Recall that an n-tuple $=(a_1, \ldots, a_n)$ with entries in a commutative ring A is called unimodular if $Aa_1 + \cdots + Aa_n = A$ and is called completable if is first row of an invertible matrix over A. A general problem of interest is to find sufficient conditions for an unimodular to be completable.

After a brief survey of selected results and open problems, we end the talk with the proof of the following bizarre result obtained jointly with Mohan Kumar: Let (a, b, c) be a unimodular triple over the ring A. If $11/2$ is in A and $(b^2 - 4ac)$ is a square in A, then (a, b, c) is completable.