Extremal Problems for Convex Polygons

Charles Audet
charles.audet@gerad.ca
GERAD
École Polytechnique de Montréal
C.P. 6079, succ. Centre-ville
Montréal, Québec H3C 3A7
CANADA

Abstract

Consider a convex polygon V_{n} with n sides, perimeter P_{n}, diameter D_{n}, area A_{n}, sum of distances between vertices S_{n} and width W_{n}. Minimizing or maximizing any of these quantities while fixing anotherdefines ten pairs of extremal polygon problems (one of which usually has a trivial solution or no solution at all). We survey research on these problems, which uses geometrical reasoning increasingly complemented by global optimization methods. Numerous open problems are mentioned, as well as series of test problems for global optimization and nonlinear programming codes.

Joint work with Pierre Hansen and Frédéric Messine.

