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Linear difference equations
y(z+1)=A(2)-y(2)

A(z) is an r x r matrix whose entries are (C-valued) rational
functions;
det(A(z)) #0

Isomonodromy transformation

A(z) — A(z) = R(z + 1) A(2)R(2)
shifts the singularities of A(z)
R(z) is a rational r x r matrix

Isomonodromy transformations are described by difference
non-linear equations, such as difference Painlevé equations.



Goal

Geometric approach to

y(z+1)=A2)-y(2)

Plan:
1. Difference connections
2. Isomonodromy transformation
3. Tau-function
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Other worlds

» Difference world

y(z+1)=A(2)y(2)

Isomonodromy — difference Painlevé equations
» Continuous world
dy
=~ _B
5 = By
Isomonodromy — Painlevé equations (Fuchs, Okamoto)
» g-world

y(qz) = A(2)y(2)
Isomonodromy — g-Painlevé equations (Sakai)

» Elliptic world
Isomonodromy — elliptic Painlevé equations (joint with
Borodin, Rains)
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Difference connections

» £ =rank r vector bundle on CP!

» A = linear operator £, — L, 1 that depends rationally on
z,det(A) #0
A = d-connection on £

Remark
A or A~" might be undefined at finitely many z:
d-connection has singularities
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Example

L = trivial:
L,=C"
A(z) = r x r matrix with rational entries.
» d-connection on trivial £ = difference equation
y(z+1) = A(2)y(2)
» d-connection on any £ = difference equation on section
y(z)of L

Remark
Bundle £ on CP' has a topological invariant

deg(L) =c¢(L) € Z

Generic £ with deg(£) = 0 is trivial
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Isomonodromic transformation of (£, .A)

» Modify £ at finitely many points: N
Extend £ from CP' — {points} to a different bundle £ on
CP"

> L ' acquires a d-connection A
(L, A) is an isomonodromic transformation of (£, A).

Remark
Why ‘isomonodromic’? Whatever monodromy is, it is global:
it feels no difference between £ and £
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Transformation shifts singularities
(£,4) = (L, A)
£ must agree with A to avoid introducing new singularities

z = singularity of A (so A(z) is undefined or degenerate)
z + 1 = not a singularity of A:

Ly - Ez+1 - »Cz+2

Proposition
There is a unique way to modify L at z + 1 to match L;:

Zz =L;— ZZ+1 -2 Ez+2 =Lz
Singularity of A at z shifts to singularity of A at z + 1

Isomonodromic transformations shift singularities by integers
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Moduli spaces
M = moduli space of (£,.A) = {(£,.A)}/isomorphisms
Types and locations of singularities of A are fixed

IMT : (£, A) — (L, A) shifts singularities

p = F(p,q),
q=G(p,q)

In coordinates (p, @) on M, IMT = {

Example: difference Painlevé equations
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Moduli spaces = spaces of initial conditions

Assume deg(L£) =deg(£) =0
There is open subset My C M of (£, .A) with trivial £
My = space of difference equations

But: My is not preserved by IMT

On My, IMT is only a rational map
Going to M from M, removes singularities of IMT



Moduli spaces = spaces of initial conditions

Theorem
M is the space of initial conditions of the isomonodromic
transformation
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Tau-function

L = rank r vector bundle on CP', deg(£) =0

[(CP', £) = space of global holomorphic sections of £

Assumption: dim(CP', £) = r
(Can be dropped, holds for discrete Painlevé)

ev:T(CP', L) — Lo : y — y(0)

Definition

7(L£) = det(ev)

is not a number

unless there are bases in I(CP', £) and £,



Tau-function

L = rank r vector bundle on CP', deg(£) = 0

F(CIP1 , L) = space of global holomorphic sections of £

Assumption: dim ['(CP", £) = r
(Can be dropped, holds for discrete Painlevé)

ev:T(CP'", L) — Lo : ¥ — y(o0)
Definition

r(L£)es  dimes=1

5=0(2)= N\ Lo (N 1€, 0))
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Derivatives of tau-function
T(L) € 6(L) dimcd(L) =1.

Isomonodromic transformations of (£,.A) = (Lo, Ap):

oo (Loy Ag) — (L4, A1) = (L2, A2) — ...
Idea: relate 6(L;)’s to each other

Theorem
6(Lnt1) =06(Ln) @€
One-dimensional space ¢ does not depend on n

Corollary




Hirota’s equation

Theorem
Tau-function of the isomonodromic transformation satisfies
various identities of the Hirota type.
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Summary

» Vector bundles with discrete connections provide a uniform
approach to discrete isomonodromy deformations: they
supply spaces of initial conditions and tau-functions

» They live in the hierarchy of ‘worlds’ (elliptic, difference,
differential...)
» They explain symmetries between the isomonodromic

deformations (such as Painlevé equations) as operations
on vector bundles
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