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Linear difference equations

y(z + 1) = A(z) · y(z)

A(z) is an r × r matrix whose entries are (C-valued) rational
functions;
det(A(z)) 6= 0

Isomonodromy transformation

A(z) 7→ Ã(z) = R(z + 1)−1A(z)R(z)

shifts the singularities of A(z)

R(z) is a rational r × r matrix

Isomonodromy transformations are described by difference
non-linear equations, such as difference Painlevé equations.
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Goal

Geometric approach to

y(z + 1) = A(z) · y(z)

Plan:
1. Difference connections
2. Isomonodromy transformation
3. Tau-function



Other worlds
I Difference world

y(z + 1) = A(z)y(z)

Isomonodromy −→ difference Painlevé equations
I Continuous world

dy
dz

= B(z)y(z)

Isomonodromy −→ Painlevé equations (Fuchs, Okamoto)

I q-world

y(qz) = A(z)y(z)

Isomonodromy −→ q-Painlevé equations (Sakai)
I Elliptic world

Isomonodromy −→ elliptic Painlevé equations (joint with
Borodin, Rains)



Other worlds
I Difference world

y(z + 1) = A(z)y(z)

Isomonodromy −→ difference Painlevé equations
I Continuous world

dy
dz

= B(z)y(z)

Isomonodromy −→ Painlevé equations (Fuchs, Okamoto)
I q-world

y(qz) = A(z)y(z)

Isomonodromy −→ q-Painlevé equations (Sakai)

I Elliptic world
Isomonodromy −→ elliptic Painlevé equations (joint with
Borodin, Rains)



Other worlds
I Difference world

y(z + 1) = A(z)y(z)

Isomonodromy −→ difference Painlevé equations
I Continuous world

dy
dz

= B(z)y(z)

Isomonodromy −→ Painlevé equations (Fuchs, Okamoto)
I q-world

y(qz) = A(z)y(z)

Isomonodromy −→ q-Painlevé equations (Sakai)
I Elliptic world

Isomonodromy −→ elliptic Painlevé equations (joint with
Borodin, Rains)



Outline

Difference connections

Isomonodromic transformation

Tau-function



Difference connections

I L = rank r vector bundle on CP1

I A = linear operator Lz → Lz+1 that depends rationally on
z, det(A) 6= 0
A = d-connection on L

CP1
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Remark
A or A−1 might be undefined at finitely many z:
d-connection has singularities
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Example

L = trivial:
Lz = Cr

A(z) = r × r matrix with rational entries.

I d-connection on trivial L = difference equation
y(z + 1) = A(z)y(z)

I d-connection on any L = difference equation on section
y(z) of L

Remark
Bundle L on CP1 has a topological invariant

deg(L) = c1(L) ∈ Z

Generic L with deg(L) = 0 is trivial
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Isomonodromic transformation of (L,A)

I Modify L at finitely many points:
Extend L from CP1 − {points} to a different bundle L̃ on
CP1

I L̃ acquires a d-connection Ã
(L̃, Ã) is an isomonodromic transformation of (L,A).

Remark
Why ‘isomonodromic’? Whatever monodromy is, it is global:
it feels no difference between L and L̃
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Transformation shifts singularities

(L,A) 7→ (L̃, Ã)

L̃ must agree with A to avoid introducing new singularities

z = singularity of A (so A(z) is undefined or degenerate)
z + 1 = not a singularity of A:

Lz 99K Lz+1 → Lz+2

Proposition
There is a unique way to modify L at z + 1 to match Lz :

L̃z = Lz → L̃z+1 99K L̃z+2 = Lz+2

Singularity of A at z shifts to singularity of Ã at z + 1

Isomonodromic transformations shift singularities by integers
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Isomonodromic transformations shift singularities by integers



Transformation shifts singularities

(L,A) 7→ (L̃, Ã)

L̃ must agree with A to avoid introducing new singularities

z = singularity of A (so A(z) is undefined or degenerate)
z + 1 = not a singularity of A:

Lz 99K Lz+1 → Lz+2

Proposition
There is a unique way to modify L at z + 1 to match Lz :

L̃z = Lz → L̃z+1 99K L̃z+2 = Lz+2

Singularity of A at z shifts to singularity of Ã at z + 1
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Moduli spaces
M = moduli space of (L,A) = {(L,A)}/isomorphisms
Types and locations of singularities of A are fixed

IMT : (L,A) 7→ (L̃, Ã) shifts singularities

M

•
(L,A)

-

6

p

q

−̃→
IMT

M̃

•
(L̃, Ã)

-

6

p̃

q̃

In coordinates (p,q) on M, IMT =

{
p̃ = F (p,q),

q̃ = G(p,q)

Example: difference Painlevé equations
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Moduli spaces = spaces of initial conditions

M

•
(L,A)

Non-trivial L

−̃→
IMT

M̃

•
(L̃, Ã)

Assume deg(L) = deg(L̃) = 0

There is open subset M0 ⊂ M of (L,A) with trivial L
M0 = space of difference equations

But: M0 is not preserved by IMT

On M0, IMT is only a rational map
Going to M from M0 removes singularities of IMT
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Moduli spaces = spaces of initial conditions

M

•
(L,A)

Non-trivial L −̃→
IMT

M̃

•
(L̃, Ã)

Theorem
M is the space of initial conditions of the isomonodromic
transformation
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Tau-function

L = rank r vector bundle on CP1, deg(L) = 0

Γ(CP1,L) = space of global holomorphic sections of L

Assumption: dim Γ(CP1,L) = r
(Can be dropped, holds for discrete Painlevé)

ev : Γ(CP1,L)→ L∞ : y 7→ y(∞)

Definition
τ(L) = det(ev)
is not a number
unless there are bases in Γ(CP1,L) and L∞
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Tau-function

L = rank r vector bundle on CP1, deg(L) = 0

Γ(CP1,L) = space of global holomorphic sections of L

Assumption: dim Γ(CP1,L) = r
(Can be dropped, holds for discrete Painlevé)

ev : Γ(CP1,L)→ L∞ : y 7→ y(∞)

Definition

τ(L) ∈ δ dimC δ = 1

δ = δ(L) =
∧r
L∞ ⊗

(∧r
Γ(CP1,L)

)∗



Zeros of tau-function

τ(L) ∈ δ(L) dimC δ(L) = 1.

No use talking about τ ’s value

Proposition
τ(L) 6= 0 iff L is trivial

M

•
(L,A)

τ = 0
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Derivatives of tau-function

τ(L) ∈ δ(L) dimC δ(L) = 1.

Isomonodromic transformations of (L,A) = (L0,A0):

. . . 7→ (L0,A0) 7→ (L1,A1) 7→ (L2,A2) 7→ . . .

Idea: relate δ(Li)’s to each other

Theorem
δ(Ln+1) = δ(Ln)⊗ `
One-dimensional space ` does not depend on n

Corollary

τ(Ln+1)

τ(Ln)
∈ `

τ(Ln+1)τ(Ln−1)

τ(Ln)2 ∈ C
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Hirota’s equation

Theorem
Tau-function of the isomonodromic transformation satisfies
various identities of the Hirota type.



Summary

I Vector bundles with discrete connections provide a uniform
approach to discrete isomonodromy deformations: they
supply spaces of initial conditions and tau-functions

I They live in the hierarchy of ‘worlds’ (elliptic, difference,
differential...)

I They explain symmetries between the isomonodromic
deformations (such as Painlevé equations) as operations
on vector bundles
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