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Quantum and Floer homologies

(M,ω) symplectic manifold.

 quantum homology QH∗(M).

L ⊂M Lagrangian.

 Floer homology HF∗(L) = HF∗(L,L).

In this talk:
� Relations between HF (L) and QH(M).
� Computations related to the quantum product of
HF (L).

� Applications to topology of Lagrangians, quantum
homology, symplectic packing.

Our goal is NOT Lagrangian intersections!!!
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Quick review of HF and QH

The pearl complex (suggested by Fukaya, Oh).
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� f : L→ R Morse. C∗(f) = Z2〈Crit(f)〉 ⊗ Λ∗.
Λ∗ = Z2[t, t

−1], deg t := −NL.

� Floer differential. d : C∗(f) → C∗−1(f).
d(x) =

∑

A,y nI(x, y; J,A)y tµ̄(A).

xy
x

−∇f−∇f
x −∇fy y

� PSS-Albers argument =⇒ H∗(C(f), d) ∼= HF∗(L,L).
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� Possible to work with 2 functions (i.e. f3 = f1).
Possible to work with Crit(f3) = Crit(f2) = Crit(f1).

� HF (L) becomes a (NON COMMUTATIVE) ring with
a unity w ∈ HFn(L). Actually, w = [max].
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� QH∗(M) = H∗(M) ⊗ Λ∗.
� g1, g2, g3 : M → R Morse.

Define Ci(g1) ⊗ Cj(g2) → Ci+j−2n(g3) by counting:

a b

c

u

−∇g1

−∇g3

−∇g2

� QH∗(M) becomes a (commutative) ring.
Unity = fundamental class u = [M ] ∈ QH2n(M).
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� Pick f : L→ R, g : M → R Morse.
� Define Ci(M ; g) ⊗ Cj(L; f) → Ci+j−2n(L; g)

a⊗ x 7−→ a ∗ x :=
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External operations

� Pick f : L→ R, g : M → R Morse.
� Define Ci(M ; g) ⊗ Cj(L; f) → Ci+j−2n(L; g)

a⊗ x 7−→ a ∗ x :=
∑

y,A nIII(a, x, y; J,A)y tµ̄(A).

x
−∇f

y

a

x
−∇f

a

y

−∇g
−∇g

IMPORTANT: The 3 points on the
disk marked by the −∇g and −∇f
trajectories must lie on the same hy-
perbolic geodesic.

– p.6



The module structure

– p.7



The module structure

Thm: The map a⊗ x 7→ a ∗ x is a chain map.
 operation QHi(M) ⊗HFj(L) → HFi+j−2n(L).

– p.7



The module structure

Thm: The map a⊗ x 7→ a ∗ x is a chain map.
 operation QHi(M) ⊗HFj(L) → HFi+j−2n(L).

Moreover, HF (L) becomes a two-sided module, in fact
algebra, over QH∗(M).

– p.7



The module structure

Thm: The map a⊗ x 7→ a ∗ x is a chain map.
 operation QHi(M) ⊗HFj(L) → HFi+j−2n(L).

Moreover, HF (L) becomes a two-sided module, in fact
algebra, over QH∗(M).

∀ a, b ∈ QH(M), γ, δ ∈ HF (L):

a ∗ (b ∗ γ) = (a ∗ b) ∗ γ,

a ∗ (γ ∗ δ) = (a ∗ γ) ∗ δ = γ ∗ (a ∗ δ),

u ∗ γ = γ etc.
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More quantum structures

Augmentation: ǫL : HF∗(L) → Λ∗, induced by
minf 7→ 1 ∈ Λ.

Quantum inclusion: iL : HF∗(L) → QH∗(M)
QH∗(M)-module morphism. (A quantum analogue of
work of Albers). Defined by counting:

xx

a
a−∇g

−∇f −∇f

−∇g

Everything is compatible with duality:
∀h ∈ H∗(M), α ∈ HF∗(L): 〈PD(h), iL(α)〉 = ǫL(h ∗ α).
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Spectral sequences (in the spirit of Y.-G. Oh)

Degree filtration on Λ:

FpΛ =
{

∑

i≥p

ait
i
}

.

 filtration on C(f ; Λ) = Z2〈Crit(f)〉 ⊗ Λ.
The Floer differential respects this filtration
 spectral sequence {Er

∗,∗, dr} converging to HF (L).
The E1-term comes from the singular homology H∗(L).
All operations above compatible with the filtration.
=⇒ Operations on the spectral sequence.

(Compatibility with the quantum product was previously
noticed by Buhovsky and by Fukaya-Oh-Ohta-Ono).
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There is also PD for HF∗(L)  non-degenerate
bilinear map HF (L) ⊗HF (L) → Λ.

Action of symplectomorphisms: φ ∈ Symp(M,L)

induces a chain map C∗(L; f) → C∗(L; f) which respects
the degree filtration. It induces an isomorphism in
homology φ̄ : HF∗(L) → HF∗(L) which coincides on the
E1 term of the spectral sequence with the classical map
φ∗ induced on singular homology.

We actually get a representation
λ : Symp(M,L) −→ Aut(HF∗(L)), φ 7−→ φ̄.
The restriction of λ to Symp0(M) ∩ Symp(M,L) gives
automorphisms of HF∗(L) as an algebra over QH∗(M).
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The positive HF

We can also work with Λ+ = Z2[t] (instead of Z2[t, t
−1]).

We get a chain complex C+
∗ (L, f).  HF+

∗ (L).

Everything above remains valid, except that now
HF+

∗ (L) is in general NOT HF (L,L) anymore.

HF+
∗ (L) is still invariant of f , J .

It looks very relevant for purposes of enumerative
geometry.

(A similar object has been studied in the context of
Lagrangian intersections by Fukaya-Oh-Ohta-Ono).
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Main blocks of the proof

� Transversality.
We need all 0-dim & 1-dim moduli spaces of pearly
trajectories to be smooth and of expected
dimensions.
Transversality for holomorphic disks requires them
to be absolutely distinct + somewhere injective.
This can be achieved using works of Lazzarini,
Kwon-Oh + some combinatorics.
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Main blocks of the proof

� Transversality.
We need all 0-dim & 1-dim moduli spaces of pearly
trajectories to be smooth and of expected
dimensions.
Transversality for holomorphic disks requires them
to be absolutely distinct + somewhere injective.
This can be achieved using works of Lazzarini,
Kwon-Oh + some combinatorics.

� Compactification of the 1-dim moduli spaces of
pearls.

� Gluing.
Existence: we followed Fukaya-Oh-Ohta-Ono.
Uniqueness: we proved surjectivity of the gluing
map for 0 and 1-dim moduli spaces. – p.12
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Applications to topology of Lagrangians

Suppose a ∈ QHi(M) is invertible.
=⇒ a ∗ (−) : HF∗(L)

∼=−→ HF∗+i−2n(L) isomorphism.

Ex. M = CP n. h ∈ H2n−2(CP
n) hyperplane,

p ∈ H0(CP
n) point, u = [CP n] ∈ H2n(CP

n).

Quantum homology: h∗j = h∩j, ∀ 0 ≤ j ≤ n.

h∩(n+1) = 0 but h∗(n+1) = ut(2n+2)/NL. (Recall deg t = −NL).
So h ∈ QH2n−2(CP

n) is invertible !

Cor: ∀ monotone L ⊂ CP n, HF∗(L) ∼= HF∗−2(L).
(Previously proved by other methods by Seidel).

Very useful if we know that HFi(L) 6= 0 for some i.
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Lagrangians in CP n

RP n ⊂ CP n is a monotone Lagrangian with NL = n+ 1.
Note that H1(RP

n; Z) = Z2 and Hi(RP
n; Z2) = Z2 ∀i.

Thm: L ⊂ CP n, 2H1(L; Z) = 0. Then NL = n+ 1 and:

1. Hi(L) = Z2 ∀i.

2. Let αn−2 ∈ Hn−2(L) be the generator. Then
αn−2 ∩ (−) : Hi(L)

∼=−→ Hi−2(L) ∀i ≥ 2.

3. inc∗ : Hi(L)
∼=−→ Hi(CP

n) ∀i = even.

Statement 1 was proved before by Seidel by other
methods. An alternative proof by B.
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Quantum structures

Let αi be the generator of HFi. So that α−1 = αnt,
αi+l(n+1) = αit

−l etc.
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−l etc.

In other words for L as before we have:
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Quantum structures

Let αi be the generator of HFi. So that α−1 = αnt,
αi+l(n+1) = αit

−l etc.

The action of h:

i . . . -1 0 1 . . . n-1 n n+1 . . .

HFi . . . Z2αnt Z2α0 Z2α1 . . . Z2αn−1 Z2αn Z2α0t−1 . . .

Thm: If n = even or L ≈ RP n then
αj ∗ αk = αj+k−n ∀k, j ∈ Z.
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Quantum inclusion

Quantum inclusion map iL : HF∗(L) → QH∗(CP
n).

Denote by aj ∈ Hj(CP
n; Z2) the generator, 0 ≤ j ≤ 2n.

Thm: Let L ⊂ CP n as above.

1. If n = even then:

iL(α2k) = a2k, ∀ 0 ≤ 2k ≤ n,

iL(α2k+1) = a2k+n+2t, ∀ 1 ≤ 2k + 1 ≤ n− 1.
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Quantum inclusion

Quantum inclusion map iL : HF∗(L) → QH∗(CP
n).

Denote by aj ∈ Hj(CP
n; Z2) the generator, 0 ≤ j ≤ 2n.

Thm: Let L ⊂ CP n as above.

1. If n = even then:

iL(α2k) = a2k, ∀ 0 ≤ 2k ≤ n,

iL(α2k+1) = a2k+n+2t, ∀ 1 ≤ 2k + 1 ≤ n− 1.

2. If n = odd then:

iL(α2k) = a2k + a2k+n+1t, ∀ 0 ≤ 2k ≤ n,

iL(α2k+1) = 0, ∀ k.
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Thm: Let L ⊂ CP n with 2H1(L; Z) = 0. If n =even or
L ≈ RP n then ∀x′, x′′ ∈ L and ∀J , ∃ J-holomorphic
disk u : (D, ∂D) → (CP n, L) with u(−1) = x′, u(1) = x′′

& µ([u]) = n+ 1. The # of such disks (upto
parametrization) is even ≥ 2.
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Existence of disks & enumerative geometry

Thm: Let L ⊂ CP n with 2H1(L; Z) = 0. If n =even or
L ≈ RP n then ∀x′, x′′ ∈ L and ∀J , ∃ J-holomorphic
disk u : (D, ∂D) → (CP n, L) with u(−1) = x′, u(1) = x′′

& µ([u]) = n+ 1. The # of such disks (upto
parametrization) is even ≥ 2.

Proof. The point is that α0 ∗ α0 = α1t.
x′ = min(f)

x′′ = min(f ′′)
IMPOSSIBLE!

x′

x′′
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Thm: Let L ⊂ CP n be a Lagrangian with 2H1(L; Z) = 0.
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1. ∀ p ∈ CP n & ∀ J ∈ J , ∃ a J-holomorphic disk
u : (D, ∂D) → (CP n, L) with µ([u]) = n+ 1 and
u(0) = p.
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1. ∀ p ∈ CP n & ∀ J ∈ J , ∃ a J-holomorphic disk
u : (D, ∂D) → (CP n, L) with µ([u]) = n+ 1 and
u(0) = p.

2. Let x ∈ L, p ∈ CP n \ L. Then for generic J ∈ J , ∃ a
J-holomorphic disk u : (D, ∂D) → (CP n, L) with
µ([u]) = 2n+ 2 and u(0) = p, u(−1) = x.
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Thm: Let L ⊂ CP n be a Lagrangian with 2H1(L; Z) = 0.

1. ∀ p ∈ CP n & ∀ J ∈ J , ∃ a J-holomorphic disk
u : (D, ∂D) → (CP n, L) with µ([u]) = n+ 1 and
u(0) = p.

2. Let x ∈ L, p ∈ CP n \ L. Then for generic J ∈ J , ∃ a
J-holomorphic disk u : (D, ∂D) → (CP n, L) with
µ([u]) = 2n+ 2 and u(0) = p, u(−1) = x.

3. Suppose n = 2 and L ≈ RP 2. Let x′, x′′ ∈ L two
distinct points, p ∈ CP 2 \ L. Then for generic J , ∃ a
J-holomorphic disk u : (D, ∂D) → (CP 2, L) with
µ([u]) = 6 and u(−1) = x′, u(1) = x′′ and u(0) = p.
The number of such disks is odd.
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Similar theorems hold for other manifolds.

The quadric Q = {z2
0 + · · · + z2

n+1 = 0} ⊂ CP n+1.

Thm: Assume dimCQ = even. L ⊂ Q with H1(L; Z) = 0.
Then H∗(L; Z2) ∼= H∗(S

n; Z2).

α0 := [pt] ∈ H0(Q), αn := [L] ∈ Hn(L),
p := [pt] ∈ H0(Q), u := [Q] ∈ H2n(Q).

– p.19



Similar theorems hold for other manifolds.

The quadric Q = {z2
0 + · · · + z2

n+1 = 0} ⊂ CP n+1.

Thm: Assume dimCQ = even. L ⊂ Q with H1(L; Z) = 0.
Then H∗(L; Z2) ∼= H∗(S

n; Z2).

α0 := [pt] ∈ H0(Q), αn := [L] ∈ Hn(L),
p := [pt] ∈ H0(Q), u := [Q] ∈ H2n(Q).
Thm: Let L ⊂ Q with H1(L; Z) = 0. Then:

– p.19



Similar theorems hold for other manifolds.

The quadric Q = {z2
0 + · · · + z2

n+1 = 0} ⊂ CP n+1.

Thm: Assume dimCQ = even. L ⊂ Q with H1(L; Z) = 0.
Then H∗(L; Z2) ∼= H∗(S

n; Z2).

α0 := [pt] ∈ H0(Q), αn := [L] ∈ Hn(L),
p := [pt] ∈ H0(Q), u := [Q] ∈ H2n(Q).
Thm: Let L ⊂ Q with H1(L; Z) = 0. Then:

1. p ∗ α0 = α0t, p ∗ αn = αnt.

– p.19



Similar theorems hold for other manifolds.

The quadric Q = {z2
0 + · · · + z2

n+1 = 0} ⊂ CP n+1.

Thm: Assume dimCQ = even. L ⊂ Q with H1(L; Z) = 0.
Then H∗(L; Z2) ∼= H∗(S

n; Z2).

α0 := [pt] ∈ H0(Q), αn := [L] ∈ Hn(L),
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Similar theorems hold for other manifolds.

The quadric Q = {z2
0 + · · · + z2

n+1 = 0} ⊂ CP n+1.

Thm: Assume dimCQ = even. L ⊂ Q with H1(L; Z) = 0.
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p := [pt] ∈ H0(Q), u := [Q] ∈ H2n(Q).
Thm: Let L ⊂ Q with H1(L; Z) = 0. Then:

1. p ∗ α0 = α0t, p ∗ αn = αnt.

2. iL(α0) = p− ut.

3. If n is even then α0 ∗ α0 = αnt.
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Similar theorems hold for other manifolds.

The quadric Q = {z2
0 + · · · + z2

n+1 = 0} ⊂ CP n+1.

Thm: Assume dimCQ = even. L ⊂ Q with H1(L; Z) = 0.
Then H∗(L; Z2) ∼= H∗(S

n; Z2).

α0 := [pt] ∈ H0(Q), αn := [L] ∈ Hn(L),
p := [pt] ∈ H0(Q), u := [Q] ∈ H2n(Q).
Thm: Let L ⊂ Q with H1(L; Z) = 0. Then:

1. p ∗ α0 = α0t, p ∗ αn = αnt.

2. iL(α0) = p− ut.

3. If n is even then α0 ∗ α0 = αnt.

Results in the same spirit hold for Fano complete intersections.
(The point is that we know QH by work of Beauville.)
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Applications to quantum homology

A commutative algebra A over a field F is semi-simple if
it splits into a direct sum of finite dimensional vector
spaces over F, A = A1 ⊕ · · · ⊕ Ar s.t. ∀ Ai is a field &
the splitting is compatible with the multiplication of A.
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Applications to quantum homology

A commutative algebra A over a field F is semi-simple if
it splits into a direct sum of finite dimensional vector
spaces over F, A = A1 ⊕ · · · ⊕ Ar s.t. ∀ Ai is a field &
the splitting is compatible with the multiplication of A.

(M,ω) monotone. F = Q[t]].
QHev

∗ (M ; F) =
⊕n

j=0H2j(M ; Q) ⊗ F

Q: When is QHev
∗ (M ; F) semi-simple?

(semi-simplicity of QH played important role in work of
Entov-Polterovich on quasi-morphisms.)

Remark: This notion of semi-simplicity is somewhat
different than semi-simplicity in the sense of Dubrovin
(we work with different coefficient ring F). – p.20



N := min. Chern # of M 2n. n = dimCM .
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N := min. Chern # of M 2n. n = dimCM .

Thm: Assume n ≥ 2 & M contains a Lagrangian
sphere. Suppose that N ∤ n and N ∤ (n+ 1). Then
QHev

∗ (M ; F) is not semi-simple.
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N := min. Chern # of M 2n. n = dimCM .

Thm: Assume n ≥ 2 & M contains a Lagrangian
sphere. Suppose that N ∤ n and N ∤ (n+ 1). Then
QHev

∗ (M ; F) is not semi-simple.

This happens for example, if M ⊂ CP n+1 is complex
hypersurface of degree 3 ≤ d ≤ n

2 + 1. For d = 1 and
d = 2, QHev

∗ (M ; F) is semi-simple.
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N := min. Chern # of M 2n. n = dimCM .

Thm: Assume n ≥ 2 & M contains a Lagrangian
sphere. Suppose that N ∤ n and N ∤ (n+ 1). Then
QHev

∗ (M ; F) is not semi-simple.

This happens for example, if M ⊂ CP n+1 is complex
hypersurface of degree 3 ≤ d ≤ n

2 + 1. For d = 1 and
d = 2, QHev

∗ (M ; F) is semi-simple.

Proof. A criterion of Abrams says that QHev
∗

(M ; F) is semi-simple iff
the quantum Euler class E is invertible. But E ∈ QH0(M). Let
Sn ≈ L ⊂M . Under above assumptions, HF∗(L) = H∗(L) ⊗ F.
Now use the module structure to deduce that E ∗ (−) gives iso’s
HF∗(L) ∼= HF∗−2n(L) ... contradiction. �
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The Clifford torus: T2
clif = {|z0| = |z1| = |z2|} ⊂ CP 2
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The Clifford torus: T2
clif = {|z0| = |z1| = |z2|} ⊂ CP 2

This is a monotone Lagrangian torus with NL = 2.
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The Clifford torus: T2
clif = {|z0| = |z1| = |z2|} ⊂ CP 2

Cho proved that for Jstd, ∀x ∈ Tclif there exist (exactly) 3
Jstd-holomorphic disks D1, D2, D3 through x, with
[∂D1] + [∂D2] + [∂D3] = 0 ∈ H1(Tclif; Z). These disks are
regular.
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2). u = [CP 2] ∈ QH4(CP
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The Clifford torus: T2
clif = {|z0| = |z1| = |z2|} ⊂ CP 2

Cho proved that for Jstd, ∀x ∈ Tclif there exist (exactly) 3
Jstd-holomorphic disks D1, D2, D3 through x, with
[∂D1] + [∂D2] + [∂D3] = 0 ∈ H1(Tclif; Z). These disks are
regular. =⇒ HF∗(Tclif) ∼= H∗(Tclif) ⊗ Λ∗. (Recall NL = 2.)
i.e. HF0(Tclif) ∼= H0(Tclif) ⊕H2(Tclif) ⊗ t, HF1(Tclif)=H1(Tclif).
Not canonical! Canonical.
Quantum structures: a, b ∈ H1(Tclif) generators.
w = [Tclif] ∈ H2(Tclif), m ∈ HF0(Tclif) so that {m,wt} generate HF0.
h := [CP 1] ∈ QH2(CP

2). u = [CP 2] ∈ QH4(CP
2).

Thm: 1) a ∗ b = m+ wt, b ∗ a = m, a ∗ a = b ∗ b = wt.
2) m ∗m = mt+ wt2. (c.f. Cho-Oh & Oh).
3) h ∗ a = at, h ∗ b = bt, h ∗ w = wt, h ∗m = mt.
4) iL(m) = [pt] + ht+ ut2 ∈ QH0(CP

2),
5) iL(a) = iL(b) = iL(w) = 0.
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Proof

Pick two perfect Morse functions f1, f2 : Tclif → R.
x2 = max of f1, x0 = min of f1,
x′1, x

′′
1 = index 1 critical points of f1.
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Proof

Pick two perfect Morse functions f1, f2 : Tclif → R.
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a ∗ b = [x′1] ∗ [y′′1 ]
b ∗ a = [x′′1] ∗ [y′1]

Computation
of
m ∗m follows from
associativity.
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Applications to symplectic packing

B(r) = 2n-dim closed ball of radius r.
BR(r) = B(r) ∩ (Rn × 0) real part of B(r).
Relative packing: ϕ : (B(r), BR(r)) → (M,L), ϕ∗ω = ωstd

and ϕ−1(L) = BR(r). Gr(L) := sup{r | ∃ rel. pack. ϕ}.
Packing in the complement: ψ : B(ρ) → (M \ L, ω).
Gr(M \ L) = sup{ρ | ∃ packing ψ}.

B(r)

ϕ

L

(M,ω)

B(ρ)

ψ

L

(M,ω)

Absolute symplectic packing introduced by Gromov,
studied further by McDuff-Polterovich, Karshon,
Traynor, B. etc.
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2. Suppose for generic J and ∀ q ∈ L, ∃ non-const
J-hol disk u : (D, ∂D) → (M,L) with u(∂D) ∋ q and

Areaω(u) ≤ E ′′. Then πGr(L)2

2 ≤ E ′′.

Thm: T ⊂ (M,ω) monotone Lagrangian torus. τ = ω
µ .

If HF∗(T) 6= H∗(T) ⊗ Λ, then πGr(T)2

2 ≤ 2τ.
Proof. Dichotomy for tori: either HF∗(T) ∼= H∗(T) ⊗ Λ

or HF∗(T) = 0. In the latter case ∃ a J-holomorphic disk with µ = 2

through ∀ pt ∈ T. �
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Thm: L ⊂ CP n monotone.

1. If HF∗(L) 6= 0 =⇒ Gr(CP n \ L)2 ≤ n
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2. If HF∗(L) ∼= H∗(L) ⊗ Λ then

1
2Gr(L)2 +Gr(CP n \ L)2 ≤ 1.

Proof. 1) [pt] ∈ QH0(CP
n) is invertible hence

[pt] ∗ (−) : HFj(L) → HFj−2n(L) is non-trivial for some j.
⇒ ∃ J-holomorphic disk with µ ≤ n through ∀ pt ∈ CP n.
2) Uses the associativity of the quantum module structure. �

Cor: Gr(Tn
clif)

2 ≤ 2
n+1 , Gr(CP n \ Tn

clif)
2 = n
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Cor: L ⊂ CP n Lagrangian with 2H1(L; Z) = 0. Then
Gr(CP n \ L)2 ≤ 1

2. (Previously known for L = RP n [B.]).
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Cor: L ⊂ CP n Lagrangian with 2H1(L; Z) = 0. Then
Gr(CP n \ L)2 ≤ 1

2. (Previously known for L = RP n [B.]).

Mixed packing. Packing by many balls, some relative to
L some in the complement of L.

Cor: Let ϕ : (B(r), BR(r)) → (CP 2,Tclif), ψ : B(ρ) → CP 2 \ Tclif be
a mixed symplectic packing. Then 1

2r
2 + ρ2 ≤ 2

3. If r = ρ

then r2 ≤ 4
9.

Q. 1) Are the above packing inequalities sharp?
2) Blow-up/down construction in the relative case?
3) Criterion like Nakai-Moishezon in the relative case?
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w = [Tclif] ∈ H2(Tclif), m ∈ HF0(Tclif) so that {m,wt}
generate HF0. Recall that m ∗m = mt+ wt2.
(this is independent of the choice of m).

Enumerative interpretation of the coefficients and.
Let T = ABC a “triangle” on Tclif. nA = #Z2

holomorphic
disks with µ = 2 that pass through vertex A and edge
BC. Similarly we have nB, nC .
n4(T ) := #Z2

holomorphic disks with µ = 4 through A,
B, C (in this order !).

Cor: 1) nA + nB + nC = 1.
2) nAnB + n4(T ) = nAnC + n4(T ) = nBnC + n4(T ) = 1.
Similar formulae work for every 2-dimensional torus.
∃ related work of Cho with other identities by different approach. – p.28
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Holomorphic disks through 3 points on Tclif

A

B

C

A
′

B′

C
′

nA = 1, nB = 0, nC = 0 =⇒ n4(T ) = 1.
nA′ = 1, nB′ = 1, nC ′ = 1 =⇒ n4(T

′) = 0.
The number n4(T ) is NOT a symplectic invariant. It
depends on J and the 3 points of the triangle T .
Still ... nAnB + n4(T ) is a symplectic invariant.
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What next?

� Extend the theory to the A∞-category theory of
Fukaya-Oh-Ohta-Ono or to the cluster homology of
Cornea-Lalonde. This would also get rid of the
monotonicity assumption. This is future project
planned with Cornea and Lalonde.
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What next?

� Extend the theory to the A∞-category theory of
Fukaya-Oh-Ohta-Ono or to the cluster homology of
Cornea-Lalonde. This would also get rid of the
monotonicity assumption. This is future project
planned with Cornea and Lalonde.

� Replace QH with contact homology and structures
coming from SFT .  HF (L) being a module over
richer algebraic objects.

� If the above works, we get a Floer homological
approach to relative/real enumerative geometry. We
would also get more complete picture of the relative
packing problem.

– p.30



HAPPY BIRTHDAY YASHA
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Till 120!
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