▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Summary

Mixing and waves: Part II Beyond the Ehrenfest time

Roman Schubert Bristol

Montreal April 8, 2008

Introduction

Surfaces of negative curvature

Wave propagation

Egorov theorem

Summary

region

Ehrenfest time

$$T_E \sim rac{1}{\lambda} \ln rac{1}{\hbar}$$

- -exponential proliferation of orbits,
- -small-scale oscillations
- Heisenberg time, time scale to resolve spectrum:

 $T_H \sim \frac{1}{\hbar^{d-1}}$

$$t\sim 1/\sqrt{\hbar}$$

Summary

Poincare disc

Let $\mathbb{D}:=\{z\in\mathbb{C} \text{ ; } |z|<1\}$ be the unit disk with

- metric: $ds^2 = \frac{4|dz|^2}{(1-|z|^2)^2}$.
- isometries: $\gamma(z) = rac{lpha z + eta}{eta^* z + lpha^*}$ with $|lpha|^2 |eta|^2 = 1$
- Laplace Beltrami operator

$$\Delta = rac{(1-|z|^2)^2}{4}ig(\partial_x^2 + \partial_y^2ig)$$

commutes with isometries, i.e., $(\Delta u) \circ \gamma = \Delta(u \circ \gamma)$.

time evolution operator

$$\mathcal{U}(t) = \mathrm{e}^{\frac{\mathrm{i}\hbar}{2}t\Delta}$$

commutes with isometries, i.e., $(\mathcal{U}(t)u) \circ \gamma = \mathcal{U}(t)(u \circ \gamma)$.

Surfaces of constant negative curvature

• Any surface of constant negative curvature is of the form

$$M = \mathbb{D}/\Gamma$$

where Γ is a discrete group of isometries, a *Fuchsian group*.

- $u : \mathbb{D} \to \mathbb{C}$ is a function on M if $u \circ \gamma = u$ for all $\gamma \in \Gamma$
- For $u: \mathbb{D} \to \mathbb{C}$ we set

$$u_{\Gamma} := \sum_{\gamma \in \Gamma} u \circ \gamma^{-1}$$

this is a function on M if the sum converges. Note

$$\mathcal{U}(t)u_{\Gamma} = (\mathcal{U}(t)u)_{\Gamma}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exponential volume growth

• On $\mathbb D$ we have $\mathsf{vol}(\{d(z,0)\leq r\})\sim \mathrm e^r$ so for compact M

$$\#\{\gamma \in \mathsf{\Gamma} \ ; \ d(\gamma(z), z) \leq r\} \sim \mathrm{e}^r$$

hence $u_{\rm \Gamma}$ converges if for $\beta>1$

$$|u(z)| \ll e^{-\beta d(z,0)}$$
.

• For $\alpha, \beta > 0$, $\langle d \rangle(z) = (1 + d(z, 0)^2)^{1/2}$ set

 $\|\boldsymbol{a}\|_{\alpha,\beta} = \|\mathrm{e}^{\alpha\sqrt{-\Delta}}\mathrm{e}^{\beta\langle \boldsymbol{d}\rangle}\boldsymbol{a}\|_{L^2(\mathbb{D})} , \quad \boldsymbol{H}_{\alpha,\beta} := \{\boldsymbol{a}:\mathbb{D}\to\mathbb{C}\,;\,\|\boldsymbol{a}\|_{\alpha,\beta}<\infty\}$

 $\alpha > \mathbf{0} \rightarrow a$ real analytic, $\beta > \mathbf{1} \rightarrow a_{\Gamma}$ converges

gorov theorem

Summary

Geodesics and horocycles

b

Geodesics: circles perpendicular to $\partial \mathbb{D}$

Horocycles: circles tangent to $\partial \mathbb{D}$, let $\xi(b, z)$ be the horocycle through $z \in \mathbb{D}$ touching $\partial \mathbb{D}$ at $b \in \partial \mathbb{D}$

Fix $b \in \partial \mathbb{D}$ and set

 $\varphi_b(z) = \text{signed } d(\xi(b, z), \xi(b, 0))$

and let furthermore $\Phi_b^t(z)$ be a distance t shift along the geodesic from b through z.

Hyperbolic plane waves

The initial states we propagate are of the form u_{Γ} with

$$u(z) = a(z) \mathrm{e}^{rac{\mathrm{i}}{\hbar} \varphi_b(z)}$$

- these are Lagrangian states with Λ_b := {(z, dφ_b(z)), z ∈ D} an unstable manifold of the geodesic flow.
- The wavefronts φ_b(z) = const. are the horocycles associated with b.
- with $\pi : T^* \mathbb{D} \to \mathbb{D}$ let $\pi_b := \pi|_{\Lambda_b} : \Lambda_b \to \mathbb{D}$, then $\Phi_b^t = \pi_b \phi^t \pi_b^{-1}$ with geodesic flow ϕ^t .

Define the unitary operator $S_b(t)$ on $L^2(\mathbb{D})$ by

$$S_b(t)a(z) = e^{-t/2}a(\Phi_b^{-t}(z))$$

it describes transport along the geodesics emanating from b.

main result

For $a \in H_{\alpha,\beta}$ set

$$u^{(0)}(t) = e^{-\frac{i}{\hbar}\frac{t}{2}} (S_b(t)a) e^{\frac{i}{\hbar}\varphi_b}$$
.

- Leading order semiclassical approximation for $\mathcal{U}(t)[a\mathrm{e}^{rac{1}{\hbar}arphi_b}]$
- since the effective support of $S_b(t)a$ grows exponentially, proliferation of overlaps between $(S_b(t)a) \circ \gamma$ and $(S_b(t)a) \circ \gamma'$ gives $\|u^{(0)}(t)_{\Gamma}\| \sim e^{t/2}$.

Theorem

Let $M = \mathbb{D}/\Gamma$, then for $\alpha > 0, \beta > 1$ there exist constants C > 0, $\delta > 0$ such that for all $a \in H_{\alpha,\beta}(\mathbb{D})$ and $b \in \partial \mathbb{D}$,

$$\left\| u^{(0)}(t)_{\mathsf{\Gamma}} - \mathcal{U}(t) [\mathbf{a} \mathrm{e}^{rac{\mathrm{i}}{\hbar} arphi_b}]_{\mathsf{\Gamma}}
ight\|_{L^2(M)} \leq C \| \mathbf{a} \|_{lpha,eta} t \sqrt{\hbar}$$

for

$$0 \leq t \leq \delta rac{1}{\sqrt{\hbar}}$$
 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary

Main tool: decomposition of $\mathcal{U}(t)$

Set

$$\Delta_b(t) := S_b^*(t) \Delta S_b(t)$$

and let $V_b(t)$ be the solution of

$$\mathrm{i}\partial_t V_b(t) = -rac{\hbar}{2}\Delta_b(t)V_b(t)$$
 with $V_b(0) = I$

Theorem For $a \in L^2(\mathbb{D})$ we have

$$\mathcal{U}(t)\left(a\mathrm{e}^{rac{\mathrm{i}}{\hbar}\varphi_b}
ight) = \mathrm{e}^{-rac{\mathrm{i}}{\hbar}rac{t}{2}}\left(S_b(t)V_b(t)a
ight)\mathrm{e}^{rac{\mathrm{i}}{\hbar}\varphi_b}$$

Remarks:

- proof follows by inserting into Schrödinger equation
- interpretation:
 - S_b(t) is classical transport
 - $V_b(t)$ describes dispersion

Dispersive part

In upper halfplane with $b=\mathrm{i}\infty$ we have

•
$$\Delta = y^2 (\partial_y^2 + \partial_x^2)$$

• $S_b(t) a(x, y) = e^{-t/2} a(x, e^t y)$
• $\Delta_b(t) = y^2 \partial_y^2 + e^{-2t} y^2 \partial_x^2$

Note the Volterra expansion

$$V_b(t)a = a + \frac{\hbar}{2i} \int_0^t \Delta_b(t_1) a \, \mathrm{d}t_1 + \cdots \\ + \frac{\hbar^k}{(2i)^k} \int_0^t \cdots \int_0^{t_{k-1}} \Delta_b(t_1) \cdots \Delta_b(t_k) V_b(t_k) a \, \mathrm{d}t_1 \cdots \mathrm{d}t_k$$

so if a has bounded derivatives $V_b(t)$ describes dispersion on a scale $\hbar t$ along the geodesics emanating from b.

Summar

Main idea: Turning S into V with \mathcal{U}

We want to estimate $||u^{(0)}(t)_{\Gamma}||_{L^{2}(M)}$ using

$$\mathcal{U}(t)\left(a\mathrm{e}^{rac{\mathrm{i}}{\hbar}\varphi_b}
ight) = \mathrm{e}^{-rac{\mathrm{i}}{\hbar}rac{t}{2}}\left(S_b(t)V_b(t)a
ight)\mathrm{e}^{rac{\mathrm{i}}{\hbar}\varphi_b}$$

Since V_b is unitary

$$\begin{split} u^{(0)}(t) &= \mathrm{e}^{-\frac{\mathrm{i}}{\hbar}\frac{t}{2}} \big(S_b(t) \mathbf{a} \big) \, \mathrm{e}^{\frac{\mathrm{i}}{\hbar}\varphi_b} \\ &= \mathrm{e}^{-\frac{\mathrm{i}}{\hbar}\frac{t}{2}} \big(S_b V_b V_b^* \mathbf{a} \big) \, \mathrm{e}^{\frac{\mathrm{i}}{\hbar}\varphi_b} \\ &= \mathcal{U}(t) \big([V_b^* \mathbf{a}] \mathrm{e}^{\frac{\mathrm{i}}{\hbar}\varphi_b} \big) \end{split}$$

but $\mathcal{U}(t)$ commutes with the action of Γ and is unitary, so

$$\|u^{(0)}(t)_{\Gamma}\|_{L^{2}(M)} = \|([V_{b}^{*}a]e^{\frac{i}{h}\varphi_{b}})_{\Gamma}\|_{L^{2}(M)}$$

RHS contains no transport, but dispersion instead. Supposed to scale with $\hbar t$

use same idea for remainder

Using
$$u^{(0)}(t) = \mathcal{U}(t)([V_b^*a]e^{\frac{i}{\hbar}\varphi_b})$$
 gives
 $u^{(0)}(t) - \mathcal{U}(t)(ae^{\frac{i}{\hbar}\varphi_b}) = \mathcal{U}(t)([V_b^*a]e^{\frac{i}{\hbar}\varphi_b}) - \mathcal{U}(t)(ae^{\frac{i}{\hbar}\varphi_b})$
 $= \mathcal{U}(t)([V_b^*a - a]e^{\frac{i}{\hbar}\varphi_b})$

but from Schrödinger equation for V_b

$$V_b^* a - a = rac{\hbar}{2\mathrm{i}} \int_0^t V_b^*(t') \Delta_b(t') a \,\mathrm{d}t' \;,$$

so

$$\|u^{(0)}(t)_{\Gamma} - \mathcal{U}(t)(a \mathrm{e}^{\frac{\mathrm{i}}{\hbar}\varphi_b})_{\Gamma}\|_{L^2} \ll \hbar \int_0^t \|\left[\left(V_b^*(t')\Delta_b(t')a\right)\mathrm{e}^{\frac{\mathrm{i}}{\hbar}\varphi_b}\right]_{\Gamma}\|_{L^2(M)} \,\mathrm{d}t'$$

So we need estimates on $V_b^*(t)a$ which ensure convergence of the sum over Γ .

Dispersive estimates

Main question: under which conditions on a do we have

 $|V_b^*(t)a(z)| \ll \mathrm{e}^{-eta\langle d
angle(z)}$

Model problem: $U(t) = \mathrm{e}^{\mathrm{i} rac{\hbar t}{2} \Delta}$ on \mathbb{R} , by Paley Wiener

 $|U(t)a(x)| \ll e^{-\beta|x|}$

 $\text{if }\widehat{U(t)a}(\xi)\text{ is analytic in }|\text{Im }\xi|<\beta\text{ and }\widehat{U(t)a}(\xi\pm \mathrm{i}\beta)\in L^1_{\xi}.\text{ But }$

$$\widehat{U(t)a}(\xi) = e^{i\frac{\hbar t}{2}\xi^2} \hat{a}(\xi) ,$$

so

$$|\hat{a}(\xi \pm i\beta)| \ll e^{-\beta\hbar|t||\xi|}$$

So a has to be analytic and be quickly decaying.

Dispersive conjecture

This leads to $\|a\|_{\alpha,\beta} = \|e^{\alpha\sqrt{-\Delta}}e^{\beta\langle d\rangle}a\|_{L^{2}(\mathbb{D})},$ and $H_{\alpha,\beta} := \{a : \mathbb{D} \to \mathbb{C} ; \|a\|_{\alpha,\beta} < \infty\}.$ Conjecture For $\alpha, \beta > 0$ and $\alpha' < \alpha$ there exist $C, \delta > 0$ such that

$$\|V(t)a\|_{lpha',eta} \leq C \|a\|_{lpha,eta} \ \|V^*(t)a\|_{lpha',eta} \leq C \|a\|_{lpha,eta}$$

for $a \in H_{\alpha,\beta}$ and

$$t \leq \delta rac{lpha - lpha'}{eta} rac{1}{\hbar} \; .$$

Remark: Not hard to prove for U(t) instead of V(t).

Mollifying

Let $\chi \in C^{\infty}(\mathbb{R})$ with supp $\chi \in (-2, 2)$ and $\chi(x) = 1$ for $x \in [-1, 1]$ and set with $\varepsilon > 0$ $J_{\varepsilon} := \chi(\varepsilon \Delta)$. Then we can define

$$\Delta^{(\varepsilon)}(t) = J_{\varepsilon}\Delta(t)J_{\varepsilon} \; ,$$

$$\mathrm{i}\partial_t V^{(arepsilon)}(t) = -rac{\hbar}{2}\Delta^{(arepsilon)}(t)V^{(arepsilon)}(t) \quad ext{with} \,\, V^{(arepsilon)}(0) = I$$

Then we have for $t \leq c \frac{\alpha - \alpha'}{\alpha} \frac{\varepsilon}{\hbar}$

 $\|V^{(\varepsilon)}(t)a\|_{\alpha',\beta} \leq C \|a\|_{\alpha,\beta} \qquad \|V^{(\varepsilon)^*}(t)a\|_{\alpha',\beta} \leq C \|a\|_{\alpha,\beta}$

and

$$\| [(V^{(arepsilon)}(t)V^*(t)-1)\mathsf{a}]_{\mathsf{F}} \|_{L^2} \ll \| \mathsf{a} \|_{lpha,eta} \mathrm{e}^{-rac{1}{4}(lpha/arepsilon-2t)}$$

The optimal choice for ε is then $\varepsilon \sim \sqrt{\hbar}$ which gives

 $t \ll 1/\sqrt{\hbar}$

Outline Introductio

(日) (同) (三) (三) (三) (○) (○)

Remarks

- Using Volterra series for V_b one can can include higher order terms in \hbar up to exponential small remainder. This allows as well to estimate accuracy in Sobolev norms, which gives pointwise estimates.
- Localised states: if $a \in H_{1,\beta}$ then $a((z z_0)/\hbar^{\delta}) \in H_{\alpha,\beta}$ with $\alpha = \hbar^{\delta}$, we then obtain the conditions

$$t \ll rac{1}{\hbar^{(1-3\delta)/2}} \;, \qquad ext{and} \quad \delta < rac{1}{3}$$

To treat **coherent states**, i.e., $\delta = 1/2$, one would have to approximate $V_b(t)$ using Metaplectic operators. This would give $t \ll 1/\hbar^{1/4}$ and with Conjecture 1 $t \ll 1/\hbar^{1/2}$.

More general systems?

- Construction of S(t) is geometrical, works for other phase-functions and non-constant curvature.
- Decomposition of U(t) into S(t) and V(t) works, too.
- Main problem: generator of V(t),

$$\Delta(t) = S(t)^* \Delta S(t) \; ,$$

has coefficients which oscillate exponentially rapid. Need to generalise analysis of dispersion.

Operators on ${\mathbb D}$

Symbol: use hyperbolic plane waves to define symbol (Zelditch 86)

$$\mathcal{A}\mathrm{e}^{\left(rac{\mathrm{i}}{\hbar}\lambda+rac{1}{2}
ight)arphi_b(z)}=\mathsf{a}(\hbar;z,b,\lambda)\mathrm{e}^{\left(rac{\mathrm{i}}{\hbar}\lambda+rac{1}{2}
ight)arphi_b(z)}$$

Helgason's harmonic analysis:

$$\begin{split} u(z) &= \frac{1}{2\pi\hbar^2} \int_{\mathbb{R}^+ \times \partial \mathbb{D}} e^{\left(\frac{i}{\hbar}\lambda + \frac{1}{2}\right)\varphi_b(z)} \mathcal{F}u(\lambda, b)\lambda \tanh\left(\frac{2\pi\lambda}{\hbar}\right) \mathrm{d}r \mathrm{d}b} \\ & \text{where} \quad \mathcal{F}u(\lambda, b) = \int_{\mathbb{D}} e^{\left(-\frac{i}{\hbar}\lambda + \frac{1}{2}\right)\varphi_b(z)} u(z) \, \mathrm{d}\nu(z) \end{split}$$

Using this we define

つくぐ

We have

$$\mathcal{U}(t)\mathrm{e}^{\left(\frac{\mathrm{i}}{\hbar}\lambda+\frac{1}{2}\right)\varphi_b(z)} = \mathrm{e}^{-\frac{\mathrm{i}}{\hbar}\left(\lambda^2+\frac{1}{4}\right)}\mathrm{e}^{\left(\frac{\mathrm{i}}{\hbar}\lambda+\frac{1}{2}\right)\varphi_b(z)}$$

and so the symbol of $\mathcal{U}(t) \operatorname{Op}[a] \mathcal{U}^*(t)$ is

$$egin{aligned} &\mathcal{U}(t)\operatorname{\mathsf{Op}}[a]\mathcal{U}^*(t)\mathrm{e}^{\left(rac{\mathrm{i}}{\hbar}\lambda+rac{1}{2}
ight)arphi_b} = \mathrm{e}^{rac{\mathrm{i}}{\hbar}\left(\lambda^2+rac{1}{4}
ight)}\mathcal{U}(t)ig(a\mathrm{e}^{\left(rac{\mathrm{i}}{\hbar}\lambda+rac{1}{2}
ight)arphi_b}ig) \ &= ig(\hat{S}_{b,\lambda}(t)\hat{V}_{b,\lambda}a)\mathrm{e}^{\left(rac{\mathrm{i}}{\hbar}\lambda+rac{1}{2}
ight)arphi_b} \end{aligned}$$

where

- $\hat{S}_{b,\lambda}(t) = \mathrm{e}^{-\frac{1}{2}\varphi_b} S_b(\lambda t) \mathrm{e}^{\frac{1}{2}\varphi_b}$
- $\hat{V}_{b,\lambda}$ is generated by $\hat{\Delta}_{b,\lambda} := e^{-\frac{1}{2}\varphi_b} S_b^*(\lambda t) \Delta S_b(\lambda t) e^{\frac{1}{2}\varphi_b}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Symbol of $\mathcal{U}(t) \operatorname{Op}[a] \mathcal{U}^*(t)$

Define the operators $\hat{\Delta}$ and \hat{V} by

$$\begin{split} &(\hat{\Delta}a)(z,b,\lambda) = \hat{\Delta}_{b,\lambda} a(z,b,\lambda) \quad , \qquad (\hat{V}a)(z,b,\lambda) = \hat{V}_{b,\lambda} a(z,b,\lambda) \ , \\ &\text{and } \hat{S}(t) \text{ by } (\hat{S}(t)a)(z,b,\lambda) = \hat{S}_{b,\lambda}(t) a(z,b,\lambda), \text{ then} \\ &\bullet \hat{S}(t)a = a \circ \phi^{-t}, \text{ where } \phi^t \text{ is geodesic flow.}, \end{split}$$

and

$$\mathcal{U}(t)\operatorname{Op}[a]\mathcal{U}^*(t) = \operatorname{Op}[(\hat{V}(t)a) \circ \phi^{-t}]$$
.

Remark To obtain Egorov Theorem we have to expand $\hat{V}(t)a$ into a Volterra series

$$\hat{V}(t)a = a + \frac{\hbar}{2\mathrm{i}}\int_0^t \hat{\Delta}(t_1)a\,\mathrm{d}t_1 + \cdots$$

Egorov's Theorem for large times

Zeditch 86: let $\hat{\gamma}(z, b, \lambda) := (\gamma(z), \gamma(b), \lambda)$ be the lift of γ , and let $T_{\gamma}u := u \circ \gamma^{-1}$ then

$$\mathcal{T}^*_\gamma\operatorname{\mathsf{Op}}[a]\mathcal{T}_\gamma=\operatorname{\mathsf{Op}}[a\circ\hat\gamma^{-1}]\;,$$

so we can identify operators on M with operators on \mathbb{D} with Γ -invariant symbols $S^{m,k}(M)$.

Theorem

Let $a \in S^{0,0}(M)$, be analytic, then there is a $\delta > 0$ such that

$$\|\mathcal{U}(t)\operatorname{\mathsf{Op}}[a]\mathcal{U}^*(t) - \operatorname{\mathsf{Op}}[a\circ\phi^{-t}]\|\ll t\sqrt{\hbar}\;.$$

for

$$t \leq \delta rac{1}{\sqrt{\hbar}}$$

Summary and Conclusions

- We extended the time range where semiclassical approximations are accurate from $T_E \sim \ln 1/\hbar$ to $1/\sqrt{\hbar}$. Two main ingredients:
 - 1. Separation of propagation into two parts, classical propagation and dispersion. Using unitarity remainder estimates could be reduced to estimates of the dispersive part.
 - 2. We then used energy type inequalities to obtain estimates on the dispersive part.
- The $1/\sqrt{\hbar}$ scale is probably not optimal, we conjecture that the results hold up to $1/\hbar$. The main open problem is to obtain sharper estimates on the dispersive part.
- Using a semiclassical calculus adapted to the phase space geometry the same techniques can be used to obtain a version of Egorov's theorem valid for large times.