QUANTUM STRUCTURES FOR LAGRANGIAN SUBMANIFOLDS

YASHA FEST
Stanford June 2007

Paul Biran, Tel-Aviv University
Joint work with Octav Cornea, University of Montreal

Quantum and Floer homologies

(M, ω) symplectic manifold.

Quantum and Floer homologies

(M, ω) symplectic manifold.
\rightsquigarrow quantum homology $Q H_{*}(M)$.

Quantum and Floer homologies

(M, ω) symplectic manifold.
\rightsquigarrow quantum homology $Q H_{*}(M)$.
$L \subset M$ Lagrangian.

Quantum and Floer homologies

(M, ω) symplectic manifold.
\rightsquigarrow quantum homology $Q H_{*}(M)$.
$L \subset M$ Lagrangian.
\rightsquigarrow Floer homology $H F_{*}(L)=H F_{*}(L, L)$.
(M, ω) symplectic manifold.
\rightsquigarrow quantum homology $Q H_{*}(M)$.
$L \subset M$ Lagrangian.
\rightsquigarrow Floer homology $H F_{*}(L)=H F_{*}(L, L)$.
In this talk:

Quantum and Floer homologies

(M, ω) symplectic manifold.
\rightsquigarrow quantum homology $Q H_{*}(M)$.
$L \subset M$ Lagrangian.
\rightsquigarrow Floer homology $H F_{*}(L)=H F_{*}(L, L)$.
In this talk:
Relations between $H F(L)$ and $Q H(M)$.

Quantum and Floer homologies

(M, ω) symplectic manifold.
\rightsquigarrow quantum homology $Q H_{*}(M)$.
$L \subset M$ Lagrangian.
\rightsquigarrow Floer homology $H F_{*}(L)=H F_{*}(L, L)$.
In this talk:
nelations between $H F(L)$ and $Q H(M)$.

- Computations related to the quantum product of $H F(L)$.

Quantum and Floer homologies

(M, ω) symplectic manifold.
\rightsquigarrow quantum homology $Q H_{*}(M)$.
$L \subset M$ Lagrangian.
\rightsquigarrow Floer homology $H F_{*}(L)=H F_{*}(L, L)$.
In this talk:
Relations between $H F(L)$ and $Q H(M)$.

- Computations related to the quantum product of $H F(L)$.
- Applications to topology of Lagrangians, quantum homology, symplectic packing.

Quantum and Floer homologies

(M, ω) symplectic manifold.
\rightsquigarrow quantum homology $Q H_{*}(M)$.
$L \subset M$ Lagrangian.
\rightsquigarrow Floer homology $H F_{*}(L)=H F_{*}(L, L)$.
In this talk:

- Relations between $H F(L)$ and $Q H(M)$.
- Computations related to the quantum product of $H F(L)$.
- Applications to topology of Lagrangians, quantum homology, symplectic packing.

Our goal is NOT Lagrangian intersections!!!

Quick review of $H F$ and $Q H$

The pearl complex (suggested by Fukaya, Oh).
$\square L \subset M$ monotone.
$\omega(A)>0$ iff $\mu(A)>0, A \in \pi_{2}(M, L)$.
$N_{L}=$ min. Maslov number ≥ 2.
Put $\bar{\mu}=\frac{1}{N_{L}} \mu: \pi_{2}(M, L) \rightarrow \mathbb{Z}$.

Quick review of $H F$ and $Q H$

The pearl complex (suggested by Fukaya, Oh).

- $L \subset M$ monotone. $\omega(A)>0$ iff $\mu(A)>0, A \in \pi_{2}(M, L)$. $N_{L}=$ min. Maslov number ≥ 2.

$$
\text { Put } \bar{\mu}=\frac{1}{N_{L}} \mu: \pi_{2}(M, L) \rightarrow \overline{\mathbb{Z}} .
$$

$\square f: L \rightarrow \mathbb{R}$ Morse. $\mathcal{C}_{*}(f)=\mathbb{Z}_{2}\langle\operatorname{Crit}(f)\rangle \otimes \Lambda_{*}$. $\Lambda_{*}=\mathbb{Z}_{2}\left[t, t^{-1}\right], \operatorname{deg} t:=-N_{L}$.

Quick review of $H F$ and $Q H$

The pearl complex (suggested by Fukaya, Oh).
$\square L \subset M$ monotone.
$\omega(A)>0$ iff $\mu(A)>0, A \in \pi_{2}(M, L)$.
$N_{L}=$ min. Maslov number ≥ 2.
Put $\bar{\mu}=\frac{1}{N_{L}} \mu: \pi_{2}(M, L) \rightarrow \mathbb{Z}$.
$\square f: L \rightarrow \mathbb{R}$ Morse. $\mathcal{C}_{*}(f)=\mathbb{Z}_{2}\langle\operatorname{Crit}(f)\rangle \otimes \Lambda_{*}$.
$\Lambda_{*}=\mathbb{Z}_{2}\left[t, t^{-1}\right], \operatorname{deg} t:=-N_{L}$.
\square Floer differential. $d: \mathcal{C}_{*}(f) \rightarrow \mathcal{C}_{*-1}(f)$.

$$
d(x)=\sum_{\mathbf{A}, y} n_{I}(x, y ; J, \mathbf{A}) y t^{\bar{\mu}(\mathbf{A})} .
$$

Quick review of $H F$ and $Q H$

The pearl complex (suggested by Fukaya, Oh).

- $L \subset M$ monotone.
$\omega(A)>0$ iff $\mu(A)>0, A \in \pi_{2}(M, L)$.
$N_{L}=$ min. Maslov number ≥ 2.
Put $\bar{\mu}=\frac{1}{N_{L}} \mu: \pi_{2}(M, L) \rightarrow \mathbb{Z}$.
$\square f: L \rightarrow \mathbb{R}$ Morse. $\mathcal{C}_{*}(f)=\mathbb{Z}_{2}\langle\operatorname{Crit}(f)\rangle \otimes \Lambda_{*}$.
$\Lambda_{*}=\mathbb{Z}_{2}\left[t, t^{-1}\right]$, $\operatorname{deg} t:=-N_{L}$.
- Floer differential. $d: \mathcal{C}_{*}(f) \rightarrow \mathcal{C}_{*-1}(f)$.
$d(x)=\sum_{\mathbf{A}, y} n_{I}(x, y ; J, \mathbf{A}) y t^{\bar{\mu}(\mathbf{A})}$.

\square PSS-Albers argument $\Longrightarrow H_{*}(\mathcal{C}(f), d) \cong H F_{*}(L, L)$.

Quantum product: $H F_{k}(L) \otimes H F_{l}(L) \longrightarrow H F_{k+l-n}(L)$
$\square f_{1}, f_{2}, f_{3}: L \rightarrow \mathbb{R}$ Morse.

Quantum product: $H F_{k}(L) \otimes H F_{l}(L) \longrightarrow H F_{k+l-n}(L)$

$f_{1}, f_{2}, f_{3}: L \rightarrow \mathbb{R}$ Morse.

$$
x \otimes y \longmapsto x * y:=\sum_{z, \mathbf{A}} n_{I I}(x, y, z ; J, \mathbf{A}) z t^{\bar{\mu}(\mathbf{A})}
$$

$\square f_{1}, f_{2}, f_{3}: L \rightarrow \mathbb{R}$ Morse.

$$
x \otimes y \longmapsto x * y:=\sum_{z, \mathbf{A}} n_{I I}(x, y, z ; J, \mathbf{A}) z t^{\bar{\mu}(\mathbf{A})}
$$

- Possible to work with 2 functions (i.e. $f_{3}=f_{1}$). Possible to work with $\operatorname{Crit}\left(f_{3}\right)=\operatorname{Crit}\left(f_{2}\right)=\operatorname{Crit}\left(f_{1}\right)$.
- $f_{1}, f_{2}, f_{3}: L \rightarrow \mathbb{R}$ Morse.

$$
x \otimes y \longmapsto x * y:=\sum_{z, \mathbf{A}} n_{I I}(x, y, z ; J, \mathbf{A}) z t^{\bar{\mu}(\mathbf{A})}
$$

- Possible to work with 2 functions (i.e. $f_{3}=f_{1}$). Possible to work with $\operatorname{Crit}\left(f_{3}\right)=\operatorname{Crit}\left(f_{2}\right)=\operatorname{Crit}\left(f_{1}\right)$.
- $H F(L)$ becomes a (NON COMMUTATIVE) ring with a unity $w \in H F_{n}(L)$. Actually, $w=[\max]$.

Quantum homology: $Q H_{i}(M) \otimes Q H_{j}(M) \rightarrow Q H_{i+j-2 n}(M)$

- $Q H_{*}(M)=H_{*}(M) \otimes \Lambda_{*}$.

Quantum homology: $Q H_{i}(M) \otimes Q H_{j}(M) \rightarrow Q H_{i+j-2 n}(M)$

$\square Q H_{*}(M)=H_{*}(M) \otimes \Lambda_{*}$.

- $g_{1}, g_{2}, g_{3}: M \rightarrow \mathbb{R}$ Morse.

Define $\mathcal{C}_{i}\left(g_{1}\right) \otimes \mathcal{C}_{j}\left(g_{2}\right) \rightarrow \mathcal{C}_{i+j-2 n}\left(g_{3}\right)$ by counting:

Quantum homology: $Q H_{i}(M) \otimes Q H_{j}(M) \rightarrow Q H_{i+j-2 n}(M)$

$\square Q H_{*}(M)=H_{*}(M) \otimes \Lambda_{*}$.
$\square g_{1}, g_{2}, g_{3}: M \rightarrow \mathbb{R}$ Morse.
Define $\mathcal{C}_{i}\left(g_{1}\right) \otimes \mathcal{C}_{j}\left(g_{2}\right) \rightarrow \mathcal{C}_{i+j-2 n}\left(g_{3}\right)$ by counting:

- $Q H_{*}(M)$ becomes a (commutative) ring. Unity $=$ fundamental class $u=[M] \in Q H_{2 n}(M)$.

External operations

\square Pick $f: L \rightarrow \mathbb{R}, g: M \rightarrow \mathbb{R}$ Morse.

External operations

- Pick $f: L \rightarrow \mathbb{R}, g: M \rightarrow \mathbb{R}$ Morse.
- Define $\mathcal{C}_{i}(M ; g) \otimes \mathcal{C}_{j}(L ; f) \rightarrow \mathcal{C}_{i+j-2 n}(L ; g)$ $a \otimes x \longmapsto a * x:=\sum_{y, \mathbf{A}} n_{I I I}(a, x, y ; J, \mathbf{A}) y t^{\bar{\mu}(\mathbf{A})}$.

- Pick $f: L \rightarrow \mathbb{R}, g: M \rightarrow \mathbb{R}$ Morse.
- Define $\mathcal{C}_{i}(M ; g) \otimes \mathcal{C}_{j}(L ; f) \rightarrow \mathcal{C}_{i+j-2 n}(L ; g)$

$$
a \otimes x \longmapsto a * x:=\sum_{y, \mathbf{A}} n_{I I I}(a, x, y ; J, \mathbf{A}) y t^{\bar{\mu}(\mathbf{A})} .
$$

IMPORTANT: The 3 points on the disk marked by the $-\nabla g$ and $-\nabla f$ trajectories must lie on the same hyperbolic geodesic.

The module structure

Thm: The map $a \otimes x \mapsto a * x$ is a chain map.
\rightsquigarrow operation $Q H_{i}(M) \otimes H F_{j}(L) \rightarrow H F_{i+j-2 n}(L)$.

Thm: The map $a \otimes x \mapsto a * x$ is a chain map. \rightsquigarrow operation $Q H_{i}(M) \otimes H F_{j}(L) \rightarrow H F_{i+j-2 n}(L)$.

Moreover, $H F(L)$ becomes a two-sided module, in fact algebra, over $Q H_{*}(M)$.

Thm: The map $a \otimes x \mapsto a * x$ is a chain map.
\rightsquigarrow operation $Q H_{i}(M) \otimes H F_{j}(L) \rightarrow H F_{i+j-2 n}(L)$.
Moreover, $H F(L)$ becomes a two-sided module, in fact algebra, over $Q H_{*}(M)$.
$\underline{\forall a, b \in Q H(M), \gamma, \delta \in H F(L)}:$
$a *(b * \gamma)=(a * b) * \gamma$,
$a *(\gamma * \delta)=(a * \gamma) * \delta=\gamma *(a * \delta)$,
$u * \gamma=\gamma$ etc.

More quantum structures

More quantum structures

Augmentation: $\epsilon_{L}: H F_{*}(L) \rightarrow \Lambda_{*}$, induced by $\min _{f} \mapsto 1 \in \Lambda$.

More quantum structures

Augmentation: $\epsilon_{L}: H F_{*}(L) \rightarrow \Lambda_{*}$, induced by $\min _{f} \mapsto 1 \in \Lambda$.

Quantum inclusion: $i_{L}: H F_{*}(L) \rightarrow Q H_{*}(M)$
$Q H_{*}(M)$-module morphism. (A quantum analogue of work of Albers).

More quantum structures

Augmentation: $\epsilon_{L}: H F_{*}(L) \rightarrow \Lambda_{*}$, induced by $\min _{f} \mapsto 1 \in \Lambda$.

Quantum inclusion: $i_{L}: H F_{*}(L) \rightarrow Q H_{*}(M)$
$Q H_{*}(M)$-module morphism. (A quantum analogue of work of Albers). Defined by counting:

Augmentation: $\epsilon_{L}: H F_{*}(L) \rightarrow \Lambda_{*}$, induced by $\min _{f} \mapsto 1 \in \Lambda$.

Quantum inclusion: $i_{L}: H F_{*}(L) \rightarrow Q H_{*}(M)$
$Q H_{*}(M)$-module morphism. (A quantum analogue of work of Albers). Defined by counting:

Everything is compatible with duality:
$\forall h \in H_{*}(M), \alpha \in H F_{*}(L):\left\langle P D(h), i_{L}(\alpha)\right\rangle=\epsilon_{L}(h * \alpha)$.

Spectral sequences (in the spirit of Y.-G. Oh)

Spectral sequences (in the spirit of Y.-G. Oh)

Degree filtration on Λ :

$$
\mathcal{F}^{p} \Lambda=\left\{\sum_{i \geq p} a_{i} t^{i}\right\} .
$$

Spectral sequences (in the spirit of Y.-G. Oh)

Degree filtration on Λ :

$$
\mathcal{F}^{p} \Lambda=\left\{\sum_{i \geq p} a_{i} t^{i}\right\} .
$$

\rightsquigarrow filtration on $\mathcal{C}(f ; \Lambda)=\mathbb{Z}_{2}\langle\operatorname{Crit}(f)\rangle \otimes \Lambda$.

Spectral sequences (in the spirit of Y.-G. Oh)

Degree filtration on Λ :

$$
\mathcal{F}^{p} \Lambda=\left\{\sum_{i \geq p} a_{i} t^{i}\right\} .
$$

\rightsquigarrow filtration on $\mathcal{C}(f ; \Lambda)=\mathbb{Z}_{2}\langle\operatorname{Crit}(f)\rangle \otimes \Lambda$.
The Floer differential respects this filtration

Spectral sequences (in the spirit of Y.-G. Oh)

Degree filtration on Λ :

$$
\mathcal{F}^{p} \Lambda=\left\{\sum_{i \geq p} a_{i} t^{i}\right\} .
$$

\rightsquigarrow filtration on $\mathcal{C}(f ; \Lambda)=\mathbb{Z}_{2}\langle\operatorname{Crit}(f)\rangle \otimes \Lambda$.
The Floer differential respects this filtration \rightsquigarrow spectral sequence $\left\{E_{*, *}^{r}, d_{r}\right\}$ converging to $H F(L)$.
The E^{1}-term comes from the singular homology $H_{*}(L)$.

Spectral sequences (in the spirit of Y.-G. Oh)
Degree filtration on Λ :

$$
\mathcal{F}^{p} \Lambda=\left\{\sum_{i \geq p} a_{i} t^{i}\right\} .
$$

\rightsquigarrow filtration on $\mathcal{C}(f ; \Lambda)=\mathbb{Z}_{2}\langle\operatorname{Crit}(f)\rangle \otimes \Lambda$.
The Floer differential respects this filtration \rightsquigarrow spectral sequence $\left\{E_{*, *}^{r}, d_{r}\right\}$ converging to $H F(L)$.
The E^{1}-term comes from the singular homology $H_{*}(L)$. All operations above compatible with the filtration.
\Longrightarrow Operations on the spectral sequence.

Spectral sequences (in the spirit of Y.-G. Oh)
Degree filtration on Λ :

$$
\mathcal{F}^{p} \Lambda=\left\{\sum_{i \geq p} a_{i} t^{i}\right\} .
$$

\rightsquigarrow filtration on $\mathcal{C}(f ; \Lambda)=\mathbb{Z}_{2}\langle\operatorname{Crit}(f)\rangle \otimes \Lambda$.
The Floer differential respects this filtration \rightsquigarrow spectral sequence $\left\{E_{*, *}^{r}, d_{r}\right\}$ converging to $H F(L)$.
The E^{1}-term comes from the singular homology $H_{*}(L)$. All operations above compatible with the filtration.
\Longrightarrow Operations on the spectral sequence.
(Compatibility with the quantum product was previously noticed by Buhovsky and by Fukaya-Oh-Ohta-Ono).

Poincaré duality and other structures

Poincaré duality and other structures

There is also PD for $H F_{*}(L) \rightsquigarrow$ non-degenerate bilinear map $H F(L) \otimes H F(L) \rightarrow \Lambda$.

Poincaré duality and other structures

There is also PD for $H F_{*}(L) \rightsquigarrow$ non-degenerate bilinear map $H F(L) \otimes H F(L) \rightarrow \Lambda$.

Action of symplectomorphisms: $\phi \in \operatorname{Symp}(M, L)$

There is also PD for $H F_{*}(L) \rightsquigarrow$ non-degenerate bilinear map $H F(L) \otimes H F(L) \rightarrow \Lambda$.

Action of symplectomorphisms: $\phi \in \operatorname{Symp}(M, L)$ induces a chain map $\mathcal{C}_{*}(L ; f) \rightarrow \mathcal{C}_{*}(L ; f)$ which respects the degree filtration.

There is also PD for $H F_{*}(L) \rightsquigarrow$ non-degenerate bilinear map $H F(L) \otimes H F(L) \rightarrow \Lambda$.

Action of symplectomorphisms: $\phi \in \operatorname{Symp}(M, L)$ induces a chain map $\mathcal{C}_{*}(L ; f) \rightarrow \mathcal{C}_{*}(L ; f)$ which respects the degree filtration. It induces an isomorphism in homology $\bar{\phi}: H F_{*}(L) \rightarrow H F_{*}(L)$ which coincides on the E^{1} term of the spectral sequence with the classical map ϕ_{*} induced on singular homology.

There is also PD for $H F_{*}(L) \rightsquigarrow$ non-degenerate bilinear map $H F(L) \otimes H F(L) \rightarrow \Lambda$.

Action of symplectomorphisms: $\phi \in \operatorname{Symp}(M, L)$ induces a chain map $\mathcal{C}_{*}(L ; f) \rightarrow \mathcal{C}_{*}(L ; f)$ which respects the degree filtration. It induces an isomorphism in homology $\bar{\phi}: H F_{*}(L) \rightarrow H F_{*}(L)$ which coincides on the E^{1} term of the spectral sequence with the classical map ϕ_{*} induced on singular homology.

We actually get a representation
$\lambda: \operatorname{Symp}(M, L) \longrightarrow \operatorname{Aut}\left(H F_{*}(L)\right), \phi \longmapsto \bar{\phi}$.

There is also PD for $H F_{*}(L) \rightsquigarrow$ non-degenerate bilinear map $H F(L) \otimes H F(L) \rightarrow \Lambda$.

Action of symplectomorphisms: $\phi \in \operatorname{Symp}(M, L)$ induces a chain map $\mathcal{C}_{*}(L ; f) \rightarrow \mathcal{C}_{*}(L ; f)$ which respects the degree filtration. It induces an isomorphism in homology $\bar{\phi}: H F_{*}(L) \rightarrow H F_{*}(L)$ which coincides on the E^{1} term of the spectral sequence with the classical map ϕ_{*} induced on singular homology.

We actually get a representation
$\lambda: \operatorname{Symp}(M, L) \longrightarrow \operatorname{Aut}\left(H F_{*}(L)\right), \phi \longmapsto \bar{\phi}$.
The restriction of λ to $\operatorname{Symp}_{0}(M) \cap \operatorname{Symp}(M, L)$ gives automorphisms of $H F_{*}(L)$ as an algebra over $Q H_{*}(M)$.

The positive $H F$

The positive $H F$

We can also work with $\Lambda^{+}=\mathbb{Z}_{2}[t]$ (instead of $\mathbb{Z}_{2}\left[t, t^{-1}\right]$). We get a chain complex $\mathcal{C}_{*}^{+}(L, f)$. $\rightsquigarrow H F_{*}^{+}(L)$.

The positive $H F$

We can also work with $\Lambda^{+}=\mathbb{Z}_{2}[t]$ (instead of $\mathbb{Z}_{2}\left[t, t^{-1}\right]$). We get a chain complex $\mathcal{C}_{*}^{+}(L, f)$. $\rightsquigarrow H F_{*}^{+}(L)$.

Everything above remains valid, except that now $H F_{*}^{+}(L)$ is in general NOT $H F(L, L)$ anymore.

The positive $H F$

We can also work with $\Lambda^{+}=\mathbb{Z}_{2}[t]$ (instead of $\mathbb{Z}_{2}\left[t, t^{-1}\right]$). We get a chain complex $\mathcal{C}_{*}^{+}(L, f)$. $\rightsquigarrow H F_{*}^{+}(L)$.

Everything above remains valid, except that now $H F_{*}^{+}(L)$ is in general NOT $H F(L, L)$ anymore.
$H F_{*}^{+}(L)$ is still invariant of f, J.
It looks very relevant for purposes of enumerative geometry.

The positive $H F$

We can also work with $\Lambda^{+}=\mathbb{Z}_{2}[t]$ (instead of $\mathbb{Z}_{2}\left[t, t^{-1}\right]$). We get a chain complex $\mathcal{C}_{*}^{+}(L, f)$. $\rightsquigarrow H F_{*}^{+}(L)$.

Everything above remains valid, except that now $H F_{*}^{+}(L)$ is in general NOT $H F(L, L)$ anymore.
$H F_{*}^{+}(L)$ is still invariant of f, J.
It looks very relevant for purposes of enumerative geometry.
(A similar object has been studied in the context of Lagrangian intersections by Fukaya-Oh-Ohta-Ono).

Main blocks of the proof

- Transversality.

We need all 0-dim \& 1-dim moduli spaces of pearly trajectories to be smooth and of expected dimensions.
Transversality for holomorphic disks requires them to be absolutely distinct + somewhere injective. This can be achieved using works of Lazzarini, Kwon-Oh + some combinatorics.

Main blocks of the proof

- Transversality.

We need all 0-dim \& 1-dim moduli spaces of pearly trajectories to be smooth and of expected dimensions.
Transversality for holomorphic disks requires them to be absolutely distinct + somewhere injective. This can be achieved using works of Lazzarini, Kwon-Oh + some combinatorics.

- Compactification of the 1-dim moduli spaces of pearls.

Main blocks of the proof

- Transversality.

We need all 0-dim \& 1-dim moduli spaces of pearly trajectories to be smooth and of expected dimensions.
Transversality for holomorphic disks requires them to be absolutely distinct + somewhere injective. This can be achieved using works of Lazzarini, Kwon-Oh + some combinatorics.

- Compactification of the 1-dim moduli spaces of pearls.
- Gluing.

Existence: we followed Fukaya-Oh-Ohta-Ono. Uniqueness: we proved surjectivity of the gluing map for 0 and 1-dim moduli spaces.

Applications to topology of Lagrangians

Applications to topology of Lagrangians

Suppose $a \in Q H_{i}(M)$ is invertible.

Applications to topology of Lagrangians

Suppose $a \in Q H_{i}(M)$ is invertible.
$\Longrightarrow a *(-): H F_{*}(L) \xrightarrow{\cong} H F_{*+i-2 n}(L) \quad$ isomorphism.

Applications to topology of Lagrangians

Suppose $a \in Q H_{i}(M)$ is invertible.
$\Longrightarrow a *(-): H F_{*}(L) \xrightarrow{\cong} H F_{*+i-2 n}(L) \quad$ isomorphism.
Ex. $M=\mathbb{C} P^{n} . h \in H_{2 n-2}\left(\mathbb{C} P^{n}\right)$ hyperplane, $p \in H_{0}\left(\mathbb{C} P^{n}\right)$ point, $u=\left[\mathbb{C} P^{n}\right] \in H_{2 n}\left(\mathbb{C} P^{n}\right)$.

Applications to topology of Lagrangians

Suppose $a \in Q H_{i}(M)$ is invertible.
$\Longrightarrow a *(-): H F_{*}(L) \xrightarrow{\cong} H F_{*+i-2 n}(L) \quad$ isomorphism.
Ex. $M=\mathbb{C} P^{n} . h \in H_{2 n-2}\left(\mathbb{C} P^{n}\right)$ hyperplane, $p \in H_{0}\left(\mathbb{C} P^{n}\right)$ point, $u=\left[\mathbb{C} P^{n}\right] \in H_{2 n}\left(\mathbb{C} P^{n}\right)$.

Quantum homology: $h^{* j}=h^{\cap j}, \forall 0 \leq j \leq n$.

Applications to topology of Lagrangians

Suppose $a \in Q H_{i}(M)$ is invertible.
$\Longrightarrow a *(-): H F_{*}(L) \xrightarrow{\cong} H F_{*+i-2 n}(L) \quad$ isomorphism.
Ex. $M=\mathbb{C} P^{n} . h \in H_{2 n-2}\left(\mathbb{C} P^{n}\right)$ hyperplane, $p \in H_{0}\left(\mathbb{C} P^{n}\right)$ point, $u=\left[\mathbb{C} P^{n}\right] \in H_{2 n}\left(\mathbb{C} P^{n}\right)$.

Quantum homology: $h^{* j}=h^{\cap j}, \forall 0 \leq j \leq n$. $h^{\cap(n+1)}=0$ but $h^{*(n+1)}=u t^{(2 n+2) / N_{L}}$. (Recall $\operatorname{deg} t=-N_{L}$).

Applications to topology of Lagrangians

Suppose $a \in Q H_{i}(M)$ is invertible.
$\Longrightarrow a *(-): H F_{*}(L) \xrightarrow{\cong} H F_{*+i-2 n}(L) \quad$ isomorphism.
Ex. $M=\mathbb{C} P^{n} . h \in H_{2 n-2}\left(\mathbb{C} P^{n}\right)$ hyperplane, $p \in H_{0}\left(\mathbb{C} P^{n}\right)$ point, $u=\left[\mathbb{C} P^{n}\right] \in H_{2 n}\left(\mathbb{C} P^{n}\right)$.

Quantum homology: $h^{* j}=h^{\cap j}, \forall 0 \leq j \leq n$. $h^{\cap(n+1)}=0$ but $h^{*(n+1)}=u t^{(2 n+2) / N_{L}}$. (Recall $\operatorname{deg} t=-N_{L}$). So $h \in Q H_{2 n-2}\left(\mathbb{C} P^{n}\right)$ is invertible !

Applications to topology of Lagrangians

Suppose $a \in Q H_{i}(M)$ is invertible.
$\Longrightarrow a *(-): H F_{*}(L) \xrightarrow{\cong} H F_{*+i-2 n}(L) \quad$ isomorphism.
Ex. $M=\mathbb{C} P^{n} . h \in H_{2 n-2}\left(\mathbb{C} P^{n}\right)$ hyperplane, $p \in H_{0}\left(\mathbb{C} P^{n}\right)$ point, $u=\left[\mathbb{C} P^{n}\right] \in H_{2 n}\left(\mathbb{C} P^{n}\right)$.

Quantum homology: $h^{* j}=h^{\cap j}, \forall 0 \leq j \leq n$. $h^{\cap(n+1)}=0$ but $h^{*(n+1)}=u t^{(2 n+2) / N_{L}}$. (Recall $\operatorname{deg} t=-N_{L}$). So $h \in Q H_{2 n-2}\left(\mathbb{C} P^{n}\right)$ is invertible !

Cor: \forall monotone $L \subset \mathbb{C} P^{n}, H F_{*}(L) \cong H F_{*-2}(L)$.

Applications to topology of Lagrangians

Suppose $a \in Q H_{i}(M)$ is invertible.
$\Longrightarrow a *(-): H F_{*}(L) \xrightarrow{\cong} H F_{*+i-2 n}(L) \quad$ isomorphism.
Ex. $M=\mathbb{C} P^{n} . h \in H_{2 n-2}\left(\mathbb{C} P^{n}\right)$ hyperplane, $p \in H_{0}\left(\mathbb{C} P^{n}\right)$ point, $u=\left[\mathbb{C} P^{n}\right] \in H_{2 n}\left(\mathbb{C} P^{n}\right)$.

Quantum homology: $h^{* j}=h^{\cap j}, \forall 0 \leq j \leq n$. $h^{\cap(n+1)}=0$ but $h^{*(n+1)}=u t^{(2 n+2) / N_{L}}$. (Recall $\operatorname{deg} t=-N_{L}$). So $h \in Q H_{2 n-2}\left(\mathbb{C} P^{n}\right)$ is invertible !

Cor: \forall monotone $L \subset \mathbb{C} P^{n}, H F_{*}(L) \cong H F_{*-2}(L)$.
(Previously proved by other methods by Seidel).

Applications to topology of Lagrangians

Suppose $a \in Q H_{i}(M)$ is invertible.
$\Longrightarrow a *(-): H F_{*}(L) \xrightarrow{\cong} H F_{*+i-2 n}(L) \quad$ isomorphism.
Ex. $M=\mathbb{C} P^{n} . h \in H_{2 n-2}\left(\mathbb{C} P^{n}\right)$ hyperplane, $p \in H_{0}\left(\mathbb{C} P^{n}\right)$ point, $u=\left[\mathbb{C} P^{n}\right] \in H_{2 n}\left(\mathbb{C} P^{n}\right)$.

Quantum homology: $h^{* j}=h^{\cap j}, \forall 0 \leq j \leq n$. $h^{\cap(n+1)}=0$ but $h^{*(n+1)}=u t^{(2 n+2) / N_{L}}$. (Recall $\operatorname{deg} t=-N_{L}$). So $h \in Q H_{2 n-2}\left(\mathbb{C} P^{n}\right)$ is invertible !

Cor: \forall monotone $L \subset \mathbb{C} P^{n}, H F_{*}(L) \cong H F_{*-2}(L)$. (Previously proved by other methods by Seidel).

Very useful if we know that $H F_{i}(L) \neq 0$ for some i.

Lagrangians in $\mathbb{C} P^{n}$

Lagrangians in $\mathbb{C} P^{n}$

$\mathbb{R} P^{n} \subset \mathbb{C} P^{n}$ is a monotone Lagrangian with $N_{L}=n+1$. Note that $H_{1}\left(\mathbb{R} P^{n} ; \mathbb{Z}\right)=\mathbb{Z}_{2}$ and $H_{i}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \forall i$.

Lagrangians in $\mathbb{C} P^{n}$

$\mathbb{R} P^{n} \subset \mathbb{C} P^{n}$ is a monotone Lagrangian with $N_{L}=n+1$. Note that $H_{1}\left(\mathbb{R} P^{n} ; \mathbb{Z}\right)=\mathbb{Z}_{2}$ and $H_{i}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \forall i$.

Thm: $L \subset \mathbb{C} P^{n}, 2 H_{1}(L ; \mathbb{Z})=0$. Then $N_{L}=n+1$ and:

Lagrangians in $\mathbb{C} P^{n}$

$\mathbb{R} P^{n} \subset \mathbb{C} P^{n}$ is a monotone Lagrangian with $N_{L}=n+1$. Note that $H_{1}\left(\mathbb{R} P^{n} ; \mathbb{Z}\right)=\mathbb{Z}_{2}$ and $H_{i}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \forall i$.

Thm: $L \subset \mathbb{C} P^{n}, 2 H_{1}(L ; \mathbb{Z})=0$. Then $N_{L}=n+1$ and:

1. $H_{i}(L)=\mathbb{Z}_{2} \forall i$.

Lagrangians in $\mathbb{C} P^{n}$

$\mathbb{R} P^{n} \subset \mathbb{C} P^{n}$ is a monotone Lagrangian with $N_{L}=n+1$. Note that $H_{1}\left(\mathbb{R} P^{n} ; \mathbb{Z}\right)=\mathbb{Z}_{2}$ and $H_{i}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \forall i$.

Thm: $L \subset \mathbb{C} P^{n}, 2 H_{1}(L ; \mathbb{Z})=0$. Then $N_{L}=n+1$ and:

1. $H_{i}(L)=\mathbb{Z}_{2} \forall i$.
2. Let $\alpha_{n-2} \in H_{n-2}(L)$ be the generator. Then

$$
\alpha_{n-2} \cap(-): H_{i}(L) \xrightarrow{\cong} H_{i-2}(L) \forall i \geq 2 .
$$

Lagrangians in $\mathbb{C} P^{n}$

$\mathbb{R} P^{n} \subset \mathbb{C} P^{n}$ is a monotone Lagrangian with $N_{L}=n+1$. Note that $H_{1}\left(\mathbb{R} P^{n} ; \mathbb{Z}\right)=\mathbb{Z}_{2}$ and $H_{i}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \forall i$.

Thm: $L \subset \mathbb{C} P^{n}, 2 H_{1}(L ; \mathbb{Z})=0$. Then $N_{L}=n+1$ and:

1. $H_{i}(L)=\mathbb{Z}_{2} \forall i$.
2. Let $\alpha_{n-2} \in H_{n-2}(L)$ be the generator. Then

$$
\alpha_{n-2} \cap(-): H_{i}(L) \xrightarrow{\cong} H_{i-2}(L) \forall i \geq 2 .
$$

3. $\mathrm{inc}_{*}: H_{i}(L) \xrightarrow{\cong} H_{i}\left(\mathbb{C} P^{n}\right) \forall i=$ even.

Lagrangians in $\mathbb{C} P^{n}$

$\mathbb{R} P^{n} \subset \mathbb{C} P^{n}$ is a monotone Lagrangian with $N_{L}=n+1$. Note that $H_{1}\left(\mathbb{R} P^{n} ; \mathbb{Z}\right)=\mathbb{Z}_{2}$ and $H_{i}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \forall i$.

Thm: $L \subset \mathbb{C} P^{n}, 2 H_{1}(L ; \mathbb{Z})=0$. Then $N_{L}=n+1$ and:

1. $H_{i}(L)=\mathbb{Z}_{2} \forall i$.
2. Let $\alpha_{n-2} \in H_{n-2}(L)$ be the generator. Then $\alpha_{n-2} \cap(-): H_{i}(L) \xrightarrow{\cong} H_{i-2}(L) \forall i \geq 2$.
3. $\mathrm{inc}_{*}: H_{i}(L) \xrightarrow{\cong} H_{i}\left(\mathbb{C} P^{n}\right) \forall i=$ even.

Statement 1 was proved before by Seidel by other methods. An alternative proof by B.

Quantum structures

Let α_{i} be the generator of $H F_{i}$. So that $\alpha_{-1}=\alpha_{n} t$, $\alpha_{i+l(n+1)}=\alpha_{i} t^{-l}$ etc.

Quantum structures

Let α_{i} be the generator of $H F_{i}$. So that $\alpha_{-1}=\alpha_{n} t$, $\alpha_{i+l(n+1)}=\alpha_{i} t^{-l}$ etc.

In other words for L as before we have:

i	\cdots	-1	0	1	\cdots	$\mathrm{n}-1$	n	$\mathrm{n}+1$	\cdots
$H F_{i}$	\cdots	$\mathbb{Z}_{2} \alpha_{n} t$	$\mathbb{Z}_{2} \alpha_{0}$	$\mathbb{Z}_{2} \alpha_{1}$	\cdots	$\mathbb{Z}_{2} \alpha_{n-1}$	$\mathbb{Z}_{2} \alpha_{n}$	$\mathbb{Z}_{2} \alpha_{0} t^{-1}$	\cdots

Quantum structures

Let α_{i} be the generator of $H F_{i}$. So that $\alpha_{-1}=\alpha_{n} t$, $\alpha_{i+l(n+1)}=\alpha_{i} t^{-l}$ etc.

The action of h :

i	\cdots	-1	0	1	\cdots	$\mathrm{n}-1$	n	$\mathrm{n}+1$	\cdots
$H F_{i}$	\cdots	$\mathbb{Z}_{2} \alpha_{n} t$	$\mathbb{Z}_{2} \alpha_{0}$	$\mathbb{Z}_{2} \alpha_{1}$	\cdots	$\mathbb{Z}_{2} \alpha_{n-1}$	$\mathbb{Z}_{2} \alpha_{n}$	$\mathbb{Z}_{2} \alpha_{0} t^{-1}$	\ldots

Quantum structures

Let α_{i} be the generator of $H F_{i}$. So that $\alpha_{-1}=\alpha_{n} t$, $\alpha_{i+l(n+1)}=\alpha_{i} t^{-l}$ etc.

The action of h :

i	\ldots	-1	0	1	\ldots	$\mathrm{n}-1$	n	$\mathrm{n}+1$	\ldots
$H F_{i}$	\ldots	$\mathbb{Z}_{2} \alpha_{n} t$	$\mathbb{Z}_{2} \alpha_{0}$	$\mathbb{Z}_{2} \alpha_{1}$	\ldots	$\mathbb{Z}_{2} \alpha_{n-1}$	$\mathbb{Z}_{2} \alpha_{n}$	$\mathbb{Z}_{2} \alpha_{0} t^{-1}$	\ldots

Thm: If $n=$ even or $L \approx \mathbb{R} P^{n}$ then

$$
\alpha_{j} * \alpha_{k}=\alpha_{j+k-n} \quad \forall k, j \in \mathbb{Z} .
$$

Quantum inclusion

Quantum inclusion

Quantum inclusion map $i_{L}: H F_{*}(L) \rightarrow Q H_{*}\left(\mathbb{C} P^{n}\right)$.

Quantum inclusion

Quantum inclusion map $i_{L}: H F_{*}(L) \rightarrow Q H_{*}\left(\mathbb{C} P^{n}\right)$. Denote by $a_{j} \in H_{j}\left(\mathbb{C} P^{n} ; \mathbb{Z}_{2}\right)$ the generator, $0 \leq j \leq 2 n$.

Quantum inclusion

Quantum inclusion map $i_{L}: H F_{*}(L) \rightarrow Q H_{*}\left(\mathbb{C} P^{n}\right)$. Denote by $a_{j} \in H_{j}\left(\mathbb{C} P^{n} ; \mathbb{Z}_{2}\right)$ the generator, $0 \leq j \leq 2 n$.

Thm: Let $L \subset \mathbb{C} P^{n}$ as above.

Quantum inclusion

Quantum inclusion map $i_{L}: H F_{*}(L) \rightarrow Q H_{*}\left(\mathbb{C} P^{n}\right)$. Denote by $a_{j} \in H_{j}\left(\mathbb{C} P^{n} ; \mathbb{Z}_{2}\right)$ the generator, $0 \leq j \leq 2 n$.

Thm: Let $L \subset \mathbb{C} P^{n}$ as above.

1. If $n=$ even then:

$$
\begin{aligned}
& i_{L}\left(\alpha_{2 k}\right)=a_{2 k}, \quad \forall 0 \leq 2 k \leq n, \\
& i_{L}\left(\alpha_{2 k+1}\right)=a_{2 k+n+2} t, \quad \forall 1 \leq 2 k+1 \leq n-1 .
\end{aligned}
$$

Quantum inclusion

Quantum inclusion map $i_{L}: H F_{*}(L) \rightarrow Q H_{*}\left(\mathbb{C} P^{n}\right)$. Denote by $a_{j} \in H_{j}\left(\mathbb{C} P^{n} ; \mathbb{Z}_{2}\right)$ the generator, $0 \leq j \leq 2 n$.

Thm: Let $L \subset \mathbb{C} P^{n}$ as above.

1. If $n=$ even then:

$$
\begin{aligned}
& i_{L}\left(\alpha_{2 k}\right)=a_{2 k}, \quad \forall 0 \leq 2 k \leq n, \\
& i_{L}\left(\alpha_{2 k+1}\right)=a_{2 k+n+2} t, \quad \forall 1 \leq 2 k+1 \leq n-1 .
\end{aligned}
$$

2. If $n=$ odd then:

$$
\begin{aligned}
& i_{L}\left(\alpha_{2 k}\right)=a_{2 k}+a_{2 k+n+1} t, \quad \forall 0 \leq 2 k \leq n, \\
& i_{L}\left(\alpha_{2 k+1}\right)=0, \quad \forall k .
\end{aligned}
$$

Existence of disks \& enumerative geometry

Existence of disks \& enumerative geometry

Thm: Let $L \subset \mathbb{C} P^{n}$ with $2 H_{1}(L ; \mathbb{Z})=0$. If $n=$ even or $L \approx \mathbb{R} P^{n}$ then $\forall x^{\prime}, x^{\prime \prime} \in L$ and $\forall J, \exists J$-holomorphic disk $u:(D, \partial D) \rightarrow\left(\mathbb{C} P^{n}, L\right)$ with $u(-1)=x^{\prime}, u(1)=x^{\prime \prime}$ $\& \mu([u])=n+1$. The $\#$ of such disks (upto parametrization) is even ≥ 2.

Existence of disks \& enumerative geometry

Thm: Let $L \subset \mathbb{C} P^{n}$ with $2 H_{1}(L ; \mathbb{Z})=0$. If $n=$ even or $L \approx \mathbb{R} P^{n}$ then $\forall x^{\prime}, x^{\prime \prime} \in L$ and $\forall J, \exists J$-holomorphic disk $u:(D, \partial D) \rightarrow\left(\mathbb{C} P^{n}, L\right)$ with $u(-1)=x^{\prime}, u(1)=x^{\prime \prime}$ \& $\mu([u])=n+1$. The $\#$ of such disks (upto parametrization) is even ≥ 2.

Proof. The point is that $\alpha_{0} * \alpha_{0}=\alpha_{1}$ t.

Thm: Let $L \subset \mathbb{C} P^{n}$ with $2 H_{1}(L ; \mathbb{Z})=0$. If $n=$ even or $L \approx \mathbb{R} P^{n}$ then $\forall x^{\prime}, x^{\prime \prime} \in L$ and $\forall J, \exists J$-holomorphic disk $u:(D, \partial D) \rightarrow\left(\mathbb{C} P^{n}, L\right)$ with $u(-1)=x^{\prime}, u(1)=x^{\prime \prime}$ $\& \mu([u])=n+1$. The $\#$ of such disks (upto parametrization) is even ≥ 2.

Proof. The point is that $\alpha_{0} * \alpha_{0}=\alpha_{1}$ t.

Thm: Let $L \subset \mathbb{C} P^{n}$ be a Lagrangian with $2 H_{1}(L ; \mathbb{Z})=0$.

Thm: Let $L \subset \mathbb{C} P^{n}$ be a Lagrangian with $2 H_{1}(L ; \mathbb{Z})=0$.

1. $\forall p \in \mathbb{C} P^{n} \& \forall J \in \mathcal{J}, \quad \exists$ a J-holomorphic disk $u:(D, \partial D) \rightarrow\left(\mathbb{C} P^{n}, L\right)$ with $\mu([u])=n+1$ and $u(0)=p$.

Thm: Let $L \subset \mathbb{C} P^{n}$ be a Lagrangian with $2 H_{1}(L ; \mathbb{Z})=0$.

1. $\forall p \in \mathbb{C} P^{n} \& \forall J \in \mathcal{J}, \quad \exists$ a J-holomorphic disk $u:(D, \partial D) \rightarrow\left(\mathbb{C} P^{n}, L\right)$ with $\mu([u])=n+1$ and $u(0)=p$.
2. Let $x \in L, p \in \mathbb{C} P^{n} \backslash L$. Then for generic $J \in \mathcal{J}, \exists$ a J-holomorphic disk $u:(D, \partial D) \rightarrow\left(\mathbb{C} P^{n}, L\right)$ with $\mu([u])=2 n+2$ and $u(0)=p, u(-1)=x$.

Thm: Let $L \subset \mathbb{C} P^{n}$ be a Lagrangian with $2 H_{1}(L ; \mathbb{Z})=0$.

1. $\forall p \in \mathbb{C} P^{n} \& \forall J \in \mathcal{J}, \quad \exists$ a J-holomorphic disk $u:(D, \partial D) \rightarrow\left(\mathbb{C} P^{n}, L\right)$ with $\mu([u])=n+1$ and $u(0)=p$.
2. Let $x \in L, p \in \mathbb{C} P^{n} \backslash L$. Then for generic $J \in \mathcal{J}, \exists$ a J-holomorphic disk $u:(D, \partial D) \rightarrow\left(\mathbb{C} P^{n}, L\right)$ with $\mu([u])=2 n+2$ and $u(0)=p, u(-1)=x$.
3. Suppose $n=2$ and $L \approx \mathbb{R} P^{2}$. Let $x^{\prime}, x^{\prime \prime} \in L$ two distinct points, $p \in \mathbb{C} P^{2} \backslash L$. Then for generic J, \exists a J-holomorphic disk $u:(D, \partial D) \rightarrow\left(\mathbb{C} P^{2}, L\right)$ with $\mu([u])=6$ and $u(-1)=x^{\prime}, u(1)=x^{\prime \prime}$ and $u(0)=p$.
The number of such disks is odd.

Similar theorems hold for other manifolds.

Similar theorems hold for other manifolds.

The quadric $Q=\left\{z_{0}^{2}+\cdots+z_{n+1}^{2}=0\right\} \subset \mathbb{C} P^{n+1}$.

Similar theorems hold for other manifolds.

The quadric $Q=\left\{z_{0}^{2}+\cdots+z_{n+1}^{2}=0\right\} \subset \mathbb{C} P^{n+1}$.
Thm: Assume $\operatorname{dim}_{\mathbb{C}} Q=$ even. $L \subset Q$ with $H_{1}(L ; \mathbb{Z})=0$.
Then $H_{*}\left(L ; \mathbb{Z}_{2}\right) \cong H_{*}\left(S^{n} ; \mathbb{Z}_{2}\right)$.

Similar theorems hold for other manifolds.

The quadric $Q=\left\{z_{0}^{2}+\cdots+z_{n+1}^{2}=0\right\} \subset \mathbb{C} P^{n+1}$.
Thm: Assume $\operatorname{dim}_{\mathbb{C}} Q=$ even. $L \subset Q$ with $H_{1}(L ; \mathbb{Z})=0$.
Then $H_{*}\left(L ; \mathbb{Z}_{2}\right) \cong H_{*}\left(S^{n} ; \mathbb{Z}_{2}\right)$.

$$
\begin{aligned}
& \alpha_{0}:=[p t] \in H_{0}(Q), \alpha_{n}:=[L] \in H_{n}(L), \\
& p:=[p t] \in H_{0}(Q), u:=[Q] \in H_{2 n}(Q) .
\end{aligned}
$$

Similar theorems hold for other manifolds.

The quadric $Q=\left\{z_{0}^{2}+\cdots+z_{n+1}^{2}=0\right\} \subset \mathbb{C} P^{n+1}$.
Thm: Assume $\operatorname{dim}_{\mathbb{C}} Q=$ even. $L \subset Q$ with $H_{1}(L ; \mathbb{Z})=0$.
Then $H_{*}\left(L ; \mathbb{Z}_{2}\right) \cong H_{*}\left(S^{n} ; \mathbb{Z}_{2}\right)$.
$\alpha_{0}:=[p t] \in H_{0}(Q), \alpha_{n}:=[L] \in H_{n}(L)$,
$p:=[p t] \in H_{0}(Q), u:=[Q] \in H_{2 n}(Q)$.
Thm: Let $L \subset Q$ with $H_{1}(L ; \mathbb{Z})=0$. Then:

Similar theorems hold for other manifolds.

The quadric $Q=\left\{z_{0}^{2}+\cdots+z_{n+1}^{2}=0\right\} \subset \mathbb{C} P^{n+1}$.
Thm: Assume $\operatorname{dim}_{\mathbb{C}} Q=$ even. $L \subset Q$ with $H_{1}(L ; \mathbb{Z})=0$. Then $H_{*}\left(L ; \mathbb{Z}_{2}\right) \cong H_{*}\left(S^{n} ; \mathbb{Z}_{2}\right)$.
$\alpha_{0}:=[p t] \in H_{0}(Q), \alpha_{n}:=[L] \in H_{n}(L)$,
$p:=[p t] \in H_{0}(Q), u:=[Q] \in H_{2 n}(Q)$.
Thm: Let $L \subset Q$ with $H_{1}(L ; \mathbb{Z})=0$. Then:

1. $p * \alpha_{0}=\alpha_{0} t, p * \alpha_{n}=\alpha_{n} t$.

Similar theorems hold for other manifolds.

The quadric $Q=\left\{z_{0}^{2}+\cdots+z_{n+1}^{2}=0\right\} \subset \mathbb{C} P^{n+1}$.
Thm: Assume $\operatorname{dim}_{\mathbb{C}} Q=$ even. $L \subset Q$ with $H_{1}(L ; \mathbb{Z})=0$. Then $H_{*}\left(L ; \mathbb{Z}_{2}\right) \cong H_{*}\left(S^{n} ; \mathbb{Z}_{2}\right)$.
$\alpha_{0}:=[p t] \in H_{0}(Q), \alpha_{n}:=[L] \in H_{n}(L)$,
$p:=[p t] \in H_{0}(Q), u:=[Q] \in H_{2 n}(Q)$.
Thm: Let $L \subset Q$ with $H_{1}(L ; \mathbb{Z})=0$. Then:

1. $p * \alpha_{0}=\alpha_{0} t, p * \alpha_{n}=\alpha_{n} t$.
2. $i_{L}\left(\alpha_{0}\right)=p-u t$.

Similar theorems hold for other manifolds.

The quadric $Q=\left\{z_{0}^{2}+\cdots+z_{n+1}^{2}=0\right\} \subset \mathbb{C} P^{n+1}$.
Thm: Assume $\operatorname{dim}_{\mathbb{C}} Q=$ even. $L \subset Q$ with $H_{1}(L ; \mathbb{Z})=0$. Then $H_{*}\left(L ; \mathbb{Z}_{2}\right) \cong H_{*}\left(S^{n} ; \mathbb{Z}_{2}\right)$.
$\alpha_{0}:=[p t] \in H_{0}(Q), \alpha_{n}:=[L] \in H_{n}(L)$,
$p:=[p t] \in H_{0}(Q), u:=[Q] \in H_{2 n}(Q)$.
Thm: Let $L \subset Q$ with $H_{1}(L ; \mathbb{Z})=0$. Then:

1. $p * \alpha_{0}=\alpha_{0} t, p * \alpha_{n}=\alpha_{n} t$.
2. $i_{L}\left(\alpha_{0}\right)=p-u t$.
3. If n is even then $\alpha_{0} * \alpha_{0}=\alpha_{n} t$.

Similar theorems hold for other manifolds.

The quadric $Q=\left\{z_{0}^{2}+\cdots+z_{n+1}^{2}=0\right\} \subset \mathbb{C} P^{n+1}$.
Thm: Assume $\operatorname{dim}_{\mathbb{C}} Q=$ even. $L \subset Q$ with $H_{1}(L ; \mathbb{Z})=0$. Then $H_{*}\left(L ; \mathbb{Z}_{2}\right) \cong H_{*}\left(S^{n} ; \mathbb{Z}_{2}\right)$.
$\alpha_{0}:=[p t] \in H_{0}(Q), \alpha_{n}:=[L] \in H_{n}(L)$,
$p:=[p t] \in H_{0}(Q), u:=[Q] \in H_{2 n}(Q)$.
Thm: Let $L \subset Q$ with $H_{1}(L ; \mathbb{Z})=0$. Then:

1. $p * \alpha_{0}=\alpha_{0} t, p * \alpha_{n}=\alpha_{n} t$.
2. $i_{L}\left(\alpha_{0}\right)=p-u t$.
3. If n is even then $\alpha_{0} * \alpha_{0}=\alpha_{n} t$.

Results in the same spirit hold for Fano complete intersections. (The point is that we know $Q H$ by work of Beauville.)

Applications to quantum homology

Applications to quantum homology

A commutative algebra A over a field \mathbb{F} is semi-simple if it splits into a direct sum of finite dimensional vector spaces over $\mathbb{F}, A=A_{1} \oplus \cdots \oplus A_{r}$ s.t. $\forall A_{i}$ is a field \& the splitting is compatible with the multiplication of A.

Applications to quantum homology

A commutative algebra A over a field \mathbb{F} is semi-simple if it splits into a direct sum of finite dimensional vector spaces over $\mathbb{F}, A=A_{1} \oplus \cdots \oplus A_{r}$ s.t. $\forall A_{i}$ is a field \& the splitting is compatible with the multiplication of A.
(M, ω) monotone. $\mathbb{F}=\mathbb{Q}[t]]$.
$Q H_{*}^{\mathrm{ev}}(M ; \mathbb{F})=\bigoplus_{j=0}^{n} H_{2 j}(M ; \mathbb{Q}) \otimes \mathbb{F}$

Applications to quantum homology

A commutative algebra A over a field \mathbb{F} is semi-simple if it splits into a direct sum of finite dimensional vector spaces over $\mathbb{F}, A=A_{1} \oplus \cdots \oplus A_{r}$ s.t. $\forall A_{i}$ is a field \& the splitting is compatible with the multiplication of A.
(M, ω) monotone. $\mathbb{F}=\mathbb{Q}[t]]$.
$Q H_{*}^{\mathrm{ev}}(M ; \mathbb{F})=\bigoplus_{j=0}^{n} H_{2 j}(M ; \mathbb{Q}) \otimes \mathbb{F}$
Q: When is $Q H_{*}^{\mathrm{ev}}(M ; \mathbb{F})$ semi-simple?

Applications to quantum homology

A commutative algebra A over a field \mathbb{F} is semi-simple if it splits into a direct sum of finite dimensional vector spaces over $\mathbb{F}, A=A_{1} \oplus \cdots \oplus A_{r}$ s.t. $\forall A_{i}$ is a field \& the splitting is compatible with the multiplication of A.
(M, ω) monotone. $\mathbb{F}=\mathbb{Q}[t]]$.
$Q H_{*}^{\mathrm{ev}}(M ; \mathbb{F})=\bigoplus_{j=0}^{n} H_{2 j}(M ; \mathbb{Q}) \otimes \mathbb{F}$
Q: When is $Q H_{*}^{\text {ev }}(M ; \mathbb{F})$ semi-simple?
(semi-simplicity of $Q H$ played important role in work of Entov-Polterovich on quasi-morphisms.)

Applications to quantum homology

A commutative algebra A over a field \mathbb{F} is semi-simple if it splits into a direct sum of finite dimensional vector spaces over $\mathbb{F}, A=A_{1} \oplus \cdots \oplus A_{r}$ s.t. $\forall A_{i}$ is a field \& the splitting is compatible with the multiplication of A.
(M, ω) monotone. $\mathbb{F}=\mathbb{Q}[t]]$.
$Q H_{*}^{\mathrm{ev}}(M ; \mathbb{F})=\bigoplus_{j=0}^{n} H_{2 j}(M ; \mathbb{Q}) \otimes \mathbb{F}$
Q: When is $Q H_{*}^{\mathrm{ev}}(M ; \mathbb{F})$ semi-simple?
(semi-simplicity of $Q H$ played important role in work of Entov-Polterovich on quasi-morphisms.)

Remark: This notion of semi-simplicity is somewhat different than semi-simplicity in the sense of Dubrovin (we work with different coefficient ring \mathbb{F}).
$N:=$ min. Chern \# of $M^{2 n} \cdot n=\operatorname{dim}_{\mathbb{C}} M$.
$N:=$ min. Chern \# of $M^{2 n} \cdot n=\operatorname{dim}_{\mathbb{C}} M$.
Thm: Assume $n \geq 2$ \& M contains a Lagrangian sphere. Suppose that $N \nmid n$ and $N \nmid(n+1)$. Then $Q H_{*}^{e v}(M ; \mathbb{F})$ is not semi-simple.
$N:=$ min. Chern \# of $M^{2 n} . n=\operatorname{dim}_{\mathbb{C}} M$.
Thm: Assume $n \geq 2$ \& M contains a Lagrangian sphere. Suppose that $N \nmid n$ and $N \nmid(n+1)$. Then $Q H_{*}^{e v}(M ; \mathbb{F})$ is not semi-simple.

This happens for example, if $M \subset \mathbb{C} P^{n+1}$ is complex hypersurface of degree $3 \leq d \leq \frac{n}{2}+1$. For $d=1$ and $d=2, Q H_{*}^{e v}(M ; \mathbb{F})$ is semi-simple.
$N:=$ min. Chern \# of $M^{2 n} \cdot n=\operatorname{dim}_{\mathbb{C}} M$.
Thm: Assume $n \geq 2$ \& M contains a Lagrangian sphere. Suppose that $N \nmid n$ and $N \nmid(n+1)$. Then $Q H_{*}^{e v}(M ; \mathbb{F})$ is not semi-simple.

This happens for example, if $M \subset \mathbb{C} P^{n+1}$ is complex hypersurface of degree $3 \leq d \leq \frac{n}{2}+1$. For $d=1$ and $d=2, Q H_{*}^{e v}(M ; \mathbb{F})$ is semi-simple.

Proof. A criterion of Abrams says that $Q H_{*}^{e v}(M ; \mathbb{F})$ is semi-simple iff the quantum Euler class \mathcal{E} is invertible. But $\mathcal{E} \in Q H_{0}(M)$. Let $S^{n} \approx L \subset M$. Under above assumptions, $H F_{*}(L)=H_{*}(L) \otimes \mathbb{F}$. Now use the module structure to deduce that $\mathcal{E} *(-)$ gives iso's $H F_{*}(L) \cong H F_{*-2 n}(L) \ldots$

The Clifford torus: $\mathbb{T}_{\text {dif }}^{2}=\left\{\left|z_{0}\right|=\left|z_{1}\right|=\left|z_{2}\right|\right\} \subset \mathbb{C} P^{2}$

The Clifford torus: $\mathbb{T}_{\text {clif }}^{2}=\left\{\left|z_{0}\right|=\left|z_{1}\right|=\left|z_{2}\right|\right\} \subset \mathbb{C} P^{2}$
This is a monotone Lagrangian torus with $N_{L}=2$.

Cho proved that for $J_{\text {std }}, \forall x \in \mathbb{T}_{\text {clif }}$ there exist (exactly) 3 $J_{\text {std }}$-holomorphic disks D_{1}, D_{2}, D_{3} through x, with $\left[\partial D_{1}\right]+\left[\partial D_{2}\right]+\left[\partial D_{3}\right]=0 \in H_{1}\left(\mathbb{T}_{\text {clif }} ; \mathbb{Z}\right)$. These disks are regular.

Cho proved that for $J_{\text {std }}, \forall x \in \mathbb{T}_{\text {clif }}$ there exist (exactly) 3 $J_{\text {std }}$-holomorphic disks D_{1}, D_{2}, D_{3} through x, with $\left[\partial D_{1}\right]+\left[\partial D_{2}\right]+\left[\partial D_{3}\right]=0 \in H_{1}\left(\mathbb{T}_{\text {clif }} ; \mathbb{Z}\right)$. These disks are regular. $\Longrightarrow H F_{*}\left(\mathbb{T}_{\text {clif }}\right) \cong H_{*}\left(\mathbb{T}_{\text {clif }}\right) \otimes \Lambda_{*}$. (Recall $N_{L}=2$.)

The Clifford torus: $\mathbb{T}_{\text {clif }}^{2}=\left\{\left|z_{0}\right|=\left|z_{1}\right|=\left|z_{2}\right|\right\} \subset \mathbb{C} P^{2}$

Cho proved that for $J_{\text {std }}, \forall x \in \mathbb{T}_{\text {clif }}$ there exist (exactly) 3 $J_{\text {std }}$-holomorphic disks D_{1}, D_{2}, D_{3} through x, with $\left[\partial D_{1}\right]+\left[\partial D_{2}\right]+\left[\partial D_{3}\right]=0 \in H_{1}\left(\mathbb{T}_{\text {olfi; }} ; \mathbb{Z}\right)$. These disks are regular. $\Longrightarrow H F_{*}\left(\mathbb{T}_{\text {clif }}\right) \cong H_{*}\left(\mathbb{T}_{\text {clif }}\right) \otimes \Lambda_{*}$. (Recall $N_{L}=2$.)
i.e. $H F_{0}\left(\mathbb{T}_{\text {oiif }}\right) \cong H_{0}\left(\mathbb{T}_{\text {cili }}\right) \oplus H_{2}\left(\mathbb{T}_{\text {ciif }}\right) \otimes t, \quad H F_{1}\left(\mathbb{T}_{\text {clif }}\right)=H_{1}\left(\mathbb{T}_{\text {ciif }}\right)$.

The Clifford torus: $\mathbb{T}_{\text {clif }}^{2}=\left\{\left|z_{0}\right|=\left|z_{1}\right|=\left|z_{2}\right|\right\} \subset \mathbb{C} P^{2}$

Cho proved that for $J_{\text {std }}, \forall x \in \mathbb{T}_{\text {clif }}$ there exist (exactly) 3 $J_{\text {std }}$-holomorphic disks D_{1}, D_{2}, D_{3} through x, with $\left[\partial D_{1}\right]+\left[\partial D_{2}\right]+\left[\partial D_{3}\right]=0 \in H_{1}\left(\mathbb{T}_{\text {olfi; }} ; \mathbb{Z}\right)$. These disks are regular. $\Longrightarrow H F_{*}\left(\mathbb{T}_{\text {clif }}\right) \cong H_{*}\left(\mathbb{T}_{\text {clif }}\right) \otimes \Lambda_{*}$. (Recall $N_{L}=2$.)
i.e. $H F_{0}\left(\mathbb{T}_{\text {ciri }}\right) \cong H_{0}\left(\mathbb{T}_{\text {ciif }}\right) \oplus H_{2}\left(\mathbb{T}_{\text {cili }}\right) \otimes t, \quad H F_{1}\left(\mathbb{T}_{\text {cili }}\right)=H_{1}\left(\mathbb{T}_{\text {ciil }}\right)$. Not canonical!

Canonical.

The Clifford torus: $\mathbb{T}_{\text {clif }}^{2}=\left\{\left|z_{0}\right|=\left|z_{1}\right|=\left|z_{2}\right|\right\} \subset \mathbb{C} P^{2}$

Cho proved that for $J_{\text {std }}, \forall x \in \mathbb{T}_{\text {clif }}$ there exist (exactly) 3 $J_{\text {std }}$-holomorphic disks D_{1}, D_{2}, D_{3} through x, with $\left[\partial D_{1}\right]+\left[\partial D_{2}\right]+\left[\partial D_{3}\right]=0 \in H_{1}\left(\mathbb{T}_{\text {olif }} ; \mathbb{Z}\right)$. These disks are regular. $\Longrightarrow H F_{*}\left(\mathbb{T}_{\text {clif }}\right) \cong H_{*}\left(\mathbb{T}_{\text {clif }}\right) \otimes \Lambda_{*}$. (Recall $N_{L}=2$.) i.e. $H F_{0}\left(\mathbb{T}_{\text {olif }}\right) \cong H_{0}\left(\mathbb{T}_{\text {ciif }}\right) \oplus H_{2}\left(\mathbb{T}_{\text {oili }}\right) \otimes t, \quad H F_{1}\left(\mathbb{T}_{\text {ciil }}\right)=H_{1}\left(\mathbb{T}_{\text {oifi }}\right)$. Not canonical!

Canonical.
Quantum structures: $a, b \in H_{1}\left(\mathbb{T}_{\text {ciri }}\right)$ generators.
$w=\left[\mathbb{T}_{\text {cifi }}\right] \in H_{2}\left(\mathbb{T}_{\text {cifi }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {cifi }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. $h:=\left[\mathbb{C} P^{1}\right] \in Q H_{2}\left(\mathbb{C} P^{2}\right) \cdot u=\left[\mathbb{C} P^{2}\right] \in Q H_{4}\left(\mathbb{C} P^{2}\right)$.

Cho proved that for $J_{\text {std }}, \forall x \in \mathbb{T}_{\text {clif }}$ there exist (exactly) 3 $J_{\text {std }}$-holomorphic disks D_{1}, D_{2}, D_{3} through x, with $\left[\partial D_{1}\right]+\left[\partial D_{2}\right]+\left[\partial D_{3}\right]=0 \in H_{1}\left(\mathbb{T}_{\text {clif }} ; \mathbb{Z}\right)$. These disks are regular. $\Longrightarrow H F_{*}\left(\mathbb{T}_{\text {clif }}\right) \cong H_{*}\left(\mathbb{T}_{\text {clif }}\right) \otimes \Lambda_{*}$. (Recall $N_{L}=2$.)
i.e. $H F_{0}\left(\mathbb{T}_{\text {ciri }}\right) \cong H_{0}\left(\mathbb{T}_{\text {clif }}\right) \oplus H_{2}\left(\mathbb{T}_{\text {cili }}\right) \otimes t, \quad H F_{1}\left(\mathbb{T}_{\text {cili }}\right)=H_{1}\left(\mathbb{T}_{\text {cifi }}\right)$. Not canonical!

Canonical.
Quantum structures: $a, b \in H_{1}\left(\mathbb{T}_{\text {ciif }}\right)$ generators.
$w=\left[\mathbb{T}_{\text {cirf }}\right] \in H_{2}\left(\mathbb{T}_{\text {oifi }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {cifi }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. $h:=\left[\mathbb{C} P^{1}\right] \in Q H_{2}\left(\mathbb{C} P^{2}\right) . u=\left[\mathbb{C} P^{2}\right] \in Q H_{4}\left(\mathbb{C} P^{2}\right)$.
Thm: 1) $a * b=m+w t, b * a=m, a * a=b * b=w t$.

Cho proved that for $J_{\text {std }}, \forall x \in \mathbb{T}_{\text {clif }}$ there exist (exactly) 3 $J_{\text {std }}$-holomorphic disks D_{1}, D_{2}, D_{3} through x, with $\left[\partial D_{1}\right]+\left[\partial D_{2}\right]+\left[\partial D_{3}\right]=0 \in H_{1}\left(\mathbb{T}_{\text {clif }} ; \mathbb{Z}\right)$. These disks are regular. $\Longrightarrow H F_{*}\left(\mathbb{T}_{\text {clif }}\right) \cong H_{*}\left(\mathbb{T}_{\text {clif }}\right) \otimes \Lambda_{*}$. (Recall $N_{L}=2$.) i.e. $H F_{0}\left(\mathbb{T}_{\text {ciri }}\right) \cong H_{0}\left(\mathbb{T}_{\text {clif }}\right) \oplus H_{2}\left(\mathbb{T}_{\text {cili }}\right) \otimes t, \quad H F_{1}\left(\mathbb{T}_{\text {cili }}\right)=H_{1}\left(\mathbb{T}_{\text {cifi }}\right)$. Not canonica!!

Canonical.
Quantum structures: $a, b \in H_{1}\left(\mathbb{T}_{\text {ciif }}\right)$ generators. $w=\left[\mathbb{T}_{\text {cirf }}\right] \in H_{2}\left(\mathbb{T}_{\text {oifi }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {cifi }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. $h:=\left[\mathbb{C} P^{1}\right] \in Q H_{2}\left(\mathbb{C} P^{2}\right) . u=\left[\mathbb{C} P^{2}\right] \in Q H_{4}\left(\mathbb{C} P^{2}\right)$.
Thm: 1) $a * b=m+w t, b * a=m, a * a=b * b=w t$.
2) $m * m=m t+w t^{2}$. (c.f. Cho-Oh \& Oh).

Cho proved that for $J_{\text {std }}, \forall x \in \mathbb{T}_{\text {clif }}$ there exist (exactly) 3 $J_{\text {std }}$-holomorphic disks D_{1}, D_{2}, D_{3} through x, with $\left[\partial D_{1}\right]+\left[\partial D_{2}\right]+\left[\partial D_{3}\right]=0 \in H_{1}\left(\mathbb{T}_{\text {clif }} ; \mathbb{Z}\right)$. These disks are regular. $\Longrightarrow H F_{*}\left(\mathbb{T}_{\text {clif }}\right) \cong H_{*}\left(\mathbb{T}_{\text {clif }}\right) \otimes \Lambda_{*}$. (Recall $N_{L}=2$.) i.e. $H F_{0}\left(\mathbb{T}_{\text {ciri }}\right) \cong H_{0}\left(\mathbb{T}_{\text {clif }}\right) \oplus H_{2}\left(\mathbb{T}_{\text {clif }}\right) \otimes t, \quad H F_{1}\left(\mathbb{T}_{\text {clif }}\right)=H_{1}\left(\mathbb{T}_{\text {cili }}\right)$. Not canonical!

Canonical.
Quantum structures: $a, b \in H_{1}\left(\mathbb{T}_{\text {ciif }}\right)$ generators.
$w=\left[\mathbb{T}_{\text {cirf }}\right] \in H_{2}\left(\mathbb{T}_{\text {oifi }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {cifi }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. $h:=\left[\mathbb{C} P^{1}\right] \in Q H_{2}\left(\mathbb{C} P^{2}\right) . u=\left[\mathbb{C} P^{2}\right] \in Q H_{4}\left(\mathbb{C} P^{2}\right)$.
Thm: 1) $a * b=m+w t, b * a=m, a * a=b * b=w t$.
2) $m * m=m t+w t^{2}$. (c.f. Cho-Oh \& Oh).
3) $h * a=a t, h * b=b t, h * w=w t, h * m=m t$.

Cho proved that for $J_{\text {std }}, \forall x \in \mathbb{T}_{\text {clif }}$ there exist (exactly) 3 $J_{\text {std }}$-holomorphic disks D_{1}, D_{2}, D_{3} through x, with $\left[\partial D_{1}\right]+\left[\partial D_{2}\right]+\left[\partial D_{3}\right]=0 \in H_{1}\left(\mathbb{T}_{\text {clif }} ; \mathbb{Z}\right)$. These disks are regular. $\Longrightarrow H F_{*}\left(\mathbb{T}_{\text {clif }}\right) \cong H_{*}\left(\mathbb{T}_{\text {clif }}\right) \otimes \Lambda_{*}$. (Recall $N_{L}=2$.)
i.e. $H F_{0}\left(\mathbb{T}_{\text {clif }}\right) \cong H_{0}\left(\mathbb{T}_{\text {clif }}\right) \oplus H_{2}\left(\mathbb{T}_{\text {clif }}\right) \otimes t, \quad H F_{1}\left(\mathbb{T}_{\text {clif }}\right)=H_{1}\left(\mathbb{T}_{\text {clif }}\right)$. Not canonical!

Canonical.
Quantum structures: $a, b \in H_{1}\left(\mathbb{T}_{\text {ciif }}\right)$ generators.
$w=\left[\mathbb{T}_{\text {cifi }}\right] \in H_{2}\left(\mathbb{T}_{\text {olif }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {clif }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. $h:=\left[\mathbb{C} P^{1}\right] \in Q H_{2}\left(\mathbb{C} P^{2}\right) . u=\left[\mathbb{C} P^{2}\right] \in Q H_{4}\left(\mathbb{C} P^{2}\right)$.
Thm: 1) $a * b=m+w t, b * a=m, a * a=b * b=w t$.
2) $m * m=m t+w t^{2}$. (c.f. Cho-Oh \& Oh).
3) $h * a=a t, h * b=b t, h * w=w t, h * m=m t$.
4) $i_{L}(m)=[p t]+h t+u t^{2} \in Q H_{0}\left(\mathbb{C} P^{2}\right)$,

Cho proved that for $J_{\text {std }}, \forall x \in \mathbb{T}_{\text {clif }}$ there exist (exactly) 3 $J_{\text {std }}$-holomorphic disks D_{1}, D_{2}, D_{3} through x, with $\left[\partial D_{1}\right]+\left[\partial D_{2}\right]+\left[\partial D_{3}\right]=0 \in H_{1}\left(\mathbb{T}_{\text {ciff }} \mathbb{Z}\right)$. These disks are regular. $\Longrightarrow H F_{*}\left(\mathbb{T}_{\text {cifi }}\right) \cong H_{*}\left(\mathbb{T}_{\text {cifi }}\right) \otimes \Lambda_{*}$. (Recall $N_{L}=2$.) i.e. $H F_{0}\left(\mathbb{T}_{\text {cif }}\right) \cong H_{0}\left(\mathbb{T}_{\text {ait }}\right) \oplus H_{2}\left(\mathbb{T}_{\text {ait }}\right) \otimes t, \quad H F_{1}\left(\mathbb{T}_{\text {cif }}\right)=H_{1}\left(\mathbb{T}_{\text {cif }}\right)$. Not canonical!

Canonical.
Quantum structures: $a, b \in H_{1}\left(T_{\text {cif }}\right)$ generators.
$w=\left\{\mathbb{T}_{\text {onf }}\right\} \in H_{2}\left(\mathbb{T}_{\text {oil }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {cill }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. $h:=\left[\mathbb{C} P^{1}\right] \in Q H_{2}\left(\mathbb{C} P^{2}\right) \cdot u=\left[\mathbb{C} P^{2}\right] \in Q H_{4}\left(\mathbb{C} P^{2}\right)$.
Thm: 1) $a * b=m+w t, b * a=m, a * a=b * b=w t$.
2) $m * m=m t+w t^{2}$. (c.f. Cho-Oh \& Oh).
3) $h * a=a t, h * b=b t, h * w=w t, h * m=m t$.
4) $i_{L}(m)=[p t]+h t+u t^{2} \in Q H_{0}\left(\mathbb{C} P^{2}\right)$,
5) $i_{L}(a)=i_{L}(b)=i_{L}(w)=0$.

Proof

Pick two perfect Morse functions $f_{1}, f_{2}: \mathbb{T}_{\text {clif }} \rightarrow \mathbb{R}$. $x_{2}=\max$ of $f_{1}, x_{0}=\min$ of f_{1}, $x_{1}^{\prime}, x_{1}^{\prime \prime}=$ index 1 critical points of f_{1}.

Pick two perfect Morse functions $f_{1}, f_{2}: \mathbb{T}_{\text {clif }} \rightarrow \mathbb{R}$. $x_{2}=\max$ of $f_{1}, x_{0}=\min$ of f_{1}, $x_{1}^{\prime}, x_{1}^{\prime \prime}=$ index 1 critical points of f_{1}.
Denote by $y_{2}, y_{0}, y_{1}^{\prime}, y_{1}^{\prime \prime}$ the critical points of f_{2}.

Pick two perfect Morse functions $f_{1}, f_{2}: \mathbb{T}_{\text {clif }} \rightarrow \mathbb{R}$. $x_{2}=\max$ of $f_{1}, x_{0}=\min$ of f_{1}, $x_{1}^{\prime}, x_{1}^{\prime \prime}=$ index 1 critical points of f_{1}.
Denote by $y_{2}, y_{0}, y_{1}^{\prime}, y_{1}^{\prime \prime}$ the critical points of f_{2}.

$$
\begin{aligned}
& a * b=\left[x_{1}^{\prime}\right] *\left[y_{1}^{\prime \prime}\right] \\
& b * a=\left[x_{1}^{\prime \prime}\right] *\left[y_{1}^{\prime}\right]
\end{aligned}
$$

Pick two perfect Morse functions $f_{1}, f_{2}: \mathbb{T}_{\text {clif }} \rightarrow \mathbb{R}$. $x_{2}=\max$ of $f_{1}, x_{0}=\min$ of f_{1}, $x_{1}^{\prime}, x_{1}^{\prime \prime}=$ index 1 critical points of f_{1}.
Denote by $y_{2}, y_{0}, y_{1}^{\prime}, y_{1}^{\prime \prime}$ the critical points of f_{2}.

$$
\begin{aligned}
& a * b=\left[x_{1}^{\prime}\right] *\left[y_{1}^{\prime \prime}\right] \\
& b * a=\left[x_{1}^{\prime \prime}\right] *\left[y_{1}^{\prime}\right]
\end{aligned}
$$

Pick two perfect Morse functions $f_{1}, f_{2}: \mathbb{T}_{\text {clif }} \rightarrow \mathbb{R}$. $x_{2}=\max$ of $f_{1}, x_{0}=\min$ of f_{1}, $x_{1}^{\prime}, x_{1}^{\prime \prime}=$ index 1 critical points of f_{1}.
Denote by $y_{2}, y_{0}, y_{1}^{\prime}, y_{1}^{\prime \prime}$ the critical points of f_{2}.
$a * b=\left[x_{1}^{\prime}\right] *\left[y_{1}^{\prime \prime}\right]$
$b * a=\left[x_{1}^{\prime \prime}\right] *\left[y_{1}^{\prime}\right]$
Computation of
$m * m$ follows from associativity.

Applications to symplectic packing

Applications to symplectic packing

$B(r)=2 n$-dim closed ball of radius r.

Applications to symplectic packing

 $B(r)=2 n$-dim closed ball of radius r. $B_{\mathbb{R}}(r)=B(r) \cap\left(\mathbb{R}^{n} \times 0\right)$ real part of $B(r)$.
Applications to symplectic packing

$B(r)=2 n$-dim closed ball of radius r. $B_{\mathbb{R}}(r)=B(r) \cap\left(\mathbb{R}^{n} \times 0\right)$ real part of $B(r)$.
Relative packing: $\varphi:\left(B(r), B_{\mathbb{R}}(r)\right) \rightarrow(M, L), \varphi^{*} \omega=\omega_{\text {std }}$ and $\varphi^{-1}(L)=B_{\mathbb{R}}(r) . G r(L):=\sup \{r \mid \exists$ rel. pack. $\varphi\}$.

Applications to symplectic packing

$B(r)=2 n$-dim closed ball of radius r. $B_{\mathbb{R}}(r)=B(r) \cap\left(\mathbb{R}^{n} \times 0\right)$ real part of $B(r)$. Relative packing: $\varphi:\left(B(r), B_{\mathbb{R}}(r)\right) \rightarrow(M, L), \varphi^{*} \omega=\omega_{\text {std }}$ and $\varphi^{-1}(L)=B_{\mathbb{R}}(r) . G r(L):=\sup \{r \mid \exists$ rel. pack. $\varphi\}$. Packing in the complement: $\psi: B(\rho) \rightarrow(M \backslash L, \omega)$. $G r(M \backslash L)=\sup \{\rho \mid \exists$ packing $\psi\}$.

Applications to symplectic packing

$B(r)=2 n$-dim closed ball of radius r. $B_{\mathbb{R}}(r)=B(r) \cap\left(\mathbb{R}^{n} \times 0\right)$ real part of $B(r)$.
Relative packing: $\varphi:\left(B(r), B_{\mathbb{R}}(r)\right) \rightarrow(M, L), \varphi^{*} \omega=\omega_{\text {std }}$ and $\varphi^{-1}(L)=B_{\mathbb{R}}(r) . G r(L):=\sup \{r \mid \exists$ rel. pack. $\varphi\}$. Packing in the complement: $\psi: B(\rho) \rightarrow(M \backslash L, \omega)$. $G r(M \backslash L)=\sup \{\rho \mid \exists$ packing $\psi\}$.

Absolute symplectic packing introduced by Gromov, studied further by McDuff-Polterovich, Karshon, Traynor, B. etc.

How to get packing inequalities

How to get packing inequalities

Prop: (Following Gromov 1985)

How to get packing inequalities

Prop: (Following Gromov 1985)

1. Suppose for generic J and $\forall p \in M, \exists J$-hol disk $u:(D, \partial D) \rightarrow(M, L)$ with $u(\operatorname{Int} D) \ni p$ and Area $_{\omega}(u) \leq E^{\prime}$. Then $\pi G r(M \backslash L)^{2} \leq E^{\prime}$.

How to get packing inequalities

Prop: (Following Gromov 1985)

1. Suppose for generic J and $\forall p \in M, \exists J$-hol disk $u:(D, \partial D) \rightarrow(M, L)$ with $u(\operatorname{lnt} D) \ni p$ and Area $_{\omega}(u) \leq E^{\prime}$. Then $\pi G r(M \backslash L)^{2} \leq E^{\prime}$.
2. Suppose for generic J and $\forall q \in L$, \exists non-const J-hol disk $u:(D, \partial D) \rightarrow(M, L)$ with $u(\partial D) \ni q$ and $\operatorname{Area}_{\omega}(u) \leq E^{\prime \prime}$. Then $\frac{\pi \operatorname{Gr}(L)^{2}}{2} \leq E^{\prime \prime}$.

How to get packing inequalities

Prop: (Following Gromov 1985)

1. Suppose for generic J and $\forall p \in M, \exists J$-hol disk $u:(D, \partial D) \rightarrow(M, L)$ with $u(\operatorname{lnt} D) \ni p$ and Area $_{\omega}(u) \leq E^{\prime}$. Then $\pi G r(M \backslash L)^{2} \leq E^{\prime}$.
2. Suppose for generic J and $\forall q \in L, \exists$ non-const J-hol disk $u:(D, \partial D) \rightarrow(M, L)$ with $u(\partial D) \ni q$ and Area $_{\omega}(u) \leq E^{\prime \prime}$. Then $\frac{\pi \operatorname{Gr}(L)^{2}}{2} \leq E^{\prime \prime}$.
Thm: $\mathbb{T} \subset(M, \omega)$ monotone Lagrangian torus. $\tau=\frac{\omega}{\mu}$. If $H F_{*}(\mathbb{T}) \neq H_{*}(\mathbb{T}) \otimes \Lambda$, then $\frac{\pi G r(\mathbb{T})^{2}}{2} \leq 2 \tau$.

How to get packing inequalities

Prop: (Following Gromov 1985)

1. Suppose for generic J and $\forall p \in M, \exists J$-hol disk $u:(D, \partial D) \rightarrow(M, L)$ with $u(\operatorname{lnt} D) \ni p$ and Area $_{\omega}(u) \leq E^{\prime}$. Then $\pi G r(M \backslash L)^{2} \leq E^{\prime}$.
2. Suppose for generic J and $\forall q \in L, \exists$ non-const J-hol disk $u:(D, \partial D) \rightarrow(M, L)$ with $u(\partial D) \ni q$ and Area $_{\omega}(u) \leq E^{\prime \prime}$. Then $\frac{\pi G r(L)^{2}}{2} \leq E^{\prime \prime}$.
Thm: $\mathbb{T} \subset(M, \omega)$ monotone Lagrangian torus. $\tau=\frac{\omega}{\mu}$. If $H F_{*}(\mathbb{T}) \neq H_{*}(\mathbb{T}) \otimes \Lambda$, then $\frac{\pi \operatorname{Gr}(\mathbb{T})^{2}}{2} \leq 2 \tau$.
Proof. Dichotomy for tori: either $H F_{*}(\mathbb{T}) \cong H_{*}(\mathbb{T}) \otimes \Lambda$ or $H F_{*}(\mathbb{T})=0$. In the latter case \exists a J-holomorphic disk with $\mu=2$ through $\forall p t \in \mathbb{T}$.

Packing in $\mathbb{C} P^{n}$

Packing in $\mathbb{C} P^{n}$

$\left(\mathbb{C} P^{n}, \omega_{\mathrm{FS}}\right), \int_{\mathbb{C} P^{1}} \omega_{\mathrm{FS}}=\pi .\left(\mathbb{C} P^{n} \backslash \mathbb{C} P^{n-1}, \omega_{\mathrm{FS}}\right) \cong\left(\operatorname{lnt} B(1), \omega_{\mathrm{std}}\right)$.
Absolute Gromov radius of $\mathbb{C} P^{n}$ is $\operatorname{Gr}\left(\mathbb{C} P^{n}\right)=1$.

Packing in $\mathbb{C} P^{n}$

$\left(\mathbb{C} P^{n}, \omega_{\mathrm{FS}}\right), \int_{\mathbb{C} P^{1}} \omega_{\mathrm{FS}}=\pi .\left(\mathbb{C} P^{n} \backslash \mathbb{C} P^{n-1}, \omega_{\mathrm{FS}}\right) \cong\left(\operatorname{Int} B(1), \omega_{\mathrm{std}}\right)$.
Absolute Gromov radius of $\mathbb{C} P^{n}$ is $G r\left(\mathbb{C} P^{n}\right)=1$.
Thm: $L \subset \mathbb{C} P^{n}$ monotone.

Packing in $\mathbb{C} P^{n}$

$\left(\mathbb{C} P^{n}, \omega_{\mathrm{FS}}\right), \int_{\mathbb{C} P^{1}} \omega_{\mathrm{FS}}=\pi .\left(\mathbb{C} P^{n} \backslash \mathbb{C} P^{n-1}, \omega_{\mathrm{FS}}\right) \cong\left(\operatorname{Int} B(1), \omega_{\mathrm{std}}\right)$.
Absolute Gromov radius of $\mathbb{C} P^{n}$ is $\operatorname{Gr}\left(\mathbb{C} P^{n}\right)=1$.
Thm: $L \subset \mathbb{C} P^{n}$ monotone.

1. If $H F_{*}(L) \neq 0 \Longrightarrow G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq \frac{n}{n+1}$.
$\left(\mathbb{C} P^{n}, \omega_{\mathrm{FS}}\right), \int_{\mathbb{C} P^{1}} \omega_{\mathrm{FS}}=\pi .\left(\mathbb{C} P^{n} \backslash \mathbb{C} P^{n-1}, \omega_{\mathrm{FS}}\right) \cong\left(\operatorname{lnt} B(1), \omega_{\mathrm{std}}\right)$.
Absolute Gromov radius of $\mathbb{C} P^{n}$ is $\operatorname{Gr}\left(\mathbb{C} P^{n}\right)=1$.
Thm: $L \subset \mathbb{C} P^{n}$ monotone.
2. If $H F_{*}(L) \neq 0 \Longrightarrow \quad G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq \frac{n}{n+1}$.
3. If $H F_{*}(L) \cong H_{*}(L) \otimes \Lambda$ then

$$
\frac{1}{2} G r(L)^{2}+G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq 1 .
$$

Packing in $\mathbb{C} P^{n}$

$\left(\mathbb{C} P^{n}, \omega_{\mathrm{FS}}\right), \int_{\mathbb{C} P^{1}} \omega_{\mathrm{FS}}=\pi .\left(\mathbb{C} P^{n} \backslash \mathbb{C} P^{n-1}, \omega_{\mathrm{FS}}\right) \cong\left(\operatorname{lnt} B(1), \omega_{\mathrm{std}}\right)$.
Absolute Gromov radius of $\mathbb{C} P^{n}$ is $\operatorname{Gr}\left(\mathbb{C} P^{n}\right)=1$.
Thm: $L \subset \mathbb{C} P^{n}$ monotone.

1. If $H F_{*}(L) \neq 0 \Longrightarrow \quad G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq \frac{n}{n+1}$.
2. If $H F_{*}(L) \cong H_{*}(L) \otimes \Lambda$ then

$$
\frac{1}{2} G r(L)^{2}+G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq 1 .
$$

Proof. 1) $[p t] \in Q H_{0}\left(\mathbb{C} P^{n}\right)$ is invertible hence $[p t] *(-): H F_{j}(L) \rightarrow H F_{j-2 n}(L)$ is non-trivial for some j. $\Rightarrow \exists J$-holomorphic disk with $\mu \leq n$ through $\forall p t \in \mathbb{C} P^{n}$.
$\left(\mathbb{C} P^{n}, \omega_{\mathrm{FS}}\right), \int_{\mathbb{C} P^{1}} \omega_{\mathrm{FS}}=\pi .\left(\mathbb{C} P^{n} \backslash \mathbb{C} P^{n-1}, \omega_{\mathrm{FS}}\right) \cong\left(\operatorname{lnt} B(1), \omega_{\mathrm{std}}\right)$.
Absolute Gromov radius of $\mathbb{C} P^{n}$ is $\operatorname{Gr}\left(\mathbb{C} P^{n}\right)=1$.
Thm: $L \subset \mathbb{C} P^{n}$ monotone.

1. If $H F_{*}(L) \neq 0 \Longrightarrow \quad G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq \frac{n}{n+1}$.
2. If $H F_{*}(L) \cong H_{*}(L) \otimes \Lambda$ then

$$
\frac{1}{2} G r(L)^{2}+G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq 1 .
$$

Proof. 1) $[p t] \in Q H_{0}\left(\mathbb{C} P^{n}\right)$ is invertible hence $[p t] *(-): H F_{j}(L) \rightarrow H F_{j-2 n}(L)$ is non-trivial for some j.
$\Rightarrow \exists J$-holomorphic disk with $\mu \leq n$ through $\forall p t \in \mathbb{C} P^{n}$.
2) Uses the associativity of the quantum module structure.
$\left(\mathbb{C} P^{n}, \omega_{\mathrm{FS}}\right), \int_{\mathbb{C} P^{1}} \omega_{\mathrm{FS}}=\pi .\left(\mathbb{C} P^{n} \backslash \mathbb{C} P^{n-1}, \omega_{\mathrm{FS}}\right) \cong\left(\operatorname{lnt} B(1), \omega_{\mathrm{std}}\right)$.
Absolute Gromov radius of $\mathbb{C} P^{n}$ is $\operatorname{Gr}\left(\mathbb{C} P^{n}\right)=1$.
Thm: $L \subset \mathbb{C} P^{n}$ monotone.

1. If $H F_{*}(L) \neq 0 \Longrightarrow \quad G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq \frac{n}{n+1}$.
2. If $H F_{*}(L) \cong H_{*}(L) \otimes \Lambda$ then

$$
\frac{1}{2} G r(L)^{2}+G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq 1 .
$$

Proof. 1) $[p t] \in Q H_{0}\left(\mathbb{C} P^{n}\right)$ is invertible hence $[p t] *(-): H F_{j}(L) \rightarrow H F_{j-2 n}(L)$ is non-trivial for some j. $\Rightarrow \exists J$-holomorphic disk with $\mu \leq n$ through $\forall p t \in \mathbb{C} P^{n}$.
2) Uses the associativity of the quantum module structure.

Cor: $\operatorname{Gr}\left(\mathbb{T}_{\text {clif }}^{n}\right)^{2} \leq \frac{2}{n+1}, \quad \operatorname{Gr}\left(\mathbb{C} P^{n} \backslash \mathbb{T}_{\text {clif }}^{n}\right)^{2}=\frac{n}{n+1}$.

Cor: $L \subset \mathbb{C} P^{n}$ Lagrangian with $2 H_{1}(L ; \mathbb{Z})=0$. Then $G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq \frac{1}{2}$. (Previously known for $L=\mathbb{R} P^{n}$ [B.]).

Cor: $L \subset \mathbb{C} P^{n}$ Lagrangian with $2 H_{1}(L ; \mathbb{Z})=0$. Then $G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq \frac{1}{2}$. (Previously known for $L=\mathbb{R} P^{n}$ [B.]).

Mixed packing. Packing by many balls, some relative to L some in the complement of L.

Cor: $L \subset \mathbb{C} P^{n}$ Lagrangian with $2 H_{1}(L ; \mathbb{Z})=0$. Then $G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq \frac{1}{2}$. (Previously known for $L=\mathbb{R} P^{n}$ [B.]).

Mixed packing. Packing by many balls, some relative to L some in the complement of L.

Cor: Let $\varphi:\left(B(r), B_{\mathbb{R}}(r)\right) \rightarrow\left(\mathbb{C} P^{2}, \mathbb{T}_{\text {clif }}\right), \psi: B(\rho) \rightarrow \mathbb{C} P^{2} \backslash \mathbb{T}_{\text {clif }}$ be a mixed symplectic packing. Then $\frac{1}{2} r^{2}+\rho^{2} \leq \frac{2}{3}$. If $r=\rho$ then $r^{2} \leq \frac{4}{9}$.

Cor: $L \subset \mathbb{C} P^{n}$ Lagrangian with $2 H_{1}(L ; \mathbb{Z})=0$. Then $G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq \frac{1}{2}$. (Previously known for $L=\mathbb{R} P^{n}$ [B.]).

Mixed packing. Packing by many balls, some relative to L some in the complement of L.

Cor: Let $\varphi:\left(B(r), B_{\mathbb{R}}(r)\right) \rightarrow\left(\mathbb{C} P^{2}, \mathbb{T}_{\text {clif }}\right), \psi: B(\rho) \rightarrow \mathbb{C} P^{2} \backslash \mathbb{T}_{\text {clif }}$ be a mixed symplectic packing. Then $\frac{1}{2} r^{2}+\rho^{2} \leq \frac{2}{3}$. If $r=\rho$ then $r^{2} \leq \frac{4}{9}$.
Q. 1) Are the above packing inequalities sharp?

Cor: $L \subset \mathbb{C} P^{n}$ Lagrangian with $2 H_{1}(L ; \mathbb{Z})=0$. Then $G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq \frac{1}{2}$. (Previously known for $L=\mathbb{R} P^{n}$ [B.]).

Mixed packing. Packing by many balls, some relative to L some in the complement of L.

Cor: Let $\varphi:\left(B(r), B_{\mathbb{R}}(r)\right) \rightarrow\left(\mathbb{C} P^{2}, \mathbb{T}_{\text {clif }}\right), \psi: B(\rho) \rightarrow \mathbb{C} P^{2} \backslash \mathbb{T}_{\text {clif }}$ be a mixed symplectic packing. Then $\frac{1}{2} r^{2}+\rho^{2} \leq \frac{2}{3}$. If $r=\rho$ then $r^{2} \leq \frac{4}{9}$.
Q. 1) Are the above packing inequalities sharp?
2) Blow-up/down construction in the relative case?

Cor: $L \subset \mathbb{C} P^{n}$ Lagrangian with $2 H_{1}(L ; \mathbb{Z})=0$. Then $G r\left(\mathbb{C} P^{n} \backslash L\right)^{2} \leq \frac{1}{2}$. (Previously known for $L=\mathbb{R} P^{n}$ [B.]).

Mixed packing. Packing by many balls, some relative to L some in the complement of L.

Cor: Let $\varphi:\left(B(r), B_{\mathbb{R}}(r)\right) \rightarrow\left(\mathbb{C} P^{2}, \mathbb{T}_{\text {clif }}\right), \psi: B(\rho) \rightarrow \mathbb{C} P^{2} \backslash \mathbb{T}_{\text {dlif }}$ be a mixed symplectic packing. Then $\frac{1}{2} r^{2}+\rho^{2} \leq \frac{2}{3}$. If $r=\rho$ then $r^{2} \leq \frac{4}{9}$.
Q. 1) Are the above packing inequalities sharp?
2) Blow-up/down construction in the relative case?
3) Criterion like Nakai-Moishezon in the relative case?

Enumerative geometry for $\mathbb{T}_{\text {clif }} \subset \mathbb{C} P^{2}$

Enumerative geometry for $\mathbb{T}_{\text {clif }} \subset \mathbb{C} P^{2}$

$w=\left[\mathbb{T}_{\text {clifi }}\right] \in H_{2}\left(\mathbb{T}_{\text {clif }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {clif }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$.

Enumerative geometry for $\mathbb{T}_{\text {clif }} \subset \mathbb{C} P^{2}$

$w=\left[\mathbb{T}_{\text {clifi }}\right] \in H_{2}\left(\mathbb{T}_{\text {clif }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {clif }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. Recall that $m * m=m t+w t^{2}$. (this is independent of the choice of m).

Enumerative geometry for $\mathbb{T}_{\text {clif }} \subset \mathbb{C} P^{2}$

$w=\left[\mathbb{T}_{\text {clifi }}\right] \in H_{2}\left(\mathbb{T}_{\text {clif }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {clif }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. Recall that $m * m=m t+w t^{2}$. (this is independent of the choice of m).

Enumerative interpretation of the coefficients and.
$w=\left[\mathbb{T}_{\text {clifi }}\right] \in H_{2}\left(\mathbb{T}_{\text {clif }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {clif }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. Recall that $m * m=m t+w t^{2}$.
(this is independent of the choice of m).
Enumerative interpretation of the coefficients and. Let $T=A B C$ a "triangle" on $\mathbb{T}_{\text {clif }} \cdot n_{A}=\# \mathbb{Z}_{2}$ holomorphic disks with $\mu=2$ that pass through vertex A and edge $B C$. Similarly we have n_{B}, n_{C}.
$w=\left[\mathbb{T}_{\text {clif }}\right] \in H_{2}\left(\mathbb{T}_{\text {clif }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {clif }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. Recall that $m * m=m t+w t^{2}$.
(this is independent of the choice of m).
Enumerative interpretation of the coefficients and. Let $T=A B C$ a "triangle" on $\mathbb{T}_{\text {clif }} \cdot n_{A}=\# \mathbb{Z}_{2}$ holomorphic disks with $\mu=2$ that pass through vertex A and edge $B C$. Similarly we have n_{B}, n_{C}.
$n_{4}(T):=\#_{\mathbb{Z}_{2}}$ holomorphic disks with $\mu=4$ through A, B, C (in this order !).

Enumerative geometry for $\mathbb{T}_{\text {clif }} \subset \mathbb{C} P^{2}$

$w=\left[\mathbb{T}_{\text {clif }}\right] \in H_{2}\left(\mathbb{T}_{\text {clif }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {clif }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. Recall that $m * m=m t+w t^{2}$.
(this is independent of the choice of m).
Enumerative interpretation of the coefficients and. Let $T=A B C$ a "triangle" on $\mathbb{T}_{\text {clif }} \cdot n_{A}=\# \mathbb{Z}_{2}$ holomorphic disks with $\mu=2$ that pass through vertex A and edge $B C$. Similarly we have n_{B}, n_{C}.
$n_{4}(T):=\#_{\mathbb{Z}_{2}}$ holomorphic disks with $\mu=4$ through A, B, C (in this order !).

Cor: 1) $n_{A}+n_{B}+n_{C}=1$.

Enumerative geometry for $\mathbb{T}_{\text {clif }} \subset \mathbb{C} P^{2}$

$w=\left[\mathbb{T}_{\text {clif }}\right] \in H_{2}\left(\mathbb{T}_{\text {clif }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {clif }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. Recall that $m * m=m t+w t^{2}$.
(this is independent of the choice of m).
Enumerative interpretation of the coefficients and. Let $T=A B C$ a "triangle" on $\mathbb{T}_{\text {clif }} \cdot n_{A}=\# \mathbb{Z}_{2}$ holomorphic disks with $\mu=2$ that pass through vertex A and edge $B C$. Similarly we have n_{B}, n_{C}.
$n_{4}(T):=\#_{\mathbb{Z}_{2}}$ holomorphic disks with $\mu=4$ through A, B, C (in this order !).

Cor: 1) $n_{A}+n_{B}+n_{C}=1$.
2) $n_{A} n_{B}+n_{4}(T)=n_{A} n_{C}+n_{4}(T)=n_{B} n_{C}+n_{4}(T)=1$.

Enumerative geometry for $\mathbb{T}_{\text {clif }} \subset \mathbb{C} P^{2}$

$w=\left[\mathbb{T}_{\text {clif }}\right] \in H_{2}\left(\mathbb{T}_{\text {clif }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {clif }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. Recall that $m * m=m t+w t^{2}$.
(this is independent of the choice of m).
Enumerative interpretation of the coefficients and. Let $T=A B C$ a "triangle" on $\mathbb{T}_{\text {clif }} \cdot n_{A}=\# \mathbb{Z}_{2}$ holomorphic disks with $\mu=2$ that pass through vertex A and edge $B C$. Similarly we have n_{B}, n_{C}.
$n_{4}(T):=\#_{\mathbb{Z}_{2}}$ holomorphic disks with $\mu=4$ through A, B, C (in this order !).

Cor: 1) $n_{A}+n_{B}+n_{C}=1$.
2) $n_{A} n_{B}+n_{4}(T)=n_{A} n_{C}+n_{4}(T)=n_{B} n_{C}+n_{4}(T)=1$.

Similar formulae work for every 2-dimensional torus.

Enumerative geometry for $\mathbb{T}_{\text {clif }} \subset \mathbb{C} P^{2}$

$w=\left[\mathbb{T}_{\text {clif }}\right] \in H_{2}\left(\mathbb{T}_{\text {clif }}\right), m \in H F_{0}\left(\mathbb{T}_{\text {clif }}\right)$ so that $\{m, w t\}$ generate $H F_{0}$. Recall that $m * m=m t+w t^{2}$.
(this is independent of the choice of m).
Enumerative interpretation of the coefficients and. Let $T=A B C$ a "triangle" on $\mathbb{T}_{\text {clif }} \cdot n_{A}=\# \mathbb{Z}_{2}$ holomorphic disks with $\mu=2$ that pass through vertex A and edge $B C$. Similarly we have n_{B}, n_{C}.
$n_{4}(T):=\#_{\mathbb{Z}_{2}}$ holomorphic disks with $\mu=4$ through A, B, C (in this order !).

Cor: 1) $n_{A}+n_{B}+n_{C}=1$.
2) $n_{A} n_{B}+n_{4}(T)=n_{A} n_{C}+n_{4}(T)=n_{B} n_{C}+n_{4}(T)=1$.

Similar formulae work for every 2-dimensional torus.
\exists related work of Cho with other identities by different approach.

Holomorphic disks through 3 points on $\mathbb{T}_{\text {cif }}$

Holomorphic disks through 3 points on $\mathbb{T}_{\text {cifi }}$

Holomorphic disks through 3 points on $\mathbb{T}_{\text {cifi }}$

Holomorphic disks through 3 points on $\mathbb{T}_{\text {cifi }}$

Holomorphic disks through 3 points on $\mathbb{T}_{\text {ciff }}$

Holomorphic disks through 3 points on $\mathbb{T}_{\text {ciff }}$

Holomorphic disks through 3 points on $\mathbb{T}_{\text {clif }}$

Holomorphic disks through 3 points on $\mathbb{T}_{\text {ciff }}$

Holomorphic disks through 3 points on $\mathbb{T}_{\text {clif }}$

Holomorphic disks through 3 points on $\mathbb{T}_{\text {ciff }}$

$$
\begin{aligned}
& n_{A}=1, n_{B}=0, n_{C}=0 \Longrightarrow n_{4}(T)=1 \\
& n_{A^{\prime}}=1, n_{B^{\prime}}=1, n_{C^{\prime}}=1 \Longrightarrow n_{4}\left(T^{\prime}\right)=0
\end{aligned}
$$

Holomorphic disks through 3 points on $\mathbb{T}_{\text {clif }}$

$n_{A}=1, n_{B}=0, n_{C}=0 \Longrightarrow n_{4}(T)=1$.
$n_{A^{\prime}}=1, n_{B^{\prime}}=1, n_{C^{\prime}}=1 \Longrightarrow n_{4}\left(T^{\prime}\right)=0$.
The number $n_{4}(T)$ is NOT a symplectic invariant. It depends on J and the 3 points of the triangle T.

$n_{A}=1, n_{B}=0, n_{C}=0 \Longrightarrow n_{4}(T)=1$.
$n_{A^{\prime}}=1, n_{B^{\prime}}=1, n_{C^{\prime}}=1 \Longrightarrow n_{4}\left(T^{\prime}\right)=0$.
The number $n_{4}(T)$ is NOT a symplectic invariant. It depends on J and the 3 points of the triangle T. Still ... $n_{A} n_{B}+n_{4}(T)$ is a symplectic invariant.

- Extend the theory to the A_{∞}-category theory of Fukaya-Oh-Ohta-Ono or to the cluster homology of Cornea-Lalonde. This would also get rid of the monotonicity assumption. This is future project planned with Cornea and Lalonde.
- Extend the theory to the A_{∞}-category theory of Fukaya-Oh-Ohta-Ono or to the cluster homology of Cornea-Lalonde. This would also get rid of the monotonicity assumption. This is future project planned with Cornea and Lalonde.
- Replace $Q H$ with contact homology and structures coming from $S F T . \rightsquigarrow H F(L)$ being a module over richer algebraic objects.
- Extend the theory to the A_{∞}-category theory of Fukaya-Oh-Ohta-Ono or to the cluster homology of Cornea-Lalonde. This would also get rid of the monotonicity assumption. This is future project planned with Cornea and Lalonde.
- Replace $Q H$ with contact homology and structures coming from $S F T$. $\rightsquigarrow H F(L)$ being a module over richer algebraic objects.
- If the above works, we get a Floer homological approach to relative/real enumerative geometry. We would also get more complete picture of the relative packing problem.

HAPPY BIRTHDAY YASHA

HAPPY BIRTHDAY YASHA

Till 120!

