Automata and infinite words: applications in Group Theory

Denis Serbin

McGill University

Stallings' foldings in free groups

Let a graph Γ consist of a set of vertices $V(\Gamma)$, a set of edges $E(\Gamma)$, and two functions:

$$
\begin{gathered}
E \rightarrow V \times V, e \rightarrow(o(e), t(e)), \\
E \rightarrow E, e \rightarrow \bar{e},
\end{gathered}
$$

which satisfy the following properties

$$
\overline{\bar{e}}=e, \quad e \neq \bar{e}, \quad o(e)=t(\bar{e}) .
$$

That is, every edge e has an initial vertex $o(e)$, a terminal vertex $t(e)$, and a formal inverse \bar{e}.

An orientation of Γ is a subset $E_{+} \subset E$ such that

$$
E_{+} \cap \bar{E}_{+}=\emptyset, \quad E=E_{+} \cup \bar{E}_{+}
$$

Edges from E_{+}we call positively oriented.

Let X be a finite alphabet. We can label positively oriented edges by

$$
\mu: E_{+} \rightarrow X
$$

and extend μ to $E=E_{+} \cup \bar{E}_{+}$by setting $\mu(\bar{e})=\mu(e)^{-1}$ for every $e \in E_{+}$.

Hence, we obtain a directed X-labeled graph (X-digraph) Γ.

Example. $X=\{x, y\}$

Observe that we draw only a positive edge e from each pair $\{e, \bar{e}\}$.

A path p in Γ is a sequence of edges $p=e_{1}, \ldots, e_{k}$, where $o\left(e_{i+1}\right)=t\left(e_{i}\right)$ for $i \in[1, k-1]$.
p has a naturally defined label $\mu(p)=\mu\left(e_{1}\right) \cdots \mu\left(e_{k}\right)$ which is a word in the alphabet $X \cup X^{-1}$.

Let $v \in V(\Gamma)$. Define the language of Γ with respect to v to be

$$
L(\Gamma, v)=\{\mu(p) \mid p \text { is a reduced loop in } \Gamma \text { at } v\},
$$

where "reduced" stands for "without back-tracking".
Obviously, $L(\Gamma, v) \subseteq\left(X \cup X^{-1}\right)^{*}$. Note that words in $L(\Gamma, v)$ are not necessarily freely reduced.

Fact. The set

$$
\overline{L(\Gamma, v)}=\{\bar{w} \mid w \in L(\Gamma, v)\},
$$

where "-" denotes free reduction, is a subgroup of $F(X)$.

On the other hand, if H is a finitely generated subgroup of $F(X)$ then it is easy to construct a graph Γ such that $H=\overline{L(\Gamma, v)}$ for some $v \in V(\Gamma)$.

Example. Let $H=\left\langle x^{2}, x y\right\rangle<F(x, y)$ and take Γ to be a bouquet of loops at a vertex v, labeled by the generators of H.

Obviously, $H=\overline{L(\Gamma, v)}$.

The idea to work with X-digraphs rather than subgroups of $F(X)$ was introduced by J. Stallings (1983).

Many problems for subgroups of a free group now can be restated in terms of graphs and easily solved. But graphs representing subgroups have to be folded.

An X-digraph Γ is folded if there exist no edges $e_{1} \neq e_{2}$ such that $o\left(e_{1}\right)=o\left(e_{2}\right), \mu\left(e_{1}\right)=\mu\left(e_{2}\right)$. That is, the following situations are prohibited

Consider the following operations called foldings

Fact. If Δ is obtained from Γ by a folding, so that $w \in V(\Delta)$ corresponds to $v \in V(\Gamma)$. Then $\overline{L(\Gamma, v)}=\overline{L(\Delta, w)}$.

Fact. For every finitely generated $H \leq F(X)$ there exists a folded X-digraph Γ such that $H=\overline{L(\Gamma, v)}$ for some $v \in V(\Gamma)$.

We start with a bouquet of loops labeled by generators of H and perform all possible foldings.

Example: $H=\left\langle x, y^{2}, y^{-1} x y\right\rangle<F(x, y)$.

Fact. If Γ is folded then $\overline{L(\Gamma, v)}=L(\Gamma, v)$

Let $H \leq F(X)$ and let Γ be a folded X-digraph such that $H=L(\Gamma, v)$ for some $v \in V(\Gamma)$. If $g \in F(X)$ then

$$
g \in H \Longleftrightarrow g \in L(\Gamma, v)
$$

It is easy to check the last inclusion which gives a solution of the Subgroup Membership Problem.

Let $H, K \leq F(X)$ and let Γ, Δ be folded X-digraphs such that $H=L(\Gamma, v), K=L(\Delta, w)$.

$$
H \cap K=L(\Gamma, v) \cap L(\Delta, w)=L(\Gamma \times \Delta, v \times w)
$$

where $\Gamma \times \Delta$ is a product-graph of Γ and Δ. Hence, a solution of the Subgroup Intersection Problem.

Example: $H=\left\langle x y, y^{-1} x\right\rangle, K=\left\langle x^{3}, x^{-1} y x\right\rangle$.

Question: Is it possible to generalize graph methods described above to groups whose elements can be represented by infinite words ?

Ordered abelian groups

Let A be an ordered abelian group (any $a, b \in A$ are comparable and for any $c \in A: a \leq b \Rightarrow a+c \leq b+c)$.

Examples.

1. archimedean case: $A=\mathbb{R}, A=\mathbb{Z}$ with usual order.
2. non-archimedean case: $A=\mathbb{Z}^{2}$ with the right lexicographic order

$$
(a, b)<(c, d) \Longleftrightarrow b<d \text { or } b=d \text { and } a<c .
$$

In particular,

$$
(0,1)>(n, 0) \text { for every } n \in \mathbb{Z} \text {. }
$$

\mathbb{Z}^{2} with the right lexicographic order

For $\alpha, \beta \in \mathbb{Z}^{2}$ the closed segment $[\alpha, \beta]$ is defined by

$$
[\alpha, \beta]=\left\{\gamma \in \mathbb{Z}^{2} \mid \alpha \leq \gamma \leq \beta\right\}
$$

Example. $[(-2,-1),(3,1)]$

Infinite words

Let A be a discretely ordered abelian group (contains a minimal positive element 1_{A}) and $X=\left\{x_{i} \mid i \in I\right\}$ be a set.

An A-word is a function of the type

$$
w:\left[1_{A}, \alpha\right] \rightarrow X^{ \pm}
$$

where $\alpha \geq 0$. The element α is called the length $|w|$ of w.

By ε we denote the empty A-word (when $\alpha=0$).
w is reduced \Longleftrightarrow no subwords $x x^{-1}, x^{-1} x(x \in X)$.
$R(A, X)=$ the set of all reduced A-words.

Example. $X=\{x, y, z\}, A=\mathbb{Z}^{2}$

In "linear" notation

Concatenation of A-words

We write $u \circ v$ instead of $u v$ in the case when $u v$ is reduced.

Inversion of A-words

Multiplication of A-words

Multiplication of A-words

Let $u, v \in R(A, X)$.
Suppose u and v can be represented in the form

$$
u=\tilde{u} \circ c^{-1}, v=c \circ \tilde{v}
$$

where $c \in R(A, X)$ is of maximal possible length.

Then define

$$
u * v=\tilde{u} \circ \tilde{v} .
$$

The decomposition of u and v above exists only if u^{-1} and v have the maximal common initial part defined on a closed segment.

Example. $u, v \in R\left(\mathbb{Z}^{2}, X\right)$

The common initial part of u^{-1} and v is

$$
\left.\begin{array}{lllll}
x & X & X & ---- \\
\bullet & \bullet & \bullet & \bullet & \cdots
\end{array}\right)
$$

which is not defined on a closed segment. Hence, $u * v$ is not defined.

Cyclic decomposition

$v \in R(A, X)$ is cyclically reduced if $v\left(1_{A}\right)^{-1} \neq v(|v|)$.
$v \in R(A, X)$ admits a cyclic decomposition if

$$
v=c^{-1} \circ u \circ c
$$

where $c, u \in R(A, X)$ and u is cyclically reduced.

Example. $u \in R\left(\mathbb{Z}^{2}, X\right)$ does not admit a cyclic decomposition

Torsion

$R(A, X)$ has elements of order 2.

Example. $u \in R\left(\mathbb{Z}^{2}, X\right)$

$$
\left.u:{\stackrel{x^{-1}}{\bullet}}_{\bullet}^{x^{-1}} \cdots \cdots\right)\left(\cdots \cdots{ }_{\bullet}^{-\cdots}\right.
$$

has order 2.

Fact. Let $u \in R(A, X)$. If $u * u$ is defined then either u admits a cyclic decomposition (thus, has infinite order), or has order 2.

A non-standard free group

In 1960 R. Lyndon introduced a notion of a free $\mathbb{Z}[t]$-group. It can be defined as a union of the chain of groups

$$
F=F_{0}<F_{1}<\cdots<F_{n}<\cdots,
$$

where $F=F(X)$ is a free group on an alphabet X, and F_{k} is generated by F_{k-1} and formal expressions of the type

$$
\left\{w^{\alpha} \mid w \in F_{k-1}, \alpha \in \mathbb{Z}[t]\right\} .
$$

That is, every element of F_{k} can be viewed as a parametric word of the type

$$
w_{1}^{\alpha_{1}} w_{2}^{\alpha_{2}} \cdots w_{m}^{\alpha_{m}},
$$

where $m \in \mathbb{N}, w_{i} \in F_{k-1}$, and $\alpha_{i} \in \mathbb{Z}[t]$.

Thus obtained group, denoted $F^{\mathbb{Z}}[t]$, is called Lyndon's free $\mathbb{Z}[t]$-group, or a $\mathbb{Z}[t]$-completion of a free group F.

Observe that for any $g \in F^{\mathbb{Z}}[t]$ and $\alpha \in \mathbb{Z}[t]$ there exists an element $g^{\alpha} \in F^{\mathbb{Z}[t]}$. That is, $F^{\mathbb{Z}[t]}$ admits $\mathbb{Z}[t]$-exponentiation.
$F^{\mathbb{Z}}[t]$ can be viewed as a non-standard free group. Besides standard exponents $\left\{g^{n}, n \in \mathbb{Z}\right\}$ of its elements it also contains non-standard ones $\left\{g^{\alpha}, \alpha \in \mathbb{Z}[t] \backslash \mathbb{Z}\right\}$.

Miasnikov and Remeslennikov (1996) gave an effective construction of $F^{\mathbb{Z}[t]}$ in terms of extensions of centralizers.

Let G be a group and $C_{G}(u)=\langle u\rangle$ a cyclic centralizer of $u \in G$. An extension of $C_{G}(u)$ by $\mathbb{Z}[t]$ is defined as the HNN-extension

$$
H=\left\langle G, s_{j} \quad(j \in \mathbb{N}) \mid\left[u, s_{j}\right]=\left[s_{j}, s_{k}\right]=1 \quad(j, k \in \mathbb{N})\right\rangle
$$

Observe that s_{j} corresponds to $u^{t^{j}}$ which commutes with u, and $C_{H}(u) \simeq \mathbb{Z}[t]$
$F^{\mathbb{Z}}[t]$ is a union of the infinite chain of groups

$$
F=G_{0}<G_{1}<\cdots<G_{n}<\cdots
$$

where G_{i+1} is obtained from G_{i} by extension of all cyclic centralizers in G_{i}.

$F^{\mathbb{Z}[t]}$ as a group of infinite words

Recall that $R^{*}(\mathbb{Z}[t], X)$ is the set of $\mathbb{Z}[t]$-words which admit cyclic decompositions.

Theorem. (Miasnikov, Remeslennikov, S) There exists an embedding

$$
\phi: F^{\mathbb{Z}[t]} \rightarrow R^{*}(\mathbb{Z}[t], X) .
$$

Moreover, this embedding is effective and representation of elements of $F^{\mathbb{Z}[t]}$ by infinite words introduces "nice" normal forms on $F^{\mathbb{Z}[t]}$.

Idea of the proof.

$F^{\mathbb{Z}[t]}$ is a union of the chain $F=G_{0}<G_{1}<\cdots<G_{n}<\cdots$.
Assume that an embedding $G_{n} \hookrightarrow R^{*}(\mathbb{Z}[t], X)$ is constructed (we identify G_{n} with its image).

Choose $C=\left\{u_{i} \mid i \in I\right\} \subset G_{n}$, the set of generators of proper cyclic centralizers in G_{n} (up to conjugacy and taking inverses).

Define a $\mathbb{Z}[t]$-exponentiation function

$$
\exp :(u, \alpha) \rightarrow u^{\alpha}
$$

where $u \in C, \alpha \in \mathbb{Z}[t]$.

Finally, prove that $H=\left\langle G_{n},\left\{u^{t^{k}} \mid u \in C, k \in \mathbb{N}\right\}\right\rangle$ is a subgroup of $R^{*}(\mathbb{Z}[t], X)$ isomorphic to G_{n+1}.

Example. Let $X=\{x, y\}, F=F(X)$. If $u \in F$ is cyclically reduced then

$$
G=\left\langle F, s \mid s^{-1} u s=u\right\rangle
$$

is embeddable into $R^{*}\left(\mathbb{Z}^{2}, X\right)$.

Indeed, $F \subset R^{*}\left(\mathbb{Z}^{2}, X\right)$ and we define s as a "non-standard" exponent of u

$$
s=u^{t}, t=(0,1) .
$$

It is easy to see that

$$
u \circ s=s \circ u
$$

Elements of $G=\left\langle F, s \mid s^{-1} u s=u\right\rangle$ viewed as infinite words have normal forms.

If $g \in G$ then

$$
g=g_{1} \circ u^{\alpha_{1}} \circ g_{2} \circ \cdots \circ u^{\alpha_{n}} \circ g_{n+1},
$$

where $g_{i} \in F, \alpha_{i} \in \mathbb{Z}^{2}-\mathbb{Z}$.

Normal forms can be computed easily.

Example. Let $u=x y \in F$ and $g=\left(y^{-1} x^{-1}\right) s x^{-1} s^{-1} \in G$.
Then, a representation of g as an infinite word is

$$
\begin{aligned}
g= & \left(y^{-1} x^{-1}\right) * u^{t} * x^{-1} * u^{-t}=\left(y^{-1} x^{-1}\right) *\left(u \circ u^{t-1}\right) * x^{-1} * u^{-t}= \\
& =\left(y^{-1} x^{-1}\right) *\left((x y) \circ u^{t-1}\right) * x^{-1} * u^{-t}=u^{t-1} \circ x^{-1} \circ u^{-t}
\end{aligned}
$$

Example. Let $F=F(X), X=\{x, y\}$ and $G=\left\langle F, s \mid s^{-1} u s=u\right\rangle$, where $u=x y x$ and $s=u^{t}$ is defined as before.

Take $g \in G$ to be $g=s^{2} y x s^{3}$. It follows that

$$
g=u^{2 t} \circ(y x) \circ u^{3 t}=(x y x)^{2 t} \circ(y x) \circ(x y x)^{3 t}
$$

is a representation of g as an infinite word.
But at the same time

$$
g=u^{2 t-1} \circ(x y) \circ u^{3 t+1}=(x y x)^{2 t-1} \circ(x y) \circ(x y x)^{3 t+1}
$$

is another representation of g as an infinite word.
The former one is characterized by a 2-tuple $(2 t, 3 t)$ of non-standard exponents involved, the latter one by $(2 t-1,3 t+1)$, which is less than $(2 t, 3 t)$ in the left lexicographic order.

Generalization of Stallings' foldings to $F^{\mathbb{Z}}[t]$

Theorem. (Miasnikov, Remeslennikov, S) Let G be a finitely generated subgroup of $F^{\mathbb{Z}}[t]$. Then there exists a finite labeled directed graph Γ_{G} such that

$$
g \in G \text { if and only if } \Gamma_{G} " \text { accepts" } g .
$$

In other words Γ_{G} solves the Subgroup Membership Problem in $F^{\mathbb{Z}[t]}$. Moreover, Γ_{G} can be constructed effectively, given generators of G.

Edges of Γ_{G} are labeled by letters from the alphabet

$$
\left\{X \cup X^{-1}\right\} \cup\left\{u^{\alpha} \mid u \in U, \alpha \in \mathbb{Z}[t]\right\}
$$

where U is a special subset of $F^{\mathbb{Z}[t]}$.

Let $G=\left\langle h_{1}, \ldots, h_{k}\right\rangle$.

$$
\text { foldings }=\left\{\begin{array}{l}
\text { standard Stallings' foldings } \\
U \text {-foldings }
\end{array}\right.
$$

U-foldings (assume $\alpha \geq \beta>0$)

Theorem. (Kharlampovich, Miasnikov, Remeslennikov, S) The Subgroup Intersection Problem is decidable in $F^{\mathbb{Z}[t]}$. That is, there exists an algorithm which for any f.g. subgroups H and K of $F^{\mathbb{Z}[t]}$ effectively finds generators of $H \cap K$, which is finitely generated.

Theorem. (Kharlampovich, Miasnikov, Remeslennikov, S) There exists an algorithm which for any f.g. subgroups H and K of $F^{\mathbb{Z}[t]}$ effectively checks if there exists $g \in F^{\mathbb{Z}[t]}$ such that

$$
H^{g}=K
$$

etc.

Applications to fully residually free (or limit) groups

A group G is called fully residually free if for any finitely many non-trivial elements $g_{1}, \ldots, g_{n} \in G$ there exists a homomorphism ϕ of G into a free group F, such that $\phi\left(g_{i}\right) \neq 1$ for $i=1, \ldots, n$.

Fully residually free groups naturally arise from studying equations in free groups, and have a lot of nice properties.

Examples:

1. free groups,
2. surface groups (except for non-orientable surfaces of genus $1,2,3)$,
3. extensions of centralizers of a free group.

Theorem (Kharlampovich-Myasnikov, 1998). Every f.g. fully residually free group is embeddable into a "non-standard" free group $F^{\mathbb{Z}[t]}$. Moreover, for a given finite presentation of a f.g. fully residually free group G one can effectively construct an embedding of G into $F^{\mathbb{Z}[t]}$.

Now, our solution of various algorithmic problems for subgroups of $F^{\mathbb{Z}[t]}$ implies the solution of the same problems for f.g. fully residually free groups.

