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Stallings’ foldings in free groups

Let a graph Γ consist of a set of vertices V (Γ), a set of edges E(Γ),
and two functions:

E → V × V , e → (o(e), t(e)),

E → E , e → ē,

which satisfy the following properties

¯̄e = e, e 6= e, o(e) = t(ē).

That is, every edge e has an initial vertex o(e), a terminal vertex
t(e), and a formal inverse ē.
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An orientation of Γ is a subset E+ ⊂ E such that

E+ ∩ Ē+ = ∅, E = E+ ∪ Ē+.

Edges from E+ we call positively oriented.

Let X be a finite alphabet. We can label positively oriented edges
by

µ : E+ → X

and extend µ to E = E+ ∪ Ē+ by setting µ(ē) = µ(e)−1 for every
e ∈ E+.

Hence, we obtain a directed X-labeled graph (X-digraph) Γ.
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Example. X = {x, y}

x

x
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y

Γ

Observe that we draw only a positive edge e from each pair {e, ē}.

A path p in Γ is a sequence of edges p = e1, . . . , ek, where
o(ei+1) = t(ei) for i ∈ [1, k − 1].

p has a naturally defined label µ(p) = µ(e1) · · ·µ(ek) which is a
word in the alphabet X ∪X−1.
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Let v ∈ V (Γ). Define the language of Γ with respect to v to be

L(Γ, v) = {µ(p) | p is a reduced loop in Γ at v},

where “reduced” stands for “without back-tracking”.

Obviously, L(Γ, v) ⊆ (X ∪X−1)∗. Note that words in L(Γ, v) are
not necessarily freely reduced.

Fact. The set
L(Γ, v) = {w | w ∈ L(Γ, v)},

where “¯” denotes free reduction, is a subgroup of F (X).
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On the other hand, if H is a finitely generated subgroup of F (X)
then it is easy to construct a graph Γ such that H = L(Γ, v) for
some v ∈ V (Γ).

Example. Let H = 〈x2, xy〉 < F (x, y) and take Γ to be a bouquet
of loops at a vertex v, labeled by the generators of H.

x

x

y
Γ

v

x

Obviously, H = L(Γ, v).
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The idea to work with X-digraphs rather than subgroups of F (X)
was introduced by J. Stallings (1983).

Many problems for subgroups of a free group now can be restated
in terms of graphs and easily solved. But graphs representing
subgroups have to be folded.

An X-digraph Γ is folded if there exist no edges e1 6= e2 such that
o(e1) = o(e2), µ(e1) = µ(e2). That is, the following situations are
prohibited

x

x

x

x
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Consider the following operations called foldings
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Fact. If ∆ is obtained from Γ by a folding, so that w ∈ V (∆)
corresponds to v ∈ V (Γ). Then L(Γ, v) = L(∆, w).

Fact. For every finitely generated H ≤ F (X) there exists a folded
X-digraph Γ such that H = L(Γ, v) for some v ∈ V (Γ).
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We start with a bouquet of loops labeled by generators of H and
perform all possible foldings.

Example: H = 〈x, y2, y−1xy〉 < F (x, y).
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Fact. If Γ is folded then L(Γ, v) = L(Γ, v)

Let H ≤ F (X) and let Γ be a folded X-digraph such that
H = L(Γ, v) for some v ∈ V (Γ). If g ∈ F (X) then

g ∈ H ⇐⇒ g ∈ L(Γ, v).

It is easy to check the last inclusion which gives a solution of the
Subgroup Membership Problem.

Let H, K ≤ F (X) and let Γ, ∆ be folded X-digraphs such that
H = L(Γ, v), K = L(∆, w).

H ∩K = L(Γ, v) ∩ L(∆, w) = L(Γ×∆, v × w),

where Γ×∆ is a product-graph of Γ and ∆. Hence, a solution of
the Subgroup Intersection Problem.
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Example: H = 〈xy, y−1x〉, K = 〈x3, x−1yx〉.
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Question: Is it possible to generalize graph methods
described above to groups whose elements can be
represented by infinite words ?
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Ordered abelian groups

Let A be an ordered abelian group (any a, b ∈ A are comparable
and for any c ∈ A : a ≤ b ⇒ a + c ≤ b + c).

Examples.

1. archimedean case: A = R, A = Z with usual order.

2. non-archimedean case: A = Z2 with the right lexicographic
order

(a, b) < (c, d) ⇐⇒ b < d or b = d and a < c.

In particular,

(0, 1) > (n, 0) for every n ∈ Z.
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Z2

(0,0)

(0,-1)

(0,1)

x

y

Z2 with the right lexicographic order

( (( (( (( (
(0,0)(0,-1) (0,1)
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For α, β ∈ Z2 the closed segment [α, β] is defined by

[α, β] = {γ ∈ Z2 | α ≤ γ ≤ β }.

Example. [(−2,−1), (3, 1)]

(0,0)

(-2,-1)

(3,1)

x

y

( ((
(0,0)(-2,-1)

(
(3,1)

ω −ω      +     ω −ω
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Infinite words

Let A be a discretely ordered abelian group (contains a minimal
positive element 1A) and X = {xi | i ∈ I} be a set.

An A-word is a function of the type

w : [1A, α] → X±,

where α ≥ 0. The element α is called the length |w| of w.

By ε we denote the empty A-word (when α = 0).

w is reduced ⇐⇒ no subwords xx−1, x−1x (x ∈ X).

R(A,X) = the set of all reduced A-words.
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Example. X = {x, y, z}, A = Z2

x

(0,0) (1,0)

y-1 x

x-1 y z (0,1)

z
(-3,1)

x-1 z

In “linear” notation

x-1 y zx y-1 x z x-1 z
( (

(1,0) (-3,1)

. . . . . .
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Concatenation of A-words

1A 1A

1A

α β

α+βα

u v

uv

We write u ◦ v instead of uv in the case when uv is reduced.
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Inversion of A-words

1A
α

u-1

1A
α

u

x1A
x2A

xαxα−1

xα
-1

xα−1

-1 x2A

-1
x1A

-1
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Multiplication of A-words

u v

uv
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Multiplication of A-words

Let u, v ∈ R(A,X).

Suppose u and v can be represented in the form

u = ũ ◦ c−1, v = c ◦ ṽ,

where c ∈ R(A, X) is of maximal possible length.

Then define
u ∗ v = ũ ◦ ṽ.

The decomposition of u and v above exists only if u−1 and v have
the maximal common initial part defined on a closed segment.
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Example. u, v ∈ R(Z2, X)

xx x
. . .

yy y

zz z

u-1 :

v :

( . . .(

xx x
. . . ( . . .(

The common initial part of u−1 and v is

xx x
. . . (

which is not defined on a closed segment. Hence, u ∗ v is not
defined.
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Cyclic decomposition

v ∈ R(A,X) is cyclically reduced if v(1A)−1 6= v(|v|).

v ∈ R(A,X) admits a cyclic decomposition if

v = c−1 ◦ u ◦ c,

where c, u ∈ R(A,X) and u is cyclically reduced.

Example. u ∈ R(Z2, X) does not admit a cyclic decomposition

xx
. . .

yy y
u  : ( . . .( . . . ( . . .(

x
−1

x
−1

23



Torsion

R(A,X) has elements of order 2.

Example. u ∈ R(Z2, X)

xx
. . . ( . . .(

x
−1

x
−1

u :

has order 2.

Fact. Let u ∈ R(A,X). If u ∗ u is defined then either u admits a
cyclic decomposition (thus, has infinite order), or has order 2.
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A non-standard free group

In 1960 R. Lyndon introduced a notion of a free Z[t]-group. It can
be defined as a union of the chain of groups

F = F0 < F1 < · · · < Fn < · · · ,

where F = F (X) is a free group on an alphabet X, and Fk is
generated by Fk−1 and formal expressions of the type

{wα | w ∈ Fk−1, α ∈ Z[t]}.

That is, every element of Fk can be viewed as a parametric word of
the type

wα1
1 wα2

2 · · ·wαm
m ,

where m ∈ N, wi ∈ Fk−1, and αi ∈ Z[t].
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Thus obtained group, denoted FZ[t], is called Lyndon’s free
Z[t]-group, or a Z[t]-completion of a free group F .

Observe that for any g ∈ FZ[t] and α ∈ Z[t] there exists an element
gα ∈ FZ[t]. That is, FZ[t] admits Z[t]-exponentiation.

FZ[t] can be viewed as a non-standard free group. Besides standard
exponents {gn, n ∈ Z} of its elements it also contains non-standard
ones {gα, α ∈ Z[t] \ Z}.
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Miasnikov and Remeslennikov (1996) gave an effective construction
of FZ[t] in terms of extensions of centralizers.

Let G be a group and CG(u) = 〈u〉 a cyclic centralizer of u ∈ G.
An extension of CG(u) by Z[t] is defined as the HNN-extension

H = 〈 G, sj (j ∈ N) | [u, sj ] = [sj , sk] = 1 (j, k ∈ N) 〉.

Observe that sj corresponds to utj

which commutes with u, and
CH(u) ' Z[t]

FZ[t] is a union of the infinite chain of groups

F = G0 < G1 < · · · < Gn < · · · ,

where Gi+1 is obtained from Gi by extension of all cyclic
centralizers in Gi.

27



F Z[t] as a group of infinite words

Recall that R∗(Z[t], X) is the set of Z[t]-words which admit cyclic
decompositions.

Theorem. (Miasnikov, Remeslennikov, S) There exists an
embedding

φ : FZ[t] → R∗(Z[t], X).

Moreover, this embedding is effective and representation of elements
of FZ[t] by infinite words introduces “nice” normal forms on FZ[t].
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Idea of the proof.

FZ[t] is a union of the chain F = G0 < G1 < · · · < Gn < · · · .

Assume that an embedding Gn ↪→ R∗(Z[t], X) is constructed (we
identify Gn with its image).

Choose C = {ui | i ∈ I} ⊂ Gn, the set of generators of proper cyclic
centralizers in Gn (up to conjugacy and taking inverses).

Define a Z[t]-exponentiation function

exp : (u, α) → uα,

where u ∈ C,α ∈ Z[t].

Finally, prove that H = 〈 Gn, {utk | u ∈ C, k ∈ N} 〉 is a subgroup
of R∗(Z[t], X) isomorphic to Gn+1.
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Example. Let X = {x, y}, F = F (X). If u ∈ F is cyclically
reduced then

G = 〈F, s | s−1us = u〉
is embeddable into R∗(Z2, X).

Indeed, F ⊂ R∗(Z2, X) and we define s as a “non-standard”
exponent of u

s = ut, t = (0, 1).

)[ . . . ) . . .:

u u

[s

u u

It is easy to see that
u ◦ s = s ◦ u.
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Elements of G = 〈F, s | s−1us = u〉 viewed as infinite words have
normal forms.

If g ∈ G then

g = g1 ◦ uα1 ◦ g2 ◦ · · · ◦ uαn ◦ gn+1,

where gi ∈ F, αi ∈ Z2 − Z.

Normal forms can be computed easily.

Example. Let u = xy ∈ F and g = (y−1x−1) s x−1 s−1 ∈ G.
Then, a representation of g as an infinite word is

g = (y−1x−1) ∗ ut ∗ x−1 ∗ u−t = (y−1x−1) ∗ (u ◦ ut−1) ∗ x−1 ∗ u−t =

= (y−1x−1) ∗ ((xy) ◦ ut−1) ∗ x−1 ∗ u−t = ut−1 ◦ x−1 ◦ u−t.
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Example. Let F = F (X), X = {x, y} and G = 〈F, s | s−1us = u〉,
where u = xyx and s = ut is defined as before.

Take g ∈ G to be g = s2yxs3. It follows that

g = u2t ◦ (yx) ◦ u3t = (xyx)2t ◦ (yx) ◦ (xyx)3t

is a representation of g as an infinite word.

But at the same time

g = u2t−1 ◦ (xy) ◦ u3t+1 = (xyx)2t−1 ◦ (xy) ◦ (xyx)3t+1

is another representation of g as an infinite word.

The former one is characterized by a 2-tuple (2t, 3t) of
non-standard exponents involved, the latter one by (2t− 1, 3t + 1),
which is less than (2t, 3t) in the left lexicographic order.
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Generalization of Stallings’ foldings to F Z[t]

Theorem. (Miasnikov, Remeslennikov, S) Let G be a finitely
generated subgroup of FZ[t]. Then there exists a finite labeled
directed graph ΓG such that

g ∈ G if and only if ΓG ”accepts” g.

In other words ΓG solves the Subgroup Membership Problem in
FZ[t]. Moreover, ΓG can be constructed effectively, given generators
of G.

Edges of ΓG are labeled by letters from the alphabet

{X ∪X−1} ∪ {uα | u ∈ U,α ∈ Z[t]},

where U is a special subset of FZ[t].
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Let G = 〈h1, . . . , hk〉.

v

h1

h2

hk

Γ
G

finite sequence of foldings

foldings =





standard Stallings’ foldings

U -foldings
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U -foldings (assume α ≥ β > 0)

uα

u
β

uα

u
β

u
β

uα

v0

v0

uα−β

u
β

v0

v0

uα−β
u

β

v0

v0

uα−β

u
β
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Theorem. (Kharlampovich, Miasnikov, Remeslennikov, S)
The Subgroup Intersection Problem is decidable in FZ[t]. That is,
there exists an algorithm which for any f.g. subgroups H and K of
FZ[t] effectively finds generators of H ∩K, which is finitely
generated.

Theorem. (Kharlampovich, Miasnikov, Remeslennikov, S)
There exists an algorithm which for any f.g. subgroups H and K of
FZ[t] effectively checks if there exists g ∈ FZ[t] such that

Hg = K.

etc.
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Applications to fully residually free (or limit)
groups

A group G is called fully residually free if for any finitely many
non-trivial elements g1, . . . , gn ∈ G there exists a homomorphism φ

of G into a free group F , such that φ(gi) 6= 1 for i = 1, . . . , n.

Fully residually free groups naturally arise from studying equations
in free groups, and have a lot of nice properties.

Examples:

1. free groups,

2. surface groups (except for non-orientable surfaces of genus

1, 2, 3),

3. extensions of centralizers of a free group.

37



Theorem (Kharlampovich-Myasnikov, 1998). Every f.g. fully
residually free group is embeddable into a “non-standard” free
group FZ[t]. Moreover, for a given finite presentation of a f.g. fully
residually free group G one can effectively construct an embedding
of G into FZ[t].

Now, our solution of various algorithmic problems for subgroups of
FZ[t] implies the solution of the same problems for f.g. fully
residually free groups.
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