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Profinite spaces

• A profinite space is a compact totally

disconnected space.

• M. Stone in the 30s defined a duality between

Boolean algebras and profinite spaces

associating to each profinite space its Boolean

algebra of clopen subsets.

• E.g. Aω is the Stone dual of the Boolean

algebra of finitely generated right ideals of A∗.

• Almeida observed the Stone dual of Rat(A∗)

is the free profinite monoid Â∗.

• The isomorphism corresponds L ∈ Rat(A∗)

with L ⊆ Â∗ and a clopen subset K of Â∗

with K ∩ A∗.

• If M is any monoid, then its profinite

completion M̂ is the Stone dual of Rec(M).
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Construction of the Free Profinite Monoid

• Let A be a finite alphabet.

• Define the complexity of a rational language

to be the size of its syntactic monoid.

• For words u, v ∈ A∗, define their separation

number sep(u, v) to be the minimal

complexity of a rational language containing

u, but not v.

• Define the profinite metric on A∗ by

d(u, v) = 2−sep(u,v)

• It is an ultrametric:

d(u, v) ≤ max{d(u, w), d(w, v)}.

• The completion Â∗ is the free profinite

monoid on A.

• Any map from A to a profinite monoid

extends continuously to Â∗.
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History

• (1982) Reiterman proves a Birkhoff theorem

for finite algebras using profinite algebras.

• (Late 80s) Almeida pushes profinite methods

in finite semigroup theory.

• (Early 90s) Almeida’s book appears. Almeida

asks: does a free profinite semigroup on n

generators embed as a closed submonoid of a

free profinite monoid on 2 generators?

• (1995) Koryakov shows the prefix code

Cn = {y, xy, . . . , xn−1y} freely generates a

free clopen submonoid of {̂x, y}∗.

• (1998) Margolis, Sapir and Weil prove any

finite code C ⊆ A∗ freely generates a free

clopen profinite submonoid of Â∗.

• As an application they prove the variety of all

rational subsets is join irreducible in the

lattice of varieties of formal languages.
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History II

• (1999) Almeida and Volkov give examples of

maximal subgroups of free profinite monoids

that are free profinite groups. Question arises

are maximal subgroups free or at least

projective profinite groups?

• (2005) Almeida gives a bijection between

minimal symbolic dynamical systems in Aω

and maximal principal ideals of Â∗ \ A∗.

• He associates in this way a maximal subgroup

to each such dynamical system and shows

certain systems give free profinite groups.

• He finds the first non-free maximal subgroup,

but it is projective.

• (2005) Almeida presents these results at

Fields Institute Workshop on Profinite

Groups at Carleton. Lubotzky asks whether

maximal subgroups must be projective.
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History III

• (August 2005) Motivated by this question,

Almeida and I classify all free clopen

submonoids of Â∗ (today’s talk).

• (November 2006) Rhodes and I answer

Lubotzky’s question in the affirmative:

Closed subgroups of free profinite monoids

are precisely the projective profinite groups.

• As an application we prove free profinite

monoids are torsion-free.

• Projective profinite groups are precisely

Galois groups of pseudo-algebraically closed

fields.

• Almeida’s profinite group associated to a

minimal dynamical system should link

symbolic dynamics with field theory.
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A Topological Obstruction

• One would guess that free clopen submonoids

correspond bijectively to rational codes.

• An obstruction: If X is an infinite discrete

set, then X ⊆ X̂∗ must be the Stone-Czech

compactification βX by abstract nonsense.

• βX is highly non-metrizable.

• Â∗ is metrizable when A is finite.

• Conclusion: if C is an infinite code, then

C∗ ⊆ Â∗ cannot be freely generated by C.

• But C is a clopen subspace of Â∗ and there is

an obvious (and useful) notion of a free

profinite monoid on a profinite space. So

perhaps C∗ is free on C?
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More Problems

• It is true that every clopen subgroup of a free

profinite group is again a free profinite group.

• If U ⊆ F̂G(A) is clopen, U ∩ FG(A) is a

finite index subgroup, necessarily free by

Nielsen-Schreier.

• If K is a free clopen submonoid of Â∗, there

is no reason a priori K ∩ A∗ is a free

submonoid (perhaps the basis of K is some

strange closed subset which is not clopen).
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The Main Result

Theorem 1 (Almeida, BS). The clopen free

profinite submonoids of Â∗ are precisely the

closures of rational free submonoids of A∗.

Moreover, if C is a rational code, then C is the

unique closed basis for C∗.

• If K is a clopen submonoid, a topological

argument lets us deduce K ∩ A∗ is free. The

key point is that A∗ is discrete in Â∗ so we

may deduce the basis for K is clopen.

• The difficult direction uses the theory of

unambiguous automata and unambiguous

wreath products.

• The idea follows that of Margolis, Sapir and

Weil, but there is a difficulty arising from lack

of a “canonical” unambiguous finite

automaton for an infinite rational code.
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The Case of Groups

• Usual proof uses cosets; this proof is mine.

• Let U ≤ F̂G(A) be clopen, so U has finite

index and H := U ∩ FG(A) is finite index.

• Let ϕ : H → G be a homomorphism with G a

finite group. We must show ϕ extends

continuously to U .

• Consider the representation τ of FG(A) by

permutation matrices associated to the action

on FG(A)/H.

• Essential idea: Reidemeister-Schreier

rewriting is a rational transduction from

FG(A) to H (extending the identity map on

H) and so yields a wreath product

embedding.
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The Case of Groups II

• For example, take H = 〈b, aba−1, a2〉.

1 2

a/1

a/a2

b/b b/aba−1

• a 7−→


 0 1

a2 0


, b 7−→


 b 0

0 aba−1




• a2 7−→


 a2 0

0 a2




• aba−1 7−→


 aba−1 0

0 a2ba−2
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The Case of Groups III

• FG(A) embeds in the wreath product of

H o τ . This wreath product consists of all

matrices obtained by replacing 1s in the

permutation matrices of τ by elements of H.

• Embedding takes elements h ∈ H to a block

form


 h 0

0 ∗


.

• Apply ϕ : H → G entrywise to get a map

FG(A) to G o τ , a finite group, and extend to

F̂G(A).

• Restricting to the upper left entry gives our

extension of ϕ to U .
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The Case of Finite Codes

• Let C ⊆ A∗ be a finite code. The Sagittal

automaton Sag(C) is:

– States: proper prefixes of C

– Initial/terminal state: 1

– Transitions: p
a/1
−−→ q if pa = q and q is a

proper prefix; p
a/pa
−−−→ 1 if pa ∈ C

• Sag(C) is unambiguous and recognizes C∗.

• Let τ be the associated unambiguous matrix

representation of A∗.

• Then A∗ embeds in the unambiguous wreath

product C∗ o τ and u ∈ C∗ maps to a matrix

with itself in the upper left entry.

• Same proof as group case works.
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The Case of Rational Codes

• Let C ⊆ A∗ be a rational code.

• In this setting there is no canonical wreath

product embedding of A∗ into C∗ o τ .

• Suppose ϕ : C → M is a map with M a finite

monoid, which extends continuously to C.

We need to extend it to C∗.

• Definition of the topology yields a

homomorphism γ : A∗ → N with N a finite

monoid so that ker γ|C refines ker ϕ.

• Recognize C by the automaton A obtained

from the direct product of its minimal

automaton with the Cayley graph of N .
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The Case of Rational Codes II

• One can construct an unambiguous

automaton A
∗ from A accepting C∗ by a

standard method:

– Add a new state that is both initial and

terminal, which simulates the original

initial state and all terminal states.

• Let τ be the associated unambiguous matrix

representation of A∗.

• We have no natural map of A∗ into the

wreath product C∗ o τ .

• But we can go directly via ϕ to the wreath

product M o τ instead! (recall ϕ : C → M was

our original map to extend)

• Getting the map well defined relies on the

map γ : A∗ → N with γ|C refining ϕ and that

A contains the Cayley graph of N as a factor.

• C’est Tout!
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