Automata and infinite words:
applications in Group Theory

Denis Serbin

McGill University



Stallings’ foldings in free groups

Let a graph I' consist of a set of vertices V(I'), a set of edges E(I'),

and two functions:

E—-VxV 6 e—(o(e),te)),

E—FE, e—e,

which satisfy the following properties

e=e, e#¢e, ole)=t(e).

That is, every edge e has an initial vertex o(e), a terminal vertex

t(e), and a formal inverse e.



An orientation of I is a subset £, C FE such that
E+HE+ :@, E:E+UE_|_.

Edges from F, we call positively oriented.

Let X be a finite alphabet. We can label positively oriented edges
by

b, — X
and extend p to E = E. U E, by setting u(€) = u(e)~! for every
e < E_|_.

Hence, we obtain a directed X-labeled graph (X-digraph) I



Example. X = {z,y}

Observe that we draw only a positive edge e from each pair {e, ée}.

A path p in I' is a sequence of edges p = ey, ..., er, where
o(ejr1) =t(e;) fori e [1,k —1].

p has a naturally defined label pu(p) = p(e1) - - - pu(ex) which is a
word in the alphabet X U X 1.



Let v € V(I'). Define the language of I' with respect to v to be
L(T',v) = {u(p) | p is a reduced loop in I" at v},

where “reduced” stands for “without back-tracking”.

Obviously, L(T',v) C (X U X~ 1)*. Note that words in L(T',v) are

not necessarily freely reduced.

Fact. The set
L(T,v)={w|we L', v)},

where “7” denotes free reduction, is a subgroup of F'(X).



On the other hand, if H is a finitely generated subgroup of F(X)
then it is easy to construct a graph I' such that H = L(I', v) for
some v € V(I).

Example. Let H = (z°, zy) < F(x,y) and take I" to be a bouquet
of loops at a vertex v, labeled by the generators of H.

I
X y
C X
X X

Obviously, H = L(T", v).



The idea to work with X-digraphs rather than subgroups of F/(X)
was introduced by J. Stallings (1983).

Many problems for subgroups of a free group now can be restated
in terms of graphs and easily solved. But graphs representing

subgroups have to be folded.

An X-digraph I' is folded if there exist no edges e; # e5 such that
o(e1) = o(ez), p(er) = u(ez). That is, the following situations are

prohibited
X X
< 2



Consider the following operations called foldings

Fact. If A is obtained from I" by a folding, so that w € V(A)
corresponds to v € V(I'). Then L(I',v) = L(A,w).

Fact. For every finitely generated H < F'(X) there exists a folded
X-digraph I" such that H = L(I',v) for some v € V(I).




We start with a bouquet of loops labeled by generators of H and
perform all possible foldings.

Example: H = (z,y%, vy lay) < F(z,y).




Fact. If T is folded then L(I',v) = L(T", v)

Let H < F(X) and let I be a folded X-digraph such that
H = L(I',v) for some v € V(I'). If g € F/(X) then

ge H<ge L(T',v).

It is easy to check the last inclusion which gives a solution of the
Subgroup Membership Problem.

Let H, K < F(X) and let I'; A be folded X-digraphs such that
H=L({I,v), K=L(A,w).

HNK=LT,v)NL(A,w)=L({I x A,v x w),

where I' X A is a product-graph of I' and A. Hence, a solution of

the Subgroup Intersection Problem.
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Example: H = (zy,y 'z), K = (z°, 2" 'yz).

I'X A

11



Question: Is it possible to generalize graph methods
described above to groups whose elements can be
represented by infinite words 7
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Ordered abelian groups

Let A be an ordered abelian group (any a,b € A are comparable
and foranyce A: a<b = a+c<b+c).

Examples.
1. archimedean case: A =R, A = 7Z with usual order.

2. non-archimedean case: A = Z? with the right lexicographic

order
(a,b) < (c,d) <= b<d or b=d and a < c.
In particular,

(0,1) > (n,0) for every n € Z.
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For o, 3 € Z? the closed segment [a, 3] is defined by
o, fl={veZ*|a<y<B}

Example. [(—2,—-1),(3,1)]

v Y
I (3,1)
® ® ® (0,0) ° ° ° ° :X
(-2,-1) )
(2.1) T )( T (0,0) T )( o (3,1)
Q) — + O -
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Infinite words

Let A be a discretely ordered abelian group (contains a minimal

positive element 14) and X = {x; | i € [} be a set.

An A-word is a function of the type
w:[lg,0] — XT,

where av > 0. The element « is called the length |w| of w.
By ¢ we denote the empty A-word (when a = 0).
w is reduced <= no subwords zz~ !, x 71z (z € X).

R(A, X) = the set of all reduced A-words.

16



Example. X = {x,y, 2}, A= 7>

*
—————————— - —-@0-—-@0-————————— P~~~ — e — e —————————
(_3’1) :
X y'x z x'z ----
—————————————————————————————— - --0-—-0--—-0--—-0---0 -0 -—--——»
(0,0) (1,0)
In “linear” notation
X y'x z x'z --- - Xty z
®e--—-0---0---0-—-0-—-0--—-0 = = ) ( - e--0 -0 ---9
(1,0) (-3,1)
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Concatenation of A-words

1a o 15 B
_ - . _ — .
u | \Y;
v
1a o o+
— -
uv

We write 1© o v instead of uv in the case when uv is reduced.
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Inversion of A-words
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Multiplication of A-words

u o cC o Vv
J N
u | Vv
o
u c-1 C V
k_ﬁ/__/
uv
¢
U o v
U+V = UoV
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Multiplication of A-words

Let u,v € R(A, X).

Suppose u and v can be represented in the form

where ¢ € R(A, X) is of maximal possible length.

Then define

UV =UO.

The decomposition of w and v above exists only if v~ and v have
the maximal common initial part defined on a closed segment.
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Example. u,v € R(Z*, X)

X X X ---— e Y
u’ © o o o - )(- o o
X X X ---— - Z
V' ° ® e o - )( -+ o o

The common initial part of ©v=! and v is

e o ---)

which is not defined on a closed segment. Hence, u * v
defined.
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Cyclic decomposition
v € R(A, X) is cyclically reduced if v(14)~! # v(|v]).

v € R(A, X) admits a cyclic decomposition if

v:c_louoc,

where c,u € R(A, X) and u is cyclically reduced.

Example. u € R(Z?, X) does not admit a cyclic decomposition

x' X e Y Y Y-
[} [}

--— -—-—> X X
o - )( - o o o .

° ) (- o e @
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Torsion
R(A, X) has elements of order 2.

Example. u € R(Z*, X)

-1 -1
X -—--> -—-— X X
[ J

o - )(-- o o o

U: o

has order 2.

Fact. Let u € R(A, X). If u x u is defined then either u admits a
cyclic decomposition (thus, has infinite order), or has order 2.
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A non-standard free group

In 1960 R. Lyndon introduced a notion of a free Z|[t]-group. It can
be defined as a union of the chain of groups

F=FF<kh<<---<F,<- -,

where F' = F'(X) is a free group on an alphabet X, and Fj is
generated by Fj_1 and formal expressions of the type

{w* |w € Fx_1, a € Z[t]}.

That is, every element of Fj can be viewed as a parametric word of

the type

Om

a1 ,,,02
wl w2 wm ,

where m € N, w; € Fj,_1, and «; € Zlt].
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Thus obtained group, denoted FZU is called Lyndon’s free
Z[t]-group, or a Z|t]-completion of a free group F.

Observe that for any g € FZH and o € Z[t] there exists an element
g® € F?. That is, FZY admits Z[t]-exponentiation.

FZItl can be viewed as a non-standard free group. Besides standard
exponents {g”, n € Z} of its elements it also contains non-standard

ones {g%, a € Z[t] \ Z}.
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Miasnikov and Remeslennikov (1996) gave an effective construction

of FZIl in terms of extensions of centralizers.

Let G be a group and Cg(u) = (u) a cyclic centralizer of u € G.

An extension of Cq(u) by Zl[t] is defined as the HNN-extension
H=(Gs; (JeN) | |lu,s;]=lsj,s6] =1 (j;keN)).

Observe that s; corresponds to ut’ which commutes with u, and

Ch(u) =~ Z[t]

FZI is a union of the infinite chain of groups
F=G0<G1<°"<Gn<"',

where (G;11 is obtained from G; by extension of all cyclic

centralizers in G;.
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FZ as a group of infinite words

Recall that R*(Z[t], X) is the set of Z|t]-words which admit cyclic

decompositions.

Theorem. (Miasnikov, Remeslennikov, S) There exists an
embedding
¢ : FEU — R*(Z[1], X).

Moreover, this embedding is effective and representation of elements

of FZ by infinite words introduces “nice” normal forms on F%[.
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Idea of the proof.
FZlt is a union of the chain F = Gog < Gy < - < Gy, < +--.

Assume that an embedding G,, — R*(Z][t], X) is constructed (we
identify G,, with its image).

Choose C = {u; | i € I} C G,, the set of generators of proper cyclic
centralizers in G,, (up to conjugacy and taking inverses).

Define a Z|t]-exponentiation function
exp : (u,a) — u”,

where u € C,a € Z[t].

Finally, prove that H = ( G,,, {u! | u € C,k € N} ) is a subgroup
of R*(Z[t], X) isomorphic to G,,11.
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Example. Let X = {z,y}, F = F(X). If u € F is cyclically
reduced then
G = (F,s|s tus=u)

is embeddable into R*(Z?, X).

Indeed, F' C R*(Z?, X) and we define s as a “non-standard”
exponent of u
s=u", t=(0,1).

It is easy to see that

Uos=—Sou.
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Elements of G = (F, s | s71us = u) viewed as infinite words have

normal forms.

If g € G then

g=giou™ogao---0u*" og,1,

where g; € F, o; € Z° — Z.

Normal forms can be computed easily.

Example. Let u =2y € Fand g = (y 27 !) sz ! st € G.

Then, a representation of g as an infinite word is

t 1

g=(y 'z xul x 2~ t

sul = (y e ) s (uout ) kT xu

—1

= (y ZE‘_l) * ((zy) o ut_l) s ey t=uttor tout
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Example. Let ' = F(X), X = {z,y} and G = (F,s | s tus = u),

where © = zyx and s = u! is defined as before.

Take g € G to be g = s?yxs3. It follows that

g=uo(yz) ou = (zyx)* o (yx) o (xyz)*
is a representation of ¢ as an infinite word.
But at the same time
g=u"""o (zy)ou" = (zyz)* " o (zy) o (xyx)™ "

is another representation of g as an infinite word.

The former one is characterized by a 2-tuple (2t, 3t) of
non-standard exponents involved, the latter one by (2t — 1,3t + 1),
which is less than (2¢,3t) in the left lexicographic order.
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Generalization of Stallings’ foldings to FZ

Theorem. (Miasnikov, Remeslennikov, S) Let G be a finitely
generated subgroup of FZ. Then there exists a finite labeled
directed graph I'; such that

g € G if and only if I'g ”accepts” g.

In other words I' solves the Subgroup Membership Problem in
FZItl Moreover, I'¢ can be constructed effectively, given generators

of GG.

Edges of I'¢ are labeled by letters from the alphabet
(XuX N ulu*|uelUacZ[t]},

where U is a special subset of FZIH,
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foldings =

standard Stallings’ foldings
U-foldings
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U-foldings (assume a > 3 > 0)

u ue b
————————— >
ub uP
v
VO 0
UOL
UB _________ ? uB UOL_B
Vo Vo

ue-B

o

s >
uP uP
Vo

Vo
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Theorem. (Kharlampovich, Miasnikov, Remeslennikov, S)
The Subgroup Intersection Problem is decidable in FZ. That is,
there exists an algorithm which for any f.g. subgroups H and K of
FZItl effectively finds generators of H N K, which is finitely

generated.

Theorem. (Kharlampovich, Miasnikov, Remeslennikov, S)
There exists an algorithm which for any f.g. subgroups H and K of
FZt effectively checks if there exists ¢ € FZ such that

HY = K.

etc.
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Applications to fully residually free (or limit)
groups

A group G is called fully residually free if for any finitely many
non-trivial elements g1, ..., g, € G there exists a homomorphism ¢
of G into a free group F', such that ¢(g;) #1 fort=1,...,n.

Fully residually free groups naturally arise from studying equations

in free groups, and have a lot of nice properties.

Examples:
1. free groups,

2. surface groups (except for non-orientable surfaces of genus
1,2,3),

3. extensions of centralizers of a free group.
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Theorem (Kharlampovich-Myasnikov, 1998). Every f.g. fully
residually free group is embeddable into a “non-standard” free
group FZ. Moreover, for a given finite presentation of a f.g. fully

residually free group GG one can effectively construct an embedding
of G into F2U.

Now, our solution of various algorithmic problems for subgroups of
FZI implies the solution of the same problems for f.g. fully

residually free groups.
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