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Recall: Ehrenfest time

• Ehrenfest time

TE ∼
1

λ
ln

1

~

-exponential proliferation of
orbits,
-small-scale oscillations

• Heisenberg time, time scale
to resolve spectrum:

TH ∼
1

~d−1

h

t

T

T

H

known 
region

E

1

terra incognita

Main aim in this talk is to present tools which allow to prove the
accuracy of semiclassical approximations up to

t ∼ 1/
√

~
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Poincare disc

Let D := {z ∈ C ; |z | < 1} be the unit disk with

• metric: ds2 = 4|dz|2
(1−|z|2)2 .

• isometries: γ(z) = αz+β
β∗z+α∗ with |α|2 − |β|2 = 1

• Laplace Beltrami operator

∆ =
(1− |z |2)2

4

(
∂2

x + ∂2
y

)
commutes with isometries, i.e., (∆u) ◦ γ = ∆(u ◦ γ).

• time evolution operator

U(t) = e
i~
2

t∆

commutes with isometries, i.e., (U(t)u) ◦ γ = U(t)(u ◦ γ).
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Surfaces of constant negative curvature

• Any surface of constant negative curvature is of the form

M = D/Γ

where Γ is a discrete group of isometries, a Fuchsian group.

• u : D→ C is a function on M if u ◦ γ = u for all γ ∈ Γ

• For u : D→ C we set

uΓ :=
∑
γ∈Γ

u ◦ γ−1

this is a function on M if the sum converges. Note

U(t)uΓ =
(
U(t)u

)
Γ
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Exponential volume growth

• On D we have vol({d(z , 0) ≤ r}) ∼ er so for compact M

#{γ ∈ Γ ; d(γ(z), z) ≤ r} ∼ er

hence uΓ converges if for β > 1

|u(z)| � e−βd(z,0) .

• For α, β > 0, 〈d〉(z) = (1 + d(z , 0)2)1/2 set

‖a‖α,β = ‖eα
√
−∆eβ〈d〉a‖L2(D) , Hα,β := {a : D→ C ; ‖a‖α,β <∞}

α > 0 → a real analytic, β > 1 → aΓ converges
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Geodesics and horocycles

Geodesics: circles perpendicu-
lar to ∂D

Horocycles: circles tangent to
∂D, let ξ(b, z) be the horocycle
through z ∈ D touching ∂D at
b ∈ ∂D

Fix b ∈ ∂D and set

ϕb(z) = signed d(ξ(b, z), ξ(b, 0))

and let furthermore Φt
b(z) be

a distance t shift along the
geodesic from b through z .

b
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Hyperbolic plane waves

The initial states we propagate are of the form uΓ with

u(z) = a(z)e
i
~ϕb(z)

• these are Lagrangian states with Λb := {(z , dϕb(z)), z ∈ D}
an unstable manifold of the geodesic flow.

• The wavefronts ϕb(z) = const. are the horocycles associated
with b.

• with π : T ∗D→ D let πb := π|Λb
: Λb → D, then

Φt
b = πbφ

tπ−1
b with geodesic flow φt .

Define the unitary operator Sb(t) on L2(D) by

Sb(t)a(z) = e−t/2a(Φ−t
b (z))

it describes transport along the geodesics emanating from b.
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main result
For a ∈ Hα.β set

u(0)(t) = e−
i
~

t
2
(
Sb(t)a

)
e

i
~ϕb .

• Leading order semiclassical approximation for U(t)[ae
i
~ϕb ]

• since the effective support of Sb(t)a grows exponentially,
proliferation of overlaps between (Sb(t)a) ◦ γ and
(Sb(t)a) ◦ γ′ gives ‖u(0)(t)Γ‖ ∼ et/2.

Theorem
Let M = D/Γ, then for α > 0, β > 1 there exist constants C > 0,
δ > 0 such that for all a ∈ Hα,β(D) and b ∈ ∂D,∥∥u(0)(t)Γ − U(t)[a e

i
~ϕb ]Γ

∥∥
L2(M)

≤ C‖a‖α,βt
√

~

for

0 ≤ t ≤ δ 1√
~
.
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Main tool: decomposition of U(t)
Set

∆b(t) := S∗b (t)∆Sb(t)

and let Vb(t) be the solution of

i∂tVb(t) = −~
2

∆b(t)Vb(t) with Vb(0) = I

Theorem
For a ∈ L2(D) we have

U(t)
(
ae

i
~ϕb
)

= e−
i
~

t
2
(
Sb(t)Vb(t)a

)
e

i
~ϕb

Remarks:

• proof follows by inserting into Schrödinger equation
• interpretation:

• Sb(t) is classical transport
• Vb(t) describes dispersion
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Dispersive part

In upper halfplane with b = i∞ we have

• ∆ = y2(∂2
y + ∂2

x )

• Sb(t)a(x , y) = e−t/2a(x , ety)

• ∆b(t) = y2∂2
y + e−2ty2∂2

x

Note the Volterra expansion

Vb(t)a = a+
~
2i

∫ t

0
∆b(t1)a dt1 + · · ·

+
~k

(2i)k

∫ t

0
· · ·
∫ tk−1

0
∆b(t1) · · ·∆b(tk)Vb(tk)a dt1 · · · dtk

so if a has bounded derivatives Vb(t) describes dispersion on a
scale ~t along the geodesics emanating from b.
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Main idea: Turning S into V with U
We want to estimate ‖u(0)(t)Γ‖L2(M) using

U(t)
(
ae

i
~ϕb
)

= e−
i
~

t
2
(
Sb(t)Vb(t)a

)
e

i
~ϕb

Since Vb is unitary

u(0)(t) = e−
i
~

t
2
(
Sb(t)a

)
e

i
~ϕb

= e−
i
~

t
2
(
SbVbV

∗
b a
)
e

i
~ϕb

= U(t)
(
[V ∗b a]e

i
~ϕb
)

but U(t) commutes with the action of Γ and is unitary, so

‖u(0)(t)Γ‖L2(M) =
∥∥([V ∗b a]e

i
~ϕb
)

Γ

∥∥
L2(M)

RHS contains no transport, but dispersion instead. Supposed to
scale with ~t
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use same idea for remainder

Using u(0)(t) = U(t)
(
[V ∗b a]e

i
~ϕb
)

gives

u(0)(t)− U(t)(ae
i
~ϕb ) = U(t)

(
[V ∗b a]e

i
~ϕb
)
− U(t)(ae

i
~ϕb )

= U(t)
(
[V ∗b a− a]e

i
~ϕb
)

but from Schrödinger equation for Vb

V ∗b a− a =
~
2i

∫ t

0
V ∗b (t ′)∆b(t ′)a dt ′ ,

so

‖u(0)(t)Γ−U(t)(ae
i
~ϕb )Γ‖L2 � ~

∫ t

0
‖
[(

V ∗b (t ′)∆b(t ′)a
)
e

i
~ϕb
]

Γ
‖L2(M) dt ′

So we need estimates on V ∗b (t)a which ensure convergence of the
sum over Γ.
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Dispersive estimates

Main question: under which conditions on a do we have

|V ∗b (t)a(z)| � e−β〈d〉(z)

Model problem: U(t) = ei ~t
2

∆ on R, by Paley Wiener

|U(t)a(x)| � e−β|x |

if Û(t)a(ξ) is analytic in |Im ξ| < β and Û(t)a(ξ ± iβ) ∈ L1
ξ . But

Û(t)a(ξ) = ei ~t
2
ξ2

â(ξ) ,

so
|â(ξ ± iβ)| � e−β~|t||ξ|

So a has to be analytic and be quickly decaying.
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Dispersive conjecture

This leads to
‖a‖α,β = ‖eα

√
−∆eβ〈d〉a‖L2(D) ,

and Hα,β := {a : D→ C ; ‖a‖α,β <∞}.

Conjecture

For α, β > 0 and α′ < α there exist C , δ > 0 such that

‖V (t)a‖α′,β ≤ C‖a‖α,β
‖V ∗(t)a‖α′,β ≤ C‖a‖α,β

for a ∈ Hα,β and

t ≤ δα− α
′

β

1

~
.

Remark: Not hard to prove for U(t) instead of V (t).
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Mollifying
Let χ ∈ C∞(R) with suppχ ∈ (−2, 2) and χ(x) = 1 for
x ∈ [−1, 1] and set with ε > 0 Jε := χ(ε∆). Then we can define

∆(ε)(t) = Jε∆(t)Jε ,

i∂tV
(ε)(t) = −~

2
∆(ε)(t)V (ε)(t) with V (ε)(0) = I

Then we have for t ≤ c α−α
′

α
ε
~

‖V (ε)(t)a‖α′,β ≤ C‖a‖α,β ‖V (ε)∗(t)a‖α′,β ≤ C‖a‖α,β

and
‖[(V (ε)(t)V ∗(t)− 1)a]Γ‖L2 � ‖a‖α,βe−

1
4

(α/ε−2t)

The optimal choice for ε is then ε ∼
√

~ which gives

t � 1/
√

~
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Remarks

• Using Volterra series for Vb one can can include higher order
terms in ~ up to exponential small remainder. This allows as
well to estimate accuracy in Sobolev norms, which gives
pointwise estimates.

• Localised states: if a ∈ H1,β then a
(
(z − z0)/~δ

)
∈ Hα,β

with α = ~δ, we then obtain the conditions

t � 1

~(1−3δ)/2
, and δ <

1

3

To treat coherent states, i.e., δ = 1/2, one would have to
approximate Vb(t) using Metaplectic operators. This would
give t � 1/~1/4 and with Conjecture 1 t � 1/~1/2.
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More general systems?

• Construction of S(t) is geometrical, works for other
phase-functions and non-constant curvature.

• Decomposition of U(t) into S(t) and V (t) works, too.

• Main problem: generator of V (t),

∆(t) = S(t)∗∆S(t) ,

has coefficients which oscillate exponentially rapid.
Need to generalise analysis of dispersion.
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Operators on D
Symbol: use hyperbolic plane waves to define symbol (Zelditch 86)

Ae
(

i
~λ+ 1

2

)
ϕb(z) = a(~; z , b, λ)e

(
i
~λ+ 1

2

)
ϕb(z)

Helgason’s harmonic analysis:

u(z) =
1

2π~2

∫
R+×∂D

e
(

i
~λ+ 1

2

)
ϕb(z)Fu(λ, b)λ tanh

(
2πλ

~

)
drdb

where Fu(λ, b) =

∫
D

e
(
− i

~λ+ 1
2

)
ϕb(z)u(z) dν(z)

Using this we define

Op[a]u(z) =
1

2π~2

∫
R+×∂D

e
(

i
~λ+ 1

2

)
ϕb(z)a(z , b, λ)

Fu(λ, b)λ tanh

(
2πλ

~

)
drdb .
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We have

U(t)e
(

i
~λ+ 1

2

)
ϕb(z) = e−

i
~

(
λ2+ 1

4

)
e
(

i
~λ+ 1

2

)
ϕb(z)

and so the symbol of U(t) Op[a]U∗(t) is

U(t) Op[a]U∗(t)e
(

i
~λ+ 1

2

)
ϕb = e

i
~

(
λ2+ 1

4

)
U(t)

(
ae
(

i
~λ+ 1

2

)
ϕb
)

=
(
Ŝb,λ(t)V̂b,λa

)
e
(

i
~λ+ 1

2

)
ϕb

where

• Ŝb,λ(t) = e−
1
2
ϕbSb(λt)e

1
2
ϕb

• V̂b,λ is generated by ∆̂b,λ := e−
1
2
ϕbS∗b (λt)∆Sb(λt)e

1
2
ϕb .
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Symbol of U(t) Op[a]U∗(t)

Define the operators ∆̂ and V̂ by

(∆̂a)(z , b, λ) = ∆̂b,λa(z , b, λ) , (V̂ a)(z , b, λ) = V̂b,λa(z , b, λ) ,

and Ŝ(t) by (Ŝ(t)a)(z , b, λ) = Ŝb,λ(t)a(z , b, λ), then

• Ŝ(t)a = a ◦ φ−t , where φt is geodesic flow.,

• and
U(t) Op[a]U∗(t) = Op[(V̂ (t)a) ◦ φ−t ] .

Remark To obtain Egorov Theorem we have to expand V̂ (t)a into
a Volterra series

V̂ (t)a = a +
~
2i

∫ t

0
∆̂(t1)a dt1 + · · ·
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Egorov’s Theorem for large times

Zeditch 86: let γ̂(z , b, λ) := (γ(z), γ(b), λ) be the lift of γ, and let
Tγu := u ◦ γ−1 then

T ∗γ Op[a]Tγ = Op[a ◦ γ̂−1] ,

so we can identify operators on M with operators on D with
Γ-invariant symbols Sm,k(M).

Theorem
Let a ∈ S0,0(M), be analytic, then there is a δ > 0 such that

‖U(t) Op[a]U∗(t)− Op[a ◦ φ−t ]‖ � t
√

~ .

for

t ≤ δ 1√
~
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Summary and Conclusions

• We extended the time range where semiclassical
approximations are accurate from TE ∼ ln 1/~ to 1/

√
~. Two

main ingredients:

1. Separation of propagation into two parts, classical propagation
and dispersion. Using unitarity remainder estimates could be
reduced to estimates of the dispersive part.

2. We then used energy type inequalities to obtain estimates on
the dispersive part.

• The 1/
√

~ scale is probably not optimal, we conjecture that
the results hold up to 1/~. The main open problem is to
obtain sharper estimates on the dispersive part.

• Using a semiclassical calculus adapted to the phase space
geometry the same techniques can be used to obtain a version
of Egorov’s theorem valid for large times.
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