Automata and infinite words: applications in Group Theory

Denis Serbin

McGill University

Stallings' foldings in free groups

Let a graph Γ consist of a set of vertices $V(\Gamma)$, a set of edges $E(\Gamma)$, and two functions:

$$E \to V \times V$$
, $e \to (o(e), t(e))$,

$$E \to E , e \to \overline{e},$$

which satisfy the following properties

$$\overline{\overline{e}} = e, \quad e \neq \overline{e}, \quad o(e) = t(\overline{e}).$$

That is, every edge e has an initial vertex o(e), a terminal vertex t(e), and a formal inverse \overline{e} .

An orientation of Γ is a subset $E_+ \subset E$ such that

$$E_+ \cap \overline{E}_+ = \emptyset, \quad E = E_+ \cup \overline{E}_+.$$

Edges from E_+ we call positively oriented.

Let X be a finite alphabet. We can label positively oriented edges by

$$\mu: E_+ \to X$$

and extend μ to $E = E_+ \cup \overline{E}_+$ by setting $\mu(\overline{e}) = \mu(e)^{-1}$ for every $e \in E_+$.

Hence, we obtain a directed X-labeled graph (X-digraph) Γ .

Example. $X = \{x, y\}$

Observe that we draw only a positive edge e from each pair $\{e, \overline{e}\}$.

A path
$$p$$
 in Γ is a sequence of edges $p = e_1, \ldots, e_k$, where $o(e_{i+1}) = t(e_i)$ for $i \in [1, k-1]$.

p has a naturally defined label $\mu(p) = \mu(e_1) \cdots \mu(e_k)$ which is a word in the alphabet $X \cup X^{-1}$.

Let $v \in V(\Gamma)$. Define the language of Γ with respect to v to be $L(\Gamma, v) = \{\mu(p) \mid p \text{ is a reduced loop in } \Gamma \text{ at } v\},$ where "reduced" stands for "without back-tracking". Obviously, $L(\Gamma, v) \subseteq (X \cup X^{-1})^*$. Note that words in $L(\Gamma, v)$ are

not necessarily freely reduced.

Fact. The set

$$\overline{L(\Gamma, v)} = \{ \overline{w} \mid w \in L(\Gamma, v) \},\$$

where "-" denotes free reduction, is a subgroup of F(X).

On the other hand, if H is a finitely generated subgroup of F(X)then it is easy to construct a graph Γ such that $H = \overline{L(\Gamma, v)}$ for some $v \in V(\Gamma)$.

Example. Let $H = \langle x^2, xy \rangle < F(x, y)$ and take Γ to be a bouquet of loops at a vertex v, labeled by the generators of H.

Obviously, $H = \overline{L(\Gamma, v)}$.

The idea to work with X-digraphs rather than subgroups of F(X) was introduced by J. Stallings (1983).

Many problems for subgroups of a free group now can be restated in terms of graphs and easily solved. But graphs representing subgroups have to be folded.

An X-digraph Γ is folded if there exist no edges $e_1 \neq e_2$ such that $o(e_1) = o(e_2), \ \mu(e_1) = \mu(e_2)$. That is, the following situations are prohibited

Consider the following operations called foldings

Fact. If Δ is obtained from Γ by a folding, so that $w \in V(\Delta)$ corresponds to $v \in V(\Gamma)$. Then $\overline{L(\Gamma, v)} = \overline{L(\Delta, w)}$.

Fact. For every finitely generated $H \leq F(X)$ there exists a folded X-digraph Γ such that $H = \overline{L(\Gamma, v)}$ for some $v \in V(\Gamma)$.

We start with a bouquet of loops labeled by generators of H and perform all possible foldings.

Example: $H = \langle x, y^2, y^{-1}xy \rangle < F(x, y).$

Fact. If Γ is folded then $\overline{L(\Gamma, v)} = L(\Gamma, v)$

Let $H \leq F(X)$ and let Γ be a folded X-digraph such that $H = L(\Gamma, v)$ for some $v \in V(\Gamma)$. If $g \in F(X)$ then

$$g \in H \iff g \in L(\Gamma, v).$$

It is easy to check the last inclusion which gives a solution of the Subgroup Membership Problem.

Let $H, K \leq F(X)$ and let Γ, Δ be folded X-digraphs such that $H = L(\Gamma, v), \ K = L(\Delta, w).$

$$H \cap K = L(\Gamma, v) \cap L(\Delta, w) = L(\Gamma \times \Delta, v \times w),$$

where $\Gamma \times \Delta$ is a product-graph of Γ and Δ . Hence, a solution of the Subgroup Intersection Problem.

Example: $H = \langle xy, y^{-1}x \rangle, \ K = \langle x^3, x^{-1}yx \rangle.$

Question: Is it possible to generalize graph methods described above to groups whose elements can be represented by infinite words ?

Ordered abelian groups

Let A be an ordered abelian group (any $a, b \in A$ are comparable and for any $c \in A$: $a \leq b \Rightarrow a + c \leq b + c$).

Examples.

- 1. archimedean case: $A = \mathbb{R}$, $A = \mathbb{Z}$ with usual order.
- 2. non-archimedean case: $A = \mathbb{Z}^2$ with the right lexicographic order

$$(a,b) < (c,d) \iff b < d \text{ or } b = d \text{ and } a < c.$$

In particular,

$$(0,1) > (n,0)$$
 for every $n \in \mathbb{Z}$.

For $\alpha, \beta \in \mathbb{Z}^2$ the closed segment $[\alpha, \beta]$ is defined by

$$[\alpha,\beta] = \{\gamma \in \mathbb{Z}^2 \mid \alpha \le \gamma \le \beta \}.$$

Example. [(-2, -1), (3, 1)]

Infinite words

Let A be a discretely ordered abelian group (contains a minimal positive element 1_A) and $X = \{x_i \mid i \in I\}$ be a set.

An A-word is a function of the type

$$w: [1_A, \alpha] \to X^{\pm},$$

where $\alpha \geq 0$. The element α is called the length |w| of w.

By ε we denote the empty A-word (when $\alpha = 0$).

 $w \text{ is reduced} \iff \text{no subwords } xx^{-1}, x^{-1}x \ (x \in X).$

R(A, X) = the set of all reduced A-words.

In "linear" notation

Concatenation of *A***-words**

We write $u \circ v$ instead of uv in the case when uv is reduced.

Multiplication of *A***-words**

Multiplication of *A*-words

Let $u, v \in R(A, X)$.

Suppose u and v can be represented in the form

$$u = \tilde{u} \circ c^{-1}, v = c \circ \tilde{v},$$

where $c \in R(A, X)$ is of maximal possible length.

Then define

$$u * v = \tilde{u} \circ \tilde{v}.$$

The decomposition of u and v above exists only if u^{-1} and v have the maximal common initial part defined on a closed segment.

Example. $u, v \in R(\mathbb{Z}^2, X)$

The common initial part of u^{-1} and v is

which is not defined on a closed segment. Hence, u * v is not defined.

Cyclic decomposition

 $v \in R(A, X)$ is cyclically reduced if $v(1_A)^{-1} \neq v(|v|)$.

 $v \in R(A, X)$ admits a cyclic decomposition if

$$v = c^{-1} \circ u \circ c,$$

where $c, u \in R(A, X)$ and u is cyclically reduced.

Example. $u \in R(\mathbb{Z}^2, X)$ does not admit a cyclic decomposition

$$\mathbf{U} : \mathbf{v}^{-1} \quad \mathbf{x}^{-1} \quad \cdots \quad \mathbf{v} \quad$$

Torsion

R(A, X) has elements of order 2.

Example. $u \in R(\mathbb{Z}^2, X)$

has order 2.

Fact. Let $u \in R(A, X)$. If u * u is defined then either u admits a cyclic decomposition (thus, has infinite order), or has order 2.

A non-standard free group

In 1960 R. Lyndon introduced a notion of a free $\mathbb{Z}[t]$ -group. It can be defined as a union of the chain of groups

$$F = F_0 < F_1 < \dots < F_n < \dots,$$

where F = F(X) is a free group on an alphabet X, and F_k is generated by F_{k-1} and formal expressions of the type

$$\{w^{\alpha} \mid w \in F_{k-1}, \ \alpha \in \mathbb{Z}[t]\}.$$

That is, every element of F_k can be viewed as a parametric word of the type

$$w_1^{\alpha_1}w_2^{\alpha_2}\cdots w_m^{\alpha_m},$$

where $m \in \mathbb{N}$, $w_i \in F_{k-1}$, and $\alpha_i \in \mathbb{Z}[t]$.

Thus obtained group, denoted $F^{\mathbb{Z}[t]}$, is called Lyndon's free $\mathbb{Z}[t]$ -group, or a $\mathbb{Z}[t]$ -completion of a free group F.

Observe that for any $g \in F^{\mathbb{Z}[t]}$ and $\alpha \in \mathbb{Z}[t]$ there exists an element $g^{\alpha} \in F^{\mathbb{Z}[t]}$. That is, $F^{\mathbb{Z}[t]}$ admits $\mathbb{Z}[t]$ -exponentiation.

 $F^{\mathbb{Z}[t]}$ can be viewed as a non-standard free group. Besides standard exponents $\{g^n, n \in \mathbb{Z}\}$ of its elements it also contains non-standard ones $\{g^{\alpha}, \alpha \in \mathbb{Z}[t] \setminus \mathbb{Z}\}.$ Miasnikov and Remeslennikov (1996) gave an effective construction of $F^{\mathbb{Z}[t]}$ in terms of extensions of centralizers.

Let G be a group and $C_G(u) = \langle u \rangle$ a cyclic centralizer of $u \in G$. An extension of $C_G(u)$ by $\mathbb{Z}[t]$ is defined as the HNN-extension

$$H = \langle G, s_j \mid (j \in \mathbb{N}) \mid [u, s_j] = [s_j, s_k] = 1 \quad (j, k \in \mathbb{N}) \rangle.$$

Observe that s_j corresponds to u^{t^j} which commutes with u, and $C_H(u) \simeq \mathbb{Z}[t]$

 $F^{\mathbb{Z}[t]}$ is a union of the infinite chain of groups

$$F = G_0 < G_1 < \dots < G_n < \dots,$$

where G_{i+1} is obtained from G_i by extension of all cyclic centralizers in G_i .

$F^{\mathbb{Z}[t]}$ as a group of infinite words

Recall that $R^*(\mathbb{Z}[t], X)$ is the set of $\mathbb{Z}[t]$ -words which admit cyclic decompositions.

Theorem. (Miasnikov, Remeslennikov, S) There exists an embedding

$$\phi: F^{\mathbb{Z}[t]} \to R^*(\mathbb{Z}[t], X).$$

Moreover, this embedding is effective and representation of elements of $F^{\mathbb{Z}[t]}$ by infinite words introduces "nice" normal forms on $F^{\mathbb{Z}[t]}$.

Idea of the proof.

 $F^{\mathbb{Z}[t]}$ is a union of the chain $F = G_0 < G_1 < \cdots < G_n < \cdots$.

Assume that an embedding $G_n \hookrightarrow R^*(\mathbb{Z}[t], X)$ is constructed (we identify G_n with its image).

Choose $C = \{u_i \mid i \in I\} \subset G_n$, the set of generators of proper cyclic centralizers in G_n (up to conjugacy and taking inverses).

Define a $\mathbb{Z}[t]$ -exponentiation function

$$exp:(u,\alpha)\to u^{\alpha},$$

where $u \in C, \alpha \in \mathbb{Z}[t]$.

Finally, prove that $H = \langle G_n, \{u^{t^k} \mid u \in C, k \in \mathbb{N}\} \rangle$ is a subgroup of $R^*(\mathbb{Z}[t], X)$ isomorphic to G_{n+1} .

Example. Let $X = \{x, y\}, F = F(X)$. If $u \in F$ is cyclically reduced then

$$G = \langle F, s \mid s^{-1}us = u \rangle$$

is embeddable into $R^*(\mathbb{Z}^2, X)$.

Indeed, $F \subset R^*(\mathbb{Z}^2, X)$ and we define s as a "non-standard" exponent of u

$$s = u^t, t = (0, 1).$$

It is easy to see that

$$u \circ s = s \circ u$$
.

Elements of $G = \langle F, s \mid s^{-1}us = u \rangle$ viewed as infinite words have normal forms.

If $g \in G$ then

$$g = g_1 \circ u^{\alpha_1} \circ g_2 \circ \cdots \circ u^{\alpha_n} \circ g_{n+1},$$

where $g_i \in F$, $\alpha_i \in \mathbb{Z}^2 - \mathbb{Z}$.

Normal forms can be computed easily.

Example. Let $u = xy \in F$ and $g = (y^{-1}x^{-1}) \ s \ x^{-1} \ s^{-1} \in G$. Then, a representation of g as an infinite word is

$$g = (y^{-1}x^{-1}) * u^{t} * x^{-1} * u^{-t} = (y^{-1}x^{-1}) * (u \circ u^{t-1}) * x^{-1} * u^{-t} = (y^{-1}x^{-1}) * ((xy) \circ u^{t-1}) * x^{-1} * u^{-t} = u^{t-1} \circ x^{-1} \circ u^{-t}.$$

Example. Let F = F(X), $X = \{x, y\}$ and $G = \langle F, s \mid s^{-1}us = u \rangle$, where u = xyx and $s = u^t$ is defined as before.

Take $g \in G$ to be $g = s^2 y x s^3$. It follows that

$$g = u^{2t} \circ (yx) \circ u^{3t} = (xyx)^{2t} \circ (yx) \circ (xyx)^{3t}$$

is a representation of g as an infinite word.

But at the same time

$$g = u^{2t-1} \circ (xy) \circ u^{3t+1} = (xyx)^{2t-1} \circ (xy) \circ (xyx)^{3t+1}$$

is another representation of g as an infinite word.

The former one is characterized by a 2-tuple (2t, 3t) of non-standard exponents involved, the latter one by (2t - 1, 3t + 1), which is less than (2t, 3t) in the left lexicographic order.

Generalization of Stallings' foldings to $F^{\mathbb{Z}[t]}$

Theorem. (Miasnikov, Remeslennikov, S) Let G be a finitely generated subgroup of $F^{\mathbb{Z}[t]}$. Then there exists a finite labeled directed graph Γ_G such that

 $g \in G$ if and only if Γ_G "accepts" g.

In other words Γ_G solves the Subgroup Membership Problem in $F^{\mathbb{Z}[t]}$. Moreover, Γ_G can be constructed effectively, given generators of G.

Edges of Γ_G are labeled by letters from the alphabet

$$\{X \cup X^{-1}\} \cup \{u^{\alpha} \mid u \in U, \alpha \in \mathbb{Z}[t]\},\$$

where U is a special subset of $F^{\mathbb{Z}[t]}$.

Let
$$G = \langle h_1, \ldots, h_k \rangle$$
.

$$foldings = \begin{cases} standard Stallings' foldings \\ U-foldings \end{cases}$$

U-foldings (assume $\alpha \ge \beta > 0$)

35

Theorem. (Kharlampovich, Miasnikov, Remeslennikov, S) The Subgroup Intersection Problem is decidable in $F^{\mathbb{Z}[t]}$. That is, there exists an algorithm which for any f.g. subgroups H and K of $F^{\mathbb{Z}[t]}$ effectively finds generators of $H \cap K$, which is finitely generated.

Theorem. (Kharlampovich, Miasnikov, Remeslennikov, S) There exists an algorithm which for any f.g. subgroups H and K of $F^{\mathbb{Z}[t]}$ effectively checks if there exists $g \in F^{\mathbb{Z}[t]}$ such that

$$H^g = K.$$

etc.

Applications to fully residually free (or limit) groups

A group G is called fully residually free if for any finitely many non-trivial elements $g_1, \ldots, g_n \in G$ there exists a homomorphism ϕ of G into a free group F, such that $\phi(g_i) \neq 1$ for $i = 1, \ldots, n$.

Fully residually free groups naturally arise from studying equations in free groups, and have a lot of nice properties.

Examples:

- 1. free groups,
- 2. surface groups (except for non-orientable surfaces of genus 1, 2, 3),
- 3. extensions of centralizers of a free group.

Theorem (Kharlampovich-Myasnikov, 1998). Every f.g. fully residually free group is embeddable into a "non-standard" free group $F^{\mathbb{Z}[t]}$. Moreover, for a given finite presentation of a f.g. fully residually free group G one can effectively construct an embedding of G into $F^{\mathbb{Z}[t]}$.

Now, our solution of various algorithmic problems for subgroups of $F^{\mathbb{Z}[t]}$ implies the solution of the same problems for f.g. fully residually free groups.