Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian manifold

Bin, Xu
Department of Mathematics
Tokyo Institute of Technology
Oh-okayama, 2-12-2
Meguro-ku, Tokyo 152-8551, Japan

Abstract

Let \(e(x, y, \lambda) \) be the spectral function and \(\chi_\lambda \) the unit spectral projection operator, with respect to the Laplace–Beltrami operator on a closed Riemannian manifold \(M \). We generalize the one-term asymptotic expansion of \(e(x, x, \lambda) \) by Hörmander to that of \(\partial_x^\alpha \partial_y^\beta e(x, y, \lambda)|_{x=y} \) for any multi-indices \(\alpha, \beta \) in a sufficiently small geodesic normal coordinate chart of \(M \). Moreover, we extend the sharp \(L^2, L^p \) \((2 \leq p \leq \infty) \) estimates of \(\chi_\lambda \) by Sogge to the sharp \(L^2, \text{Sobolev } L^p \) estimates of \(\chi_\lambda \). Finally we should mention that the wave equation method is essentially used in the proof.