient ring \mathbb{F}).

$N := \min$. Chern # of M^{2n} . $n = \dim_{\mathbb{C}} M$.

 $N := \min$. Chern # of M^{2n} . $n = \dim_{\mathbb{C}} M$.

<u>Thm:</u> Assume $n \ge 2$ & M contains a Lagrangian sphere. Suppose that $N \nmid n$ and $N \nmid (n+1)$. Then $QH_*^{ev}(M; \mathbb{F})$ is not semi-simple. $N := \min$. Chern # of M^{2n} . $n = \dim_{\mathbb{C}} M$.

Thm: Assume $n \ge 2$ & M contains a Lagrangian sphere. Suppose that $N \nmid n$ and $N \nmid (n+1)$. Then $QH_*^{ev}(M; \mathbb{F})$ is not semi-simple.

This happens for example, if $M \subset \mathbb{C}P^{n+1}$ is complex hypersurface of degree $3 \leq d \leq \frac{n}{2} + 1$. For d = 1 and d = 2, $QH_*^{ev}(M; \mathbb{F})$ is semi-simple.
$N := \min$. Chern # of M^{2n} . $n = \dim_{\mathbb{C}} M$.

<u>Thm</u>: Assume $n \ge 2$ & M contains a Lagrangian sphere. Suppose that $N \nmid n$ and $N \nmid (n+1)$. Then $QH_*^{ev}(M; \mathbb{F})$ is not semi-simple.

This happens for example, if $M \subset \mathbb{C}P^{n+1}$ is complex hypersurface of degree $3 \le d \le \frac{n}{2} + 1$. For d = 1 and d = 2, $QH_*^{ev}(M; \mathbb{F})$ is semi-simple.

Proof. A criterion of Abrams says that $QH_*^{ev}(M; \mathbb{F})$ is semi-simple iff the quantum Euler class \mathcal{E} is invertible. But $\mathcal{E} \in QH_0(M)$. Let $S^n \approx L \subset M$. Under above assumptions, $HF_*(L) = H_*(L) \otimes \mathbb{F}$. Now use the module structure to deduce that $\mathcal{E} * (-)$ gives iso's $HF_*(L) \cong HF_{*-2n}(L) \dots$ contradiction.

– p.2

This is a monotone Lagrangian torus with $N_L = 2$.

Cho proved that for J_{std} , $\forall x \in \mathbb{T}_{clif}$ there exist (exactly) 3 J_{std} -holomorphic disks D_1, D_2, D_3 through x, with $[\partial D_1] + [\partial D_2] + [\partial D_3] = 0 \in H_1(\mathbb{T}_{clif}; \mathbb{Z})$. These disks are regular.

Cho proved that for J_{std} , $\forall x \in \mathbb{T}_{\text{clif}}$ there exist (exactly) 3 J_{std} -holomorphic disks D_1, D_2, D_3 through x, with $[\partial D_1] + [\partial D_2] + [\partial D_3] = 0 \in H_1(\mathbb{T}_{\text{clif}}; \mathbb{Z})$. These disks are regular. $\Longrightarrow HF_*(\mathbb{T}_{\text{clif}}) \cong H_*(\mathbb{T}_{\text{clif}}) \otimes \Lambda_*$. (Recall $N_L = 2$.)

Cho proved that for J_{std} , $\forall x \in \mathbb{T}_{\text{clif}}$ there exist (exactly) 3 J_{std} -holomorphic disks D_1, D_2, D_3 through x, with $[\partial D_1] + [\partial D_2] + [\partial D_3] = 0 \in H_1(\mathbb{T}_{\text{clif}}; \mathbb{Z})$. These disks are regular. $\Longrightarrow HF_*(\mathbb{T}_{\text{clif}}) \cong H_*(\mathbb{T}_{\text{clif}}) \otimes \Lambda_*$. (Recall $N_L = 2$.) i.e. $HF_0(\mathbb{T}_{\text{clif}}) \cong H_0(\mathbb{T}_{\text{clif}}) \oplus H_2(\mathbb{T}_{\text{clif}}) \otimes t$, $HF_1(\mathbb{T}_{\text{clif}}) = H_1(\mathbb{T}_{\text{clif}})$.

Cho proved that for J_{std} , $\forall x \in \mathbb{T}_{\text{clif}}$ there exist (exactly) 3 J_{std} -holomorphic disks D_1, D_2, D_3 through x, with $[\partial D_1] + [\partial D_2] + [\partial D_3] = 0 \in H_1(\mathbb{T}_{\text{clif}}; \mathbb{Z})$. These disks are regular. $\Longrightarrow HF_*(\mathbb{T}_{\text{clif}}) \cong H_*(\mathbb{T}_{\text{clif}}) \otimes \Lambda_*$. (Recall $N_L = 2$.) i.e. $HF_0(\mathbb{T}_{\text{clif}}) \cong H_0(\mathbb{T}_{\text{clif}}) \oplus H_2(\mathbb{T}_{\text{clif}}) \otimes t$, $HF_1(\mathbb{T}_{\text{clif}}) = H_1(\mathbb{T}_{\text{clif}})$. Not canonical!

Cho proved that for J_{std} , $\forall x \in \mathbb{T}_{clif}$ there exist (exactly) 3 J_{std} -holomorphic disks D_1, D_2, D_3 through x, with $[\partial D_1] + [\partial D_2] + [\partial D_3] = 0 \in H_1(\mathbb{T}_{\mathsf{clif}};\mathbb{Z})$. These disks are regular. $\Longrightarrow HF_*(\mathbb{T}_{clif}) \cong H_*(\mathbb{T}_{clif}) \otimes \Lambda_*$. (Recall $N_L = 2$.) i.e. $HF_0(\mathbb{T}_{\mathsf{clif}}) \cong H_0(\mathbb{T}_{\mathsf{clif}}) \oplus H_2(\mathbb{T}_{\mathsf{clif}}) \otimes t$, $HF_1(\mathbb{T}_{\mathsf{clif}}) = H_1(\mathbb{T}_{\mathsf{clif}})$. Not canonical! Canonical. Quantum structures: $a, b \in H_1(\mathbb{T}_{clif})$ generators. $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . $h := [\mathbb{C}P^1] \in QH_2(\mathbb{C}P^2)$. $u = [\mathbb{C}P^2] \in QH_4(\mathbb{C}P^2)$.

Cho proved that for J_{std} , $\forall x \in \mathbb{T}_{clif}$ there exist (exactly) 3 J_{std} -holomorphic disks D_1, D_2, D_3 through x, with $[\partial D_1] + [\partial D_2] + [\partial D_3] = 0 \in H_1(\mathbb{T}_{\mathsf{clif}};\mathbb{Z})$. These disks are regular. $\Longrightarrow HF_*(\mathbb{T}_{clif}) \cong H_*(\mathbb{T}_{clif}) \otimes \Lambda_*$. (Recall $N_L = 2$.) i.e. $HF_0(\mathbb{T}_{\mathsf{clif}}) \cong H_0(\mathbb{T}_{\mathsf{clif}}) \oplus H_2(\mathbb{T}_{\mathsf{clif}}) \otimes t$, $HF_1(\mathbb{T}_{\mathsf{clif}}) = H_1(\mathbb{T}_{\mathsf{clif}})$. Canonical. Not canonical! Quantum structures: $a, b \in H_1(\mathbb{T}_{clif})$ generators. $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . $h := [\mathbb{C}P^1] \in QH_2(\mathbb{C}P^2)$. $u = [\mathbb{C}P^2] \in QH_4(\mathbb{C}P^2)$. Thm: 1) a * b = m + wt, b * a = m, a * a = b * b = wt.

Cho proved that for J_{std} , $\forall x \in \mathbb{T}_{clif}$ there exist (exactly) 3 J_{std} -holomorphic disks D_1, D_2, D_3 through x, with $[\partial D_1] + [\partial D_2] + [\partial D_3] = 0 \in H_1(\mathbb{T}_{\mathsf{clif}};\mathbb{Z})$. These disks are regular. $\Longrightarrow HF_*(\mathbb{T}_{clif}) \cong H_*(\mathbb{T}_{clif}) \otimes \Lambda_*$. (Recall $N_L = 2$.) i.e. $HF_0(\mathbb{T}_{\mathsf{clif}}) \cong H_0(\mathbb{T}_{\mathsf{clif}}) \oplus H_2(\mathbb{T}_{\mathsf{clif}}) \otimes t$, $HF_1(\mathbb{T}_{\mathsf{clif}}) = H_1(\mathbb{T}_{\mathsf{clif}})$. Not canonical! Canonical. Quantum structures: $a, b \in H_1(\mathbb{T}_{clif})$ generators. $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . $h := [\mathbb{C}P^1] \in QH_2(\mathbb{C}P^2)$. $u = [\mathbb{C}P^2] \in QH_4(\mathbb{C}P^2)$. Thm: 1) a * b = m + wt, b * a = m, a * a = b * b = wt. 2) $m * m = mt + wt^2$. (c.f. Cho-Oh & Oh).

Cho proved that for J_{std} , $\forall x \in \mathbb{T}_{clif}$ there exist (exactly) 3 J_{std} -holomorphic disks D_1, D_2, D_3 through x, with $[\partial D_1] + [\partial D_2] + [\partial D_3] = 0 \in H_1(\mathbb{T}_{\mathsf{clif}};\mathbb{Z})$. These disks are regular. $\Longrightarrow HF_*(\mathbb{T}_{clif}) \cong H_*(\mathbb{T}_{clif}) \otimes \Lambda_*$. (Recall $N_L = 2$.) i.e. $HF_0(\mathbb{T}_{\mathsf{clif}}) \cong H_0(\mathbb{T}_{\mathsf{clif}}) \oplus H_2(\mathbb{T}_{\mathsf{clif}}) \otimes t$, $HF_1(\mathbb{T}_{\mathsf{clif}}) = H_1(\mathbb{T}_{\mathsf{clif}})$. Not canonical! Canonical. Quantum structures: $a, b \in H_1(\mathbb{T}_{clif})$ generators. $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . $h := [\mathbb{C}P^1] \in QH_2(\mathbb{C}P^2)$. $u = [\mathbb{C}P^2] \in QH_4(\mathbb{C}P^2)$. Thm: 1) a * b = m + wt, b * a = m, a * a = b * b = wt. 2) $m * m = mt + wt^2$. (c.f. Cho-Oh & Oh). 3) h * a = at, h * b = bt, h * w = wt, h * m = mt.

Cho proved that for J_{std} , $\forall x \in \mathbb{T}_{clif}$ there exist (exactly) 3 J_{std} -holomorphic disks D_1, D_2, D_3 through x, with $[\partial D_1] + [\partial D_2] + [\partial D_3] = 0 \in H_1(\mathbb{T}_{\mathsf{clif}};\mathbb{Z})$. These disks are regular. $\Longrightarrow HF_*(\mathbb{T}_{clif}) \cong H_*(\mathbb{T}_{clif}) \otimes \Lambda_*$. (Recall $N_L = 2$.) i.e. $HF_0(\mathbb{T}_{\mathsf{clif}}) \cong H_0(\mathbb{T}_{\mathsf{clif}}) \oplus H_2(\mathbb{T}_{\mathsf{clif}}) \otimes t$, $HF_1(\mathbb{T}_{\mathsf{clif}}) = H_1(\mathbb{T}_{\mathsf{clif}})$. Not canonical! Canonical. Quantum structures: $a, b \in H_1(\mathbb{T}_{clif})$ generators. $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . $h := [\mathbb{C}P^1] \in QH_2(\mathbb{C}P^2)$. $u = [\mathbb{C}P^2] \in QH_4(\mathbb{C}P^2)$. Thm: 1) a * b = m + wt, b * a = m, a * a = b * b = wt. 2) $m * m = mt + wt^2$. (c.f. Cho-Oh & Oh). 3) h * a = at, h * b = bt, h * w = wt, h * m = mt. **4)** $i_L(m) = [pt] + ht + ut^2 \in QH_0(\mathbb{C}P^2),$

Cho proved that for J_{std} , $\forall x \in \mathbb{T}_{clif}$ there exist (exactly) 3 J_{std} -holomorphic disks D_1, D_2, D_3 through x, with $[\partial D_1] + [\partial D_2] + [\partial D_3] = 0 \in H_1(\mathbb{T}_{clif}; \mathbb{Z})$. These disks are regular. $\Longrightarrow HF_*(\mathbb{T}_{clif}) \cong H_*(\mathbb{T}_{clif}) \otimes \Lambda_*$. (Recall $N_L = 2$.) i.e. $HF_0(\mathbb{T}_{\mathsf{clif}}) \cong H_0(\mathbb{T}_{\mathsf{clif}}) \oplus H_2(\mathbb{T}_{\mathsf{clif}}) \otimes t$, $HF_1(\mathbb{T}_{\mathsf{clif}}) = H_1(\mathbb{T}_{\mathsf{clif}})$. Not canonical! Canonical. Quantum structures: $a, b \in H_1(\mathbb{T}_{clif})$ generators. $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . $h := [\mathbb{C}P^1] \in QH_2(\mathbb{C}P^2)$. $u = [\mathbb{C}P^2] \in QH_4(\mathbb{C}P^2)$. Thm: 1) a * b = m + wt, b * a = m, a * a = b * b = wt. 2) $m * m = mt + wt^2$. (c.f. Cho-Oh & Oh). 3) h * a = at, h * b = bt, h * w = wt, h * m = mt. 4) $i_L(m) = [pt] + ht + ut^2 \in QH_0(\mathbb{C}P^2),$ **5)** $i_L(a) = i_L(b) = i_L(w) = 0.$

Pick two perfect Morse functions $f_1, f_2 : \mathbb{T}_{clif} \to \mathbb{R}$. $x_2 = \max \text{ of } f_1, x_0 = \min \text{ of } f_1,$ $x'_1, x''_1 = \operatorname{index} 1 \text{ critical points of } f_1.$

Pick two perfect Morse functions $f_1, f_2 : \mathbb{T}_{clif} \to \mathbb{R}$. $x_2 = \max \text{ of } f_1, x_0 = \min \text{ of } f_1,$ $x'_1, x''_1 = \operatorname{index} 1 \text{ critical points of } f_1.$ Denote by y_2, y_0, y'_1, y''_1 the critical points of f_2 .

Pick two perfect Morse functions $f_1, f_2 : \mathbb{T}_{clif} \to \mathbb{R}$. $x_2 = \max \text{ of } f_1, x_0 = \min \text{ of } f_1,$ $x'_1, x''_1 = \operatorname{index} 1 \text{ critical points of } f_1.$ Denote by y_2, y_0, y'_1, y''_1 the critical points of f_2 .

 $a * b = [x'_1] * [y''_1] \\ b * a = [x''_1] * [y'_1]$

Pick two perfect Morse functions $f_1, f_2 : \mathbb{T}_{clif} \to \mathbb{R}$. $x_2 = \max \text{ of } f_1, x_0 = \min \text{ of } f_1,$ $x'_1, x''_1 = \operatorname{index} 1 \text{ critical points of } f_1.$ Denote by y_2, y_0, y'_1, y''_1 the critical points of f_2 .

$$a * b = [x'_1] * [y''_1]$$

$$b * a = [x''_1] * [y'_1]$$

Pick two perfect Morse functions $f_1, f_2 : \mathbb{T}_{clif} \to \mathbb{R}$. $x_2 = \max \text{ of } f_1, x_0 = \min \text{ of } f_1,$ $x'_1, x''_1 = \operatorname{index} 1 \text{ critical points of } f_1.$ Denote by y_2, y_0, y'_1, y''_1 the critical points of f_2 .

$$a * b = [x'_1] * [y''_1]$$

$$b * a = [x''_1] * [y'_1]$$

Computation of m * m follows from associativity.

B(r) = 2n-dim closed ball of radius r.

B(r) = 2n-dim closed ball of radius r. $B_{\mathbb{R}}(r) = B(r) \cap (\mathbb{R}^n \times 0)$ real part of B(r).

$$\begin{split} B(r) &= 2n \text{-dim closed ball of radius } r. \\ B_{\mathbb{R}}(r) &= B(r) \cap (\mathbb{R}^n \times 0) \text{ real part of } B(r). \\ \hline \text{Relative packing: } \varphi : (B(r), B_{\mathbb{R}}(r)) \to (M, L), \ \varphi^* \omega &= \omega_{\text{std}} \\ \hline \text{and } \varphi^{-1}(L) &= B_{\mathbb{R}}(r). \ Gr(L) := \sup\{r \mid \exists \text{ rel. pack. } \varphi\}. \end{split}$$

$$\begin{split} B(r) &= 2n \text{-dim closed ball of radius } r. \\ B_{\mathbb{R}}(r) &= B(r) \cap (\mathbb{R}^n \times 0) \text{ real part of } B(r). \\ \hline \text{Relative packing: } \varphi : (B(r), B_{\mathbb{R}}(r)) \to (M, L), \ \varphi^* \omega &= \omega_{\text{std}} \\ \hline \text{and } \varphi^{-1}(L) &= B_{\mathbb{R}}(r). \ Gr(L) := \sup\{r \mid \exists \text{ rel. pack. } \varphi\}. \\ \hline \text{Packing in the complement. } \psi : B(\rho) \to (M \setminus L, \omega). \\ \hline Gr(M \setminus L) &= \sup\{\rho \mid \exists \text{ packing } \psi\}. \end{split}$$

$$\begin{split} B(r) &= 2n \text{-dim closed ball of radius } r. \\ B_{\mathbb{R}}(r) &= B(r) \cap (\mathbb{R}^n \times 0) \text{ real part of } B(r). \\ \hline \text{Relative packing: } \varphi : (B(r), B_{\mathbb{R}}(r)) \to (M, L), \ \varphi^* \omega &= \omega_{\text{std}} \\ \hline \text{and } \varphi^{-1}(L) &= B_{\mathbb{R}}(r). \ Gr(L) := \sup\{r \mid \exists \text{ rel. pack. } \varphi\}. \\ \hline \text{Packing in the complement. } \psi : B(\rho) \to (M \setminus L, \omega). \\ \hline Gr(M \setminus L) &= \sup\{\rho \mid \exists \text{ packing } \psi\}. \end{split}$$

Absolute symplectic packing introduced by Gromov, studied further by McDuff-Polterovich, Karshon, Traynor, B. etc.

– p.2

Prop: (Following Gromov 1985)

Prop: (Following Gromov 1985)

1. Suppose for generic J and $\forall p \in M$, $\exists J$ -hol disk $u: (D, \partial D) \rightarrow (M, L)$ with $u(\operatorname{Int} D) \ni p$ and $\operatorname{Area}_{\omega}(u) \leq E'$. Then $\pi Gr(M \setminus L)^2 \leq E'$.

Prop: (Following Gromov 1985)

1. Suppose for generic J and $\forall p \in M$, $\exists J$ -hol disk $u: (D, \partial D) \rightarrow (M, L)$ with $u(\operatorname{Int} D) \ni p$ and $\operatorname{Area}_{\omega}(u) \leq E'$. Then $\pi Gr(M \setminus L)^2 \leq E'$.

2. Suppose for generic J and $\forall q \in L$, \exists non-const J-hol disk $u : (D, \partial D) \rightarrow (M, L)$ with $u(\partial D) \ni q$ and Area_{ω} $(u) \leq E''$. Then $\frac{\pi Gr(L)^2}{2} \leq E''$.

Prop: (Following Gromov 1985)

1. Suppose for generic J and $\forall p \in M$, $\exists J$ -hol disk $u : (D, \partial D) \rightarrow (M, L)$ with $u(\operatorname{Int} D) \ni p$ and $\operatorname{Area}_{\omega}(u) \leq E'$. Then $\pi Gr(M \setminus L)^2 \leq E'$.

2. Suppose for generic J and $\forall q \in L, \exists \text{ non-const}$ J-hol disk $u : (D, \partial D) \rightarrow (M, L)$ with $u(\partial D) \ni q$ and $\text{Area}_{\omega}(u) \leq E''$. Then $\frac{\pi Gr(L)^2}{2} \leq E''$.

Thm: $\mathbb{T} \subset (M, \omega)$ monotone Lagrangian torus. $\tau = \frac{\omega}{\mu}$. If $HF_*(\mathbb{T}) \neq H_*(\mathbb{T}) \otimes \Lambda$, then $\frac{\pi Gr(\mathbb{T})^2}{2} \leq 2\tau$.

Prop: (Following Gromov 1985)

1. Suppose for generic J and $\forall p \in M$, $\exists J$ -hol disk $u: (D, \partial D) \rightarrow (M, L)$ with $u(\operatorname{Int} D) \ni p$ and $\operatorname{Area}_{\omega}(u) \leq E'$. Then $\pi Gr(M \setminus L)^2 \leq E'$.

2. Suppose for generic J and $\forall q \in L$, \exists non-const J-hol disk $u : (D, \partial D) \rightarrow (M, L)$ with $u(\partial D) \ni q$ and Area_{ω} $(u) \leq E''$. Then $\frac{\pi Gr(L)^2}{2} \leq E''$.

Thm: $\mathbb{T} \subset (M, \omega)$ monotone Lagrangian torus. $\tau = \frac{\omega}{\mu}$. If $HF_*(\mathbb{T}) \neq H_*(\mathbb{T}) \otimes \Lambda$, then $\frac{\pi Gr(\mathbb{T})^2}{2} \leq 2\tau$. <u>Proof.</u> Dichotomy for tori: either $HF_*(\mathbb{T}) \cong H_*(\mathbb{T}) \otimes \Lambda$ or $HF_*(\mathbb{T}) = 0$. In the latter case \exists a *J*-holomorphic disk with $\mu = 2$ through $\forall pt \in \mathbb{T}$.

 $(\mathbb{C}P^n, \omega_{FS}), \int_{\mathbb{C}P^1} \omega_{FS} = \pi. (\mathbb{C}P^n \setminus \mathbb{C}P^{n-1}, \omega_{FS}) \cong (\operatorname{Int} B(1), \omega_{std}).$ Absolute Gromov radius of $\mathbb{C}P^n$ is $Gr(\mathbb{C}P^n) = 1.$

 $(\mathbb{C}P^n, \omega_{FS}), \int_{\mathbb{C}P^1} \omega_{FS} = \pi. (\mathbb{C}P^n \setminus \mathbb{C}P^{n-1}, \omega_{FS}) \cong (\operatorname{Int} B(1), \omega_{std}).$ Absolute Gromov radius of $\mathbb{C}P^n$ is $Gr(\mathbb{C}P^n) = 1.$ <u>Thm:</u> $L \subset \mathbb{C}P^n$ monotone.

 $(\mathbb{C}P^n, \omega_{FS}), \int_{\mathbb{C}P^1} \omega_{FS} = \pi. (\mathbb{C}P^n \setminus \mathbb{C}P^{n-1}, \omega_{FS}) \cong (\operatorname{Int} B(1), \omega_{std}).$ Absolute Gromov radius of $\mathbb{C}P^n$ is $Gr(\mathbb{C}P^n) = 1.$ <u>Thm:</u> $L \subset \mathbb{C}P^n$ monotone.

1. If $HF_*(L) \neq 0 \implies Gr(\mathbb{C}P^n \setminus L)^2 \leq \frac{n}{n+1}$.

 $(\mathbb{C}P^n, \omega_{FS}), \int_{\mathbb{C}P^1} \omega_{FS} = \pi. (\mathbb{C}P^n \setminus \mathbb{C}P^{n-1}, \omega_{FS}) \cong (\operatorname{Int} B(1), \omega_{std}).$ Absolute Gromov radius of $\mathbb{C}P^n$ is $Gr(\mathbb{C}P^n) = 1.$ <u>Thm:</u> $L \subset \mathbb{C}P^n$ monotone.

1. If $HF_*(L) \neq 0 \implies Gr(\mathbb{C}P^n \setminus L)^2 \leq \frac{n}{n+1}$.

2. If $HF_*(L) \cong H_*(L) \otimes \Lambda$ then

 $\frac{1}{2}Gr(L)^2 + Gr(\mathbb{C}P^n \setminus L)^2 \le 1.$
Packing in $\mathbb{C}P^n$

 $(\mathbb{C}P^n, \omega_{FS}), \int_{\mathbb{C}P^1} \omega_{FS} = \pi. (\mathbb{C}P^n \setminus \mathbb{C}P^{n-1}, \omega_{FS}) \cong (\operatorname{Int} B(1), \omega_{std}).$ Absolute Gromov radius of $\mathbb{C}P^n$ is $Gr(\mathbb{C}P^n) = 1.$ <u>Thm:</u> $L \subset \mathbb{C}P^n$ monotone.

1. If $HF_*(L) \neq 0 \implies Gr(\mathbb{C}P^n \setminus L)^2 \leq \frac{n}{n+1}$.

2. If $HF_*(L) \cong H_*(L) \otimes \Lambda$ then

 $\frac{1}{2}Gr(L)^2 + Gr(\mathbb{C}P^n \setminus L)^2 \le 1.$

<u>Proof.</u> 1) $[pt] \in QH_0(\mathbb{C}P^n)$ is invertible hence $[pt] * (-) : HF_j(L) \to HF_{j-2n}(L)$ is non-trivial for some j. $\Rightarrow \exists J$ -holomorphic disk with $\mu \leq n$ through $\forall pt \in \mathbb{C}P^n$.

Packing in $\mathbb{C}P^n$

 $(\mathbb{C}P^n, \omega_{FS}), \int_{\mathbb{C}P^1} \omega_{FS} = \pi. (\mathbb{C}P^n \setminus \mathbb{C}P^{n-1}, \omega_{FS}) \cong (\operatorname{Int} B(1), \omega_{std}).$ Absolute Gromov radius of $\mathbb{C}P^n$ is $Gr(\mathbb{C}P^n) = 1.$ <u>Thm:</u> $L \subset \mathbb{C}P^n$ monotone.

1. If $HF_*(L) \neq 0 \implies Gr(\mathbb{C}P^n \setminus L)^2 \leq \frac{n}{n+1}$.

2. If $HF_*(L) \cong H_*(L) \otimes \Lambda$ then

 $\frac{1}{2}Gr(L)^2 + Gr(\mathbb{C}P^n \setminus L)^2 \le 1.$

Proof. 1) $[pt] \in QH_0(\mathbb{C}P^n)$ is invertible hence $[pt] * (-) : HF_j(L) \to HF_{j-2n}(L)$ is non-trivial for some j. $\Rightarrow \exists J$ -holomorphic disk with $\mu \leq n$ through $\forall pt \in \mathbb{C}P^n$. 2) Uses the associativity of the quantum module structure.

Packing in $\mathbb{C}P^n$

 $(\mathbb{C}P^n, \omega_{FS}), \int_{\mathbb{C}P^1} \omega_{FS} = \pi. (\mathbb{C}P^n \setminus \mathbb{C}P^{n-1}, \omega_{FS}) \cong (\operatorname{Int} B(1), \omega_{std}).$ Absolute Gromov radius of $\mathbb{C}P^n$ is $Gr(\mathbb{C}P^n) = 1.$ <u>Thm:</u> $L \subset \mathbb{C}P^n$ monotone.

1. If $HF_*(L) \neq 0 \implies Gr(\mathbb{C}P^n \setminus L)^2 \leq \frac{n}{n+1}$.

2. If $HF_*(L) \cong H_*(L) \otimes \Lambda$ then

 $\frac{1}{2}Gr(L)^2 + Gr(\mathbb{C}P^n \setminus L)^2 \le 1.$

Proof. 1) $[pt] \in QH_0(\mathbb{C}P^n)$ is invertible hence $[pt] * (-) : HF_j(L) \to HF_{j-2n}(L)$ is non-trivial for some j. $\Rightarrow \exists J$ -holomorphic disk with $\mu \leq n$ through $\forall pt \in \mathbb{C}P^n$. 2) Uses the associativity of the quantum module structure.

 $\underline{\operatorname{Cor:}} \ Gr(\mathbb{T}^n_{\operatorname{clif}})^2 \leq \frac{2}{n+1}, \quad Gr(\mathbb{C}P^n \setminus \mathbb{T}^n_{\operatorname{clif}})^2 = \frac{n}{n+1}.$

Mixed packing. Packing by many balls, some relative to L some in the complement of L.

Mixed packing. Packing by many balls, some relative to L some in the complement of L.

<u>Cor:</u> Let $\varphi : (B(r), B_{\mathbb{R}}(r)) \to (\mathbb{C}P^2, \mathbb{T}_{\text{clif}}), \ \psi : B(\rho) \to \mathbb{C}P^2 \setminus \mathbb{T}_{\text{clif}}$ be a mixed symplectic packing. Then $\frac{1}{2}r^2 + \rho^2 \leq \frac{2}{3}$. If $r = \rho$ then $r^2 \leq \frac{4}{9}$.

Mixed packing. Packing by many balls, some relative to L some in the complement of L.

<u>Cor:</u> Let $\varphi : (B(r), B_{\mathbb{R}}(r)) \to (\mathbb{C}P^2, \mathbb{T}_{\text{clif}}), \ \psi : B(\rho) \to \mathbb{C}P^2 \setminus \mathbb{T}_{\text{clif}}$ be a mixed symplectic packing. Then $\frac{1}{2}r^2 + \rho^2 \leq \frac{2}{3}$. If $r = \rho$ then $r^2 \leq \frac{4}{9}$.

Q. 1) Are the above packing inequalities sharp?

Mixed packing. Packing by many balls, some relative to L some in the complement of L.

<u>Cor:</u> Let $\varphi : (B(r), B_{\mathbb{R}}(r)) \to (\mathbb{C}P^2, \mathbb{T}_{\text{clif}}), \ \psi : B(\rho) \to \mathbb{C}P^2 \setminus \mathbb{T}_{\text{clif}}$ be a mixed symplectic packing. Then $\frac{1}{2}r^2 + \rho^2 \leq \frac{2}{3}$. If $r = \rho$ then $r^2 \leq \frac{4}{9}$.

Q. 1) Are the above packing inequalities sharp?
2) Blow-up/down construction in the relative case?

Mixed packing. Packing by many balls, some relative to L some in the complement of L.

<u>Cor:</u> Let $\varphi : (B(r), B_{\mathbb{R}}(r)) \to (\mathbb{C}P^2, \mathbb{T}_{\text{clif}}), \ \psi : B(\rho) \to \mathbb{C}P^2 \setminus \mathbb{T}_{\text{clif}}$ be a mixed symplectic packing. Then $\frac{1}{2}r^2 + \rho^2 \leq \frac{2}{3}$. If $r = \rho$ then $r^2 \leq \frac{4}{9}$.

Q. 1) Are the above packing inequalities sharp?
2) Blow-up/down construction in the relative case?
3) Criterion like Nakai-Moishezon in the relative case?

 $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 .

 $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . Recall that $m * m = mt + wt^2$. (this is independent of the choice of m).

 $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . Recall that $m * m = mt + wt^2$. (this is independent of the choice of m).

Enumerative interpretation of the coefficients and.

 $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . Recall that $m * m = mt + wt^2$. (this is independent of the choice of m).

Enumerative interpretation of the coefficients and. Let T = ABC a "triangle" on \mathbb{T}_{clif} . $n_A = \#_{\mathbb{Z}_2}$ holomorphic disks with $\mu = 2$ that pass through vertex A and edge BC. Similarly we have n_B , n_C .

 $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . Recall that $m * m = mt + wt^2$. (this is independent of the choice of m).

Enumerative interpretation of the coefficients and. Let T = ABC a "triangle" on \mathbb{T}_{clif} . $n_A = \#_{\mathbb{Z}_2}$ holomorphic disks with $\mu = 2$ that pass through vertex A and edge BC. Similarly we have n_B , n_C . $n_4(T) := \#_{\mathbb{Z}_2}$ holomorphic disks with $\mu = 4$ through A, B, C (in this order !).

 $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . Recall that $m * m = mt + wt^2$. (this is independent of the choice of m).

Enumerative interpretation of the coefficients and. Let T = ABC a "triangle" on \mathbb{T}_{clif} . $n_A = \#_{\mathbb{Z}_2}$ holomorphic disks with $\mu = 2$ that pass through vertex A and edge BC. Similarly we have n_B , n_C . $n_4(T) := \#_{\mathbb{Z}_2}$ holomorphic disks with $\mu = 4$ through A, B, C (in this order !).

<u>Cor:</u> 1) $n_A + n_B + n_C = 1$.

 $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . Recall that $m * m = mt + wt^2$. (this is independent of the choice of m).

Enumerative interpretation of the coefficients and. Let T = ABC a "triangle" on \mathbb{T}_{clif} . $n_A = \#_{\mathbb{Z}_2}$ holomorphic disks with $\mu = 2$ that pass through vertex A and edge BC. Similarly we have n_B , n_C . $n_4(T) := \#_{\mathbb{Z}_2}$ holomorphic disks with $\mu = 4$ through A, B, C (in this order !).

Cor: 1) $n_A + n_B + n_C = 1$. 2) $n_A n_B + n_4(T) = n_A n_C + n_4(T) = n_B n_C + n_4(T) = 1$.

 $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . Recall that $m * m = mt + wt^2$. (this is independent of the choice of m).

Enumerative interpretation of the coefficients and. Let T = ABC a "triangle" on \mathbb{T}_{clif} . $n_A = \#_{\mathbb{Z}_2}$ holomorphic disks with $\mu = 2$ that pass through vertex A and edge BC. Similarly we have n_B , n_C . $n_4(T) := \#_{\mathbb{Z}_2}$ holomorphic disks with $\mu = 4$ through A, B, C (in this order !).

Cor: 1) $n_A + n_B + n_C = 1$. 2) $n_A n_B + n_4(T) = n_A n_C + n_4(T) = n_B n_C + n_4(T) = 1$. Similar formulae work for every 2-dimensional torus.

 $w = [\mathbb{T}_{clif}] \in H_2(\mathbb{T}_{clif}), m \in HF_0(\mathbb{T}_{clif})$ so that $\{m, wt\}$ generate HF_0 . Recall that $m * m = mt + wt^2$. (this is independent of the choice of m).

Enumerative interpretation of the coefficients and. Let T = ABC a "triangle" on \mathbb{T}_{clif} . $n_A = \#_{\mathbb{Z}_2}$ holomorphic disks with $\mu = 2$ that pass through vertex A and edge BC. Similarly we have n_B , n_C . $n_4(T) := \#_{\mathbb{Z}_2}$ holomorphic disks with $\mu = 4$ through A, B, C (in this order !).

Cor: 1) $n_A + n_B + n_C = 1$. 2) $n_A n_B + n_4(T) = n_A n_C + n_4(T) = n_B n_C + n_4(T) = 1$. Similar formulae work for every 2-dimensional torus. \exists related work of Cho with other identities by different approach.

 $n_A = 1, n_B = 0, n_C = 0 \implies n_4(T) = 1.$ $n_{A'} = 1, n_{B'} = 1, n_{C'} = 1 \implies n_4(T') = 0.$

 $n_A = 1, n_B = 0, n_C = 0 \implies n_4(T) = 1.$ $n_{A'} = 1, n_{B'} = 1, n_{C'} = 1 \implies n_4(T') = 0.$ The number $n_4(T)$ is *NOT* a symplectic invariant. It depends on *J* and the 3 points of the triangle *T*.

 $n_A = 1, n_B = 0, n_C = 0 \implies n_4(T) = 1.$ $n_{A'} = 1, n_{B'} = 1, n_{C'} = 1 \implies n_4(T') = 0.$ The number $n_4(T)$ is *NOT* a symplectic invariant. It depends on *J* and the 3 points of the triangle *T*. Still ... $n_A n_B + n_4(T)$ is a symplectic invariant.

What next?

Extend the theory to the A_{∞} -category theory of Fukaya-Oh-Ohta-Ono or to the cluster homology of Cornea-Lalonde. This would also get rid of the monotonicity assumption. This is future project planned with Cornea and Lalonde.

What next?

Extend the theory to the A_{∞} -category theory of Fukaya-Oh-Ohta-Ono or to the cluster homology of Cornea-Lalonde. This would also get rid of the monotonicity assumption. This is future project planned with Cornea and Lalonde.

Replace QH with contact homology and structures coming from SFT. $\rightsquigarrow HF(L)$ being a module over richer algebraic objects.

What next?

Extend the theory to the A_{∞} -category theory of Fukaya-Oh-Ohta-Ono or to the cluster homology of Cornea-Lalonde. This would also get rid of the monotonicity assumption. This is future project planned with Cornea and Lalonde.

Replace QH with contact homology and structures coming from SFT. $\rightsquigarrow HF(L)$ being a module over richer algebraic objects.

If the above works, we get a Floer homological approach to relative/real enumerative geometry. We would also get more complete picture of the relative packing problem.

HAPPY BIRTHDAY YASHA
HAPPY BIRTHDAY YASHA

Till 120!