Geometric approach to discrete isomonodromy transformations

Dima Arinkin (joint work with Alexei Borodin)

University of North Carolina

SIDE 8. June 26, 2008

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Linear difference equations

$$y(z+1)=A(z)\cdot y(z)$$

A(z) is an $r \times r$ matrix whose entries are (\mathbb{C} -valued) rational functions; det(A(z)) $\neq 0$

Linear difference equations

$$y(z+1)=A(z)\cdot y(z)$$

A(z) is an $r \times r$ matrix whose entries are (\mathbb{C} -valued) rational functions; det(A(z)) $\neq 0$

Isomonodromy transformation

$$A(z)\mapsto \widetilde{A}(z)=R(z+1)^{-1}A(z)R(z)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

shifts the singularities of A(z)

R(z) is a rational $r \times r$ matrix

Linear difference equations

$$y(z+1)=A(z)\cdot y(z)$$

A(z) is an $r \times r$ matrix whose entries are (\mathbb{C} -valued) rational functions; det(A(z)) $\neq 0$

Isomonodromy transformation

$$A(z)\mapsto \widetilde{A}(z)=R(z+1)^{-1}A(z)R(z)$$

shifts the singularities of A(z)

R(z) is a rational $r \times r$ matrix

Isomonodromy transformations are described by difference non-linear equations, such as difference Painlevé equations.

Geometric approach to

$$y(z+1) = A(z) \cdot y(z)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Plan:

- 1. Difference connections
- 2. Isomonodromy transformation
- 3. Tau-function

Other worlds

Difference world

$$y(z+1)=A(z)y(z)$$

Continuous world

$$\frac{dy}{dz} = B(z)y(z)$$

Isomonodromy — Painlevé equations (Fuchs, Okamoto)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Other worlds

Difference world

$$y(z+1)=A(z)y(z)$$

Continuous world

$$\frac{dy}{dz} = B(z)y(z)$$

Isomonodromy → Painlevé equations (Fuchs, Okamoto) ► q-world

$$y(qz) = A(z)y(z)$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Isomonodromy — q-Painlevé equations (Sakai)

Other worlds

Difference world

$$y(z+1)=A(z)y(z)$$

Continuous world

$$\frac{dy}{dz} = B(z)y(z)$$

Isomonodromy → Painlevé equations (Fuchs, Okamoto) ► q-world

$$y(qz) = A(z)y(z)$$

Isomonodromy — q-Painlevé equations (Sakai)

► Elliptic world Isomonodromy → elliptic Painlevé equations (joint with Borodin, Rains)

Outline

Difference connections

Isomonodromic transformation

Tau-function

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Difference connections

• \mathcal{L} = rank *r* vector bundle on \mathbb{CP}^1

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Difference connections

- \mathcal{L} = rank *r* vector bundle on \mathbb{CP}^1
- A = linear operator L_z → L_{z+1} that depends rationally on z, det(A) ≠ 0
 A = d-connection on L

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Difference connections

- \mathcal{L} = rank *r* vector bundle on \mathbb{CP}^1
- A = linear operator L_z → L_{z+1} that depends rationally on z, det(A) ≠ 0
 A = d-connection on L

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Remark \mathcal{A} or \mathcal{A}^{-1} might be undefined at finitely many *z*: d-connection has singularities

Example

- $\begin{aligned} \mathcal{L} &= \text{trivial:} \\ \mathcal{L}_z &= \mathbb{C}^r \\ \mathcal{A}(z) &= r \times r \text{ matrix with rational entries.} \end{aligned}$
 - d-connection on trivial \mathcal{L} = difference equation y(z+1) = A(z)y(z)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example

- $\mathcal{L} = trivial:$
- $\mathcal{L}_z = \mathbb{C}^r$
- $A(z) = r \times r$ matrix with rational entries.
 - d-connection on trivial \mathcal{L} = difference equation y(z+1) = A(z)y(z)
 - d-connection on any L = difference equation on section y(z) of L

(ロ) (同) (三) (三) (三) (○) (○)

Example

- $\mathcal{L} = trivial:$
- $\mathcal{L}_{z} = \mathbb{C}^{r}$
- $\mathcal{A}(z) = r \times r$ matrix with rational entries.
 - d-connection on trivial \mathcal{L} = difference equation y(z+1) = A(z)y(z)
 - d-connection on any L = difference equation on section y(z) of L

Remark Bundle \mathcal{L} on \mathbb{CP}^1 has a topological invariant

 $\text{deg}(L)=c_1(L)\in\mathbb{Z}$

(日) (日) (日) (日) (日) (日) (日)

Generic \mathcal{L} with deg(\mathcal{L}) = 0 is trivial

Outline

Difference connections

Isomonodromic transformation

Tau-function

Isomonodromic transformation of $(\mathcal{L}, \mathcal{A})$

Modify L at finitely many points: Extend L from CP¹ − {points} to a different bundle L̃ on CP¹

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Isomonodromic transformation of $(\mathcal{L}, \mathcal{A})$

► Modify L at finitely many points: Extend L from CP¹ - {points} to a different bundle L̃ on CP¹

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Isomonodromic transformation of $(\mathcal{L}, \mathcal{A})$

- ► Modify L at finitely many points: Extend L from CP¹ - {points} to a different bundle L̃ on CP¹

Remark

Why 'isomonodromic'? Whatever monodromy is, it is global: it feels no difference between ${\cal L}$ and $\widetilde{{\cal L}}$

(日) (日) (日) (日) (日) (日) (日)

$$(\mathcal{L},\mathcal{A})\mapsto (\widetilde{\mathcal{L}},\widetilde{\mathcal{A}})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 $\widetilde{\mathcal{L}}$ must agree with \mathcal{A} to avoid introducing new singularities

$$(\mathcal{L},\mathcal{A})\mapsto (\widetilde{\mathcal{L}},\widetilde{\mathcal{A}})$$

 $\widetilde{\mathcal{L}}$ must agree with \mathcal{A} to avoid introducing new singularities

z = singularity of A (so A(z) is undefined or degenerate) *z* + 1 = not a singularity of A:

$$\mathcal{L}_{Z} \dashrightarrow \mathcal{L}_{Z+1} \to \mathcal{L}_{Z+2}$$

(ロ) (同) (三) (三) (三) (○) (○)

$$(\mathcal{L},\mathcal{A})\mapsto (\widetilde{\mathcal{L}},\widetilde{\mathcal{A}})$$

 $\widetilde{\mathcal{L}}$ must agree with \mathcal{A} to avoid introducing new singularities

z = singularity of A (so A(z) is undefined or degenerate) *z* + 1 = not a singularity of A:

$$\mathcal{L}_{Z} \dashrightarrow \mathcal{L}_{Z+1} \to \mathcal{L}_{Z+2}$$

Proposition

There is a unique way to modify \mathcal{L} at z + 1 to match \mathcal{L}_z :

$$\widetilde{\mathcal{L}}_{z} = \mathcal{L}_{z}
ightarrow \widetilde{\mathcal{L}}_{z+1} \dashrightarrow \widetilde{\mathcal{L}}_{z+2} = \mathcal{L}_{z+2}$$

Singularity of A at z shifts to singularity of \widetilde{A} at z + 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

$$(\mathcal{L},\mathcal{A})\mapsto (\widetilde{\mathcal{L}},\widetilde{\mathcal{A}})$$

 $\widetilde{\mathcal{L}}$ must agree with \mathcal{A} to avoid introducing new singularities

z = singularity of A (so A(z) is undefined or degenerate) *z* + 1 = not a singularity of A:

$$\mathcal{L}_{Z} \dashrightarrow \mathcal{L}_{Z+1}
ightarrow \mathcal{L}_{Z+2}$$

Proposition

There is a unique way to modify \mathcal{L} at z + 1 to match \mathcal{L}_z :

$$\widetilde{\mathcal{L}}_{z} = \mathcal{L}_{z}
ightarrow \widetilde{\mathcal{L}}_{z+1} \dashrightarrow \widetilde{\mathcal{L}}_{z+2} = \mathcal{L}_{z+2}$$

Singularity of A at z shifts to singularity of \widetilde{A} at z + 1

Isomonodromic transformations shift singularities by integers

M = moduli space of $(\mathcal{L}, \mathcal{A}) = \{(\mathcal{L}, \mathcal{A})\}/\text{isomorphisms}$ Types and locations of singularities of \mathcal{A} are fixed

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

М

M =moduli space of $(\mathcal{L}, \mathcal{A}) = \{(\mathcal{L}, \mathcal{A})\}/$ isomorphisms Types and locations of singularities of \mathcal{A} are fixed

 $\mathit{IMT}: (\mathcal{L}, \mathcal{A}) \mapsto (\widetilde{\mathcal{L}}, \widetilde{\mathcal{A}})$ shifts singularities

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

M =moduli space of $(\mathcal{L}, \mathcal{A}) = \{(\mathcal{L}, \mathcal{A})\}/$ isomorphisms Types and locations of singularities of \mathcal{A} are fixed

 $\textit{IMT}: (\mathcal{L}, \mathcal{A}) \mapsto (\widetilde{\mathcal{L}}, \widetilde{\mathcal{A}})$ shifts singularities

M =moduli space of $(\mathcal{L}, \mathcal{A}) = \{(\mathcal{L}, \mathcal{A})\}/$ isomorphisms Types and locations of singularities of \mathcal{A} are fixed

 $\mathit{IMT}: (\mathcal{L}, \mathcal{A}) \mapsto (\widetilde{\mathcal{L}}, \widetilde{\mathcal{A}})$ shifts singularities

(日) (日) (日) (日) (日) (日) (日)

Example: difference Painlevé equations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Assume $deg(\mathcal{L}) = deg(\widetilde{\mathcal{L}}) = 0$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Assume deg(\mathcal{L}) = deg($\widetilde{\mathcal{L}}$) = 0 There is open subset $M_0 \subset M$ of (\mathcal{L}, \mathcal{A}) with trivial \mathcal{L} M_0 = space of difference equations

・ コット (雪) (小田) (コット 日)

Assume deg(\mathcal{L}) = deg($\hat{\mathcal{L}}$) = 0 There is open subset $M_0 \subset M$ of (\mathcal{L}, \mathcal{A}) with trivial \mathcal{L} M_0 = space of difference equations

But: M₀ is not preserved by IMT

(日) (日) (日) (日) (日) (日) (日)

Assume deg(\mathcal{L}) = deg($\hat{\mathcal{L}}$) = 0 There is open subset $M_0 \subset M$ of (\mathcal{L}, \mathcal{A}) with trivial \mathcal{L} M_0 = space of difference equations

But: M₀ is not preserved by IMT

On M_0 , *IMT* is only a rational map Going to *M* from M_0 removes singularities of *IMT*

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem

M is the space of initial conditions of the isomonodromic transformation

Outline

Difference connections

Isomonodromic transformation

Tau-function

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

 \mathcal{L} = rank *r* vector bundle on \mathbb{CP}^1 , deg(\mathcal{L}) = 0

 $\Gamma(\mathbb{CP}^1,\mathcal{L})=$ space of global holomorphic sections of $\mathcal L$

(日) (日) (日) (日) (日) (日) (日)

Assumption: dim $\Gamma(\mathbb{CP}^1, \mathcal{L}) = r$ (Can be dropped, holds for discrete Painlevé)

 \mathcal{L} = rank *r* vector bundle on \mathbb{CP}^1 , deg(\mathcal{L}) = 0

 $\Gamma(\mathbb{CP}^1,\mathcal{L}) =$ space of global holomorphic sections of \mathcal{L}

Assumption: dim $\Gamma(\mathbb{CP}^1, \mathcal{L}) = r$ (Can be dropped, holds for discrete Painlevé)

$$ev: \mathsf{\Gamma}(\mathbb{CP}^1,\mathcal{L})
ightarrow \mathcal{L}_\infty: y \mapsto y(\infty)$$

(日) (日) (日) (日) (日) (日) (日)

 $\frac{\text{Definition}}{\tau(\mathcal{L}) = \det(ev)}$

 \mathcal{L} = rank *r* vector bundle on \mathbb{CP}^1 , deg(\mathcal{L}) = 0

 $\Gamma(\mathbb{CP}^1,\mathcal{L}) =$ space of global holomorphic sections of \mathcal{L}

Assumption: dim $\Gamma(\mathbb{CP}^1, \mathcal{L}) = r$ (Can be dropped, holds for discrete Painlevé)

$$ev: \Gamma(\mathbb{CP}^1, \mathcal{L})
ightarrow \mathcal{L}_\infty: y \mapsto y(\infty)$$

Definition $\tau(\mathcal{L}) = \det(ev)$ is not a number unless there are bases in $\Gamma(\mathbb{CP}^1, \mathcal{L})$ and \mathcal{L}_{∞}

$$\mathcal{L} = \operatorname{rank} r \operatorname{vector} \operatorname{bundle} \operatorname{on} \mathbb{CP}^1, \operatorname{deg}(\mathcal{L}) = 0$$

 $\Gamma(\mathbb{CP}^1, \mathcal{L}) =$ space of global holomorphic sections of \mathcal{L}

Assumption: dim $\Gamma(\mathbb{CP}^1, \mathcal{L}) = r$ (Can be dropped, holds for discrete Painlevé)

$$ev: \Gamma(\mathbb{CP}^1, \mathcal{L})
ightarrow \mathcal{L}_\infty: y \mapsto y(\infty)$$

Definition

$$au(\mathcal{L}) \in \delta \qquad \dim_{\mathbb{C}} \delta = 1$$

 $\delta = \delta(\mathcal{L}) = \bigwedge^{r} \mathcal{L}_{\infty} \otimes \left(\bigwedge^{r} \Gamma(\mathbb{CP}^{1}, \mathcal{L}) \right)^{*}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Zeros of tau-function

$$au(\mathcal{L}) \in \delta(\mathcal{L}) \qquad \dim_{\mathbb{C}} \delta(\mathcal{L}) = 1.$$

No use talking about τ 's value

Zeros of tau-function

$$\tau(\mathcal{L}) \in \delta(\mathcal{L}) \qquad \dim_{\mathbb{C}} \delta(\mathcal{L}) = 1.$$

Proposition $\tau(\mathcal{L}) \neq 0$ iff \mathcal{L} is trivial

Zeros of tau-function

$$\tau(\mathcal{L}) \in \delta(\mathcal{L}) \qquad \dim_{\mathbb{C}} \delta(\mathcal{L}) = 1.$$

Proposition $\tau(\mathcal{L}) \neq 0$ iff \mathcal{L} is trivial

М

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$\tau(\mathcal{L}) \in \delta(\mathcal{L}) \qquad \dim_{\mathbb{C}} \delta(\mathcal{L}) = 1.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$au(\mathcal{L}) \in \delta(\mathcal{L}) \qquad \dim_{\mathbb{C}} \delta(\mathcal{L}) = 1.$$

Isomonodromic transformations of $(\mathcal{L}, \mathcal{A}) = (\mathcal{L}_0, \mathcal{A}_0)$:

$$\ldots \mapsto (\mathcal{L}_0, \mathcal{A}_0) \mapsto (\mathcal{L}_1, \mathcal{A}_1) \mapsto (\mathcal{L}_2, \mathcal{A}_2) \mapsto \ldots$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

<u>Idea</u>: relate $\delta(\mathcal{L}_i)$'s to each other

$$au(\mathcal{L}) \in \delta(\mathcal{L}) \qquad \dim_{\mathbb{C}} \delta(\mathcal{L}) = 1.$$

Isomonodromic transformations of $(\mathcal{L}, \mathcal{A}) = (\mathcal{L}_0, \mathcal{A}_0)$:

$$\ldots \mapsto (\mathcal{L}_0, \mathcal{A}_0) \mapsto (\mathcal{L}_1, \mathcal{A}_1) \mapsto (\mathcal{L}_2, \mathcal{A}_2) \mapsto \ldots$$

(日) (日) (日) (日) (日) (日) (日)

<u>Idea</u>: relate $\delta(\mathcal{L}_i)$'s to each other

Theorem

 $\delta(\mathcal{L}_{n+1}) = \delta(\mathcal{L}_n) \otimes \ell$ One-dimensional space ℓ does not depend on n

$$au(\mathcal{L}) \in \delta(\mathcal{L}) \qquad \dim_{\mathbb{C}} \delta(\mathcal{L}) = 1.$$

Isomonodromic transformations of $(\mathcal{L}, \mathcal{A}) = (\mathcal{L}_0, \mathcal{A}_0)$:

$$\ldots \mapsto \left(\mathcal{L}_0, \mathcal{A}_0\right) \mapsto \left(\mathcal{L}_1, \mathcal{A}_1\right) \mapsto \left(\mathcal{L}_2, \mathcal{A}_2\right) \mapsto \ldots$$

<u>Idea</u>: relate $\delta(\mathcal{L}_i)$'s to each other

Theorem $\delta(\mathcal{L}_{n+1}) = \delta(\mathcal{L}_n) \otimes \ell$ One-dimensional space ℓ does not depend on n

Corollary

$$\frac{\tau(\mathcal{L}_{n+1})}{\tau(\mathcal{L}_n)} \in \ell$$

$$\frac{\tau(\mathcal{L}_{n+1})\tau(\mathcal{L}_{n-1})}{\tau(\mathcal{L}_n)^2} \in \mathbb{C}$$

Hirota's equation

Theorem Tau-function of the isomonodromic transformation satisfies various identities of the Hirota type.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Summary

Vector bundles with discrete connections provide a uniform approach to discrete isomonodromy deformations: they supply spaces of initial conditions and tau-functions

(ロ) (同) (三) (三) (三) (○) (○)

Summary

 Vector bundles with discrete connections provide a uniform approach to discrete isomonodromy deformations: they supply spaces of initial conditions and tau-functions

(ロ) (同) (三) (三) (三) (○) (○)

 They live in the hierarchy of 'worlds' (elliptic, difference, differential...)

Summary

- Vector bundles with discrete connections provide a uniform approach to discrete isomonodromy deformations: they supply spaces of initial conditions and tau-functions
- They live in the hierarchy of 'worlds' (elliptic, difference, differential...)
- They explain symmetries between the isomonodromic deformations (such as Painlevé equations) as operations on vector bundles

(ロ) (同) (三) (三) (三) (○) (○)