On the problem of tiling the plane with a polyomino

Xavier Provençal

Laboratoire de Combinatoire et d'Informatique Mathématique, Université du Québec à Montréal,

12 mars, 2006

Outline

2 Beauquier-Nivat characterization

(3) A fast algorithm to detect exact polyominoes

Definitions General statement Finite case Infinite case

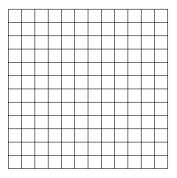
Introduction to polyominoes

• Discrete plane : \mathbb{Z}^2

Definitions General statement Finite case Infinite case

Introduction to polyominoes

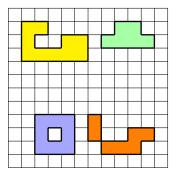
- Discrete plane : \mathbb{Z}^2
- **Definition** : A *polyomino* is a finite, 4-connected subset of the plane, without holes.



Definitions General statement Finite case Infinite case

Introduction to polyominoes

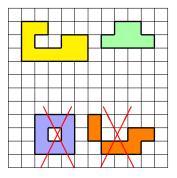
- Discrete plane : \mathbb{Z}^2
- **Definition** : A *polyomino* is a finite, 4-connected subset of the plane, without holes.



Definitions General statement Finite case Infinite case

Introduction to polyominoes

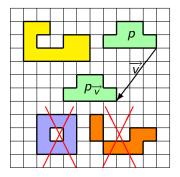
- Discrete plane : \mathbb{Z}^2
- **Definition** : A *polyomino* is a finite, 4-connected subset of the plane, without holes.



Definitions General statement Finite case Infinite case

Introduction to polyominoes

- Discrete plane : \mathbb{Z}^2
- **Definition** : A *polyomino* is a finite, 4-connected subset of the plane, without holes.
- Notation : Let p be a polyomino and \overrightarrow{v} a vector of \mathbb{Z}^2 , $p_{\overrightarrow{v}}$ will denote the image of p by de translation \overrightarrow{v} .



Definitions General statement Finite case Infinite case

General statement of the tiling problem

Definition (Tiling)

A tiling \mathcal{T} of a subset $D \subset \mathbb{Z}^2$ by a set of polyominoes \mathcal{P} is a set of couples $(p, \overrightarrow{u}) \in \mathcal{P} \times \mathbb{Z}^2$ such that :

Definitions General statement Finite case Infinite case

General statement of the tiling problem

Definition (Tiling)

A tiling \mathcal{T} of a subset $D \subset \mathbb{Z}^2$ by a set of polyominoes \mathcal{P} is a set of couples $(p, \overrightarrow{u}) \in \mathcal{P} \times \mathbb{Z}^2$ such that :

• D is the union of the polyominoes $p_{\overrightarrow{u}}$.

Definitions General statement Finite case Infinite case

General statement of the tiling problem

Definition (Tiling)

A tiling \mathcal{T} of a subset $D \subset \mathbb{Z}^2$ by a set of polyominoes \mathcal{P} is a set of couples $(p, \overrightarrow{u}) \in \mathcal{P} \times \mathbb{Z}^2$ such that :

- D is the union of the polyominoes $p_{\overrightarrow{u}}$.
- For any distinct pair (p, *u*), (p', *v*) ∈ *T*, p_{*u*} and p'_{*v*} are non-overlapping.

Definitions General statement Finite case Infinite case

General statement of the tiling problem

Definition (Tiling)

A tiling \mathcal{T} of a subset $D \subset \mathbb{Z}^2$ by a set of polyominoes \mathcal{P} is a set of couples $(p, \overrightarrow{u}) \in \mathcal{P} \times \mathbb{Z}^2$ such that :

- D is the union of the polyominoes $p_{\overrightarrow{u}}$.
- For any distinct pair (p, *u*), (p', *v*) ∈ *T*, p_{*u*} and p'_{*v*} are non-overlapping.

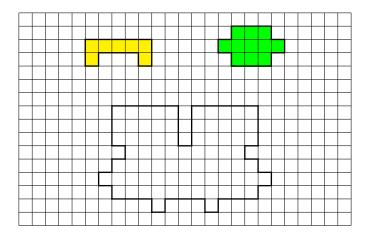
Definition (The Tiling Problem)

Given a set of polyominoes \mathcal{P} and a subset $D \subset \mathbb{Z}^2$. Does D admits a tiling by \mathcal{P} ?

Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Example

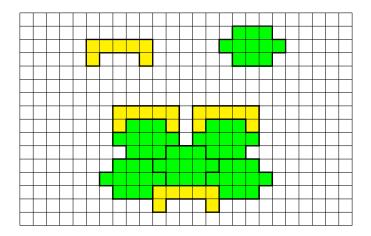
Definitions General statement Finite case Infinite case



Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Example

Definitions General statement Finite case Infinite case



Xavier Provençal On the problem of tiling the plane with a polyomino

Finite case

Definitions General statement Finite case Infinite case

Remark

The tiling problem with D finite is in NP.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Finite case

Definitions General statement Finite case Infinite case

Remark

The tiling problem with D finite is in NP.

Remark

The tiling problem with D finite and $\mathcal{P} = \{ \mathbf{B}, \mathbf{m} \}$ is in P.

(日) (同) (日) (日) (日)

Finite case

Definitions General statement Finite case Infinite case

Remark

The tiling problem with D finite is in NP.

Remark

The tiling problem with D finite and $\mathcal{P} = \{ \mathbf{B}, \mathbf{m} \}$ is in P.

Theorem (Garey, Johnson and Papadimitriou)

The tiling problem with D finite and $\mathcal{P} = \{ [], \mathbf{m} \}$ is NP-Complete.

イロト イポト イヨト イヨト 二日

Infinite case

Definitions General statement Finite case Infinite case

We concider the case where $D = \mathbb{Z}^2$ and \mathcal{P} is finite.

Infinite case

Definitions General statement Finite case Infinite case

We concider the case where $D = \mathbb{Z}^2$ and \mathcal{P} is finite.

Definition (Periodic Tiling)

A tiling \mathcal{T} is periodic if there exist two linearly independant vectors \overrightarrow{u} and \overrightarrow{v} such that \mathcal{T} is not changed by the corresponding translations.

Infinite case

Definitions General statement Finite case Infinite case

We concider the case where $D = \mathbb{Z}^2$ and \mathcal{P} is finite.

Definition (Periodic Tiling)

A tiling \mathcal{T} is periodic if there exist two linearly independent vectors \overrightarrow{u} and \overrightarrow{v} such that \mathcal{T} is not changed by the corresponding translations.

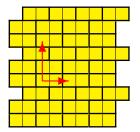
Definition (Half-Periodic Tiling)

A tiling \mathcal{T} is half-periodic if there exists a vectors \overrightarrow{u} such that \mathcal{T} is not changed by the corresponding translation.

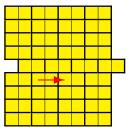
Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Example

Definitions General statement Finite case Infinite case



Periodic tiling



Half-periodic tiling

イロト イポト イヨト イヨ

Definitions General statement Finite case Infinite case

Half-Periodic implies periodic

Remark

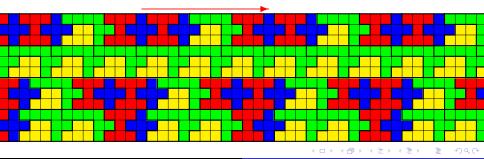
If there is an half-periodic tiling of the plane by \mathcal{P} , then there is also a periodic one.

Definitions General statement Finite case Infinite case

Half-Periodic implies periodic

Remark

If there is an half-periodic tiling of the plane by \mathcal{P} , then there is also a periodic one.

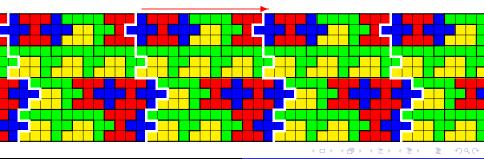


Definitions General statement Finite case Infinite case

Half-Periodic implies periodic

Remark

If there is an half-periodic tiling of the plane by \mathcal{P} , then there is also a periodic one.



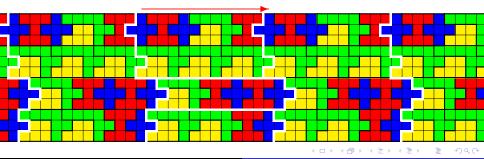
Xavier Provençal On the problem of tiling the plane with a polyomino

Definitions General statement Finite case Infinite case

Half-Periodic implies periodic

Remark

If there is an half-periodic tiling of the plane by \mathcal{P} , then there is also a periodic one.



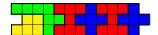
Xavier Provençal On the problem of tiling the plane with a polyomino

Definitions General statement Finite case Infinite case

Half-Periodic implies periodic

Remark

If there is an half-periodic tiling of the plane by \mathcal{P} , then there is also a periodic one.

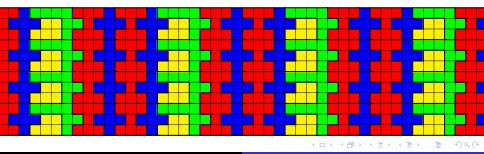


Definitions General statement Finite case Infinite case

Half-Periodic implies periodic

Remark

If there is an half-periodic tiling of the plane by \mathcal{P} , then there is also a periodic one.



Definitions General statement Finite case Infinite case

Nonperiodic tilings

Theorem (Berger, 1966)

The tiling problem with \mathcal{P} finite and $D = \mathbb{Z}^2$ is undecidable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definitions General statement Finite case Infinite case

Nonperiodic tilings

Theorem (Berger, 1966)

The tiling problem with \mathcal{P} finite and $D = \mathbb{Z}^2$ is undecidable.

Corollary

There are some finite sets \mathcal{P} such that tilings of the plane by \mathcal{P} do exist and are all nonperiodic.

Definitions General statement Finite case Infinite case

Tilings with one polyomino

Definition

A polyomino p is exact if the set $\mathcal{P} = \{p\}$ tiles the plane.

(日) (同) (日) (日) (日)

Definitions General statement Finite case Infinite case

Tilings with one polyomino

Definition

A polyomino p is exact if the set $\mathcal{P} = \{p\}$ tiles the plane.

Definition

A tiling of the plane T by an exact polyomino p is regular if there exist two vectors \overrightarrow{u} and \overrightarrow{v} such that

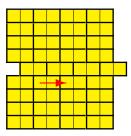
$$\mathcal{T} = \{(p, i \overrightarrow{u} + j \overrightarrow{v}) | i, j \in \mathbb{Z}^2\}$$

(日) (同) (三) (三)

Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

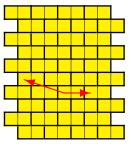
Examples

Definitions General statement Finite case Infinite case



Half-periodic tiling

Periodic tiling



Regular tiling

э

イロト イポト イヨト イヨ

Definitions General statement Finite case Infinite case

Tilings with one polyomino

Theorem (Wijshoff and Van Leeuven, 1984)

If a polyomino p is exact, then there exists a regular tiling of the plane by p.

(日) (同) (三) (三)

Definitions General statement Finite case Infinite case

Tilings with one polyomino

Theorem (Wijshoff and Van Leeuven, 1984)

If a polyomino p is exact, then there exists a regular tiling of the plane by p.

Corollary

The tiling problem with $|\mathcal{P}| = 1$ and $D = \mathbb{Z}^2$ is decidable in polynomial time.

(日) (同) (日) (日) (日)

Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Example

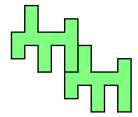
General statement Finite case Infinite case

イロト イポト イヨト イヨト

Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Example

Definitions General statement Finite case Infinite case



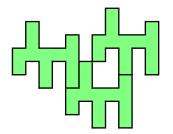
<ロ> <同> <同> < 同> < 同>

æ

Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Example

Definitions General statement Finite case Infinite case



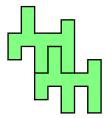
<ロ> <同> <同> < 同> < 同>

æ

Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Example

Definitions General statement Finite case Infinite case

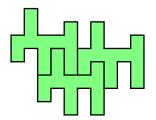


<ロ> (日) (日) (日) (日) (日)

Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Example

Definitions General statement Finite case Infinite case

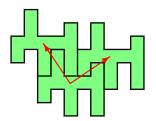


<ロ> (日) (日) (日) (日) (日)

Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Example

Definitions General statement Finite case Infinite case

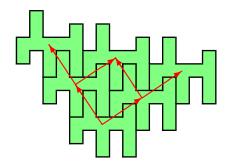


<ロ> (日) (日) (日) (日) (日)

Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Example

Definitions General statement Finite case Infinite case

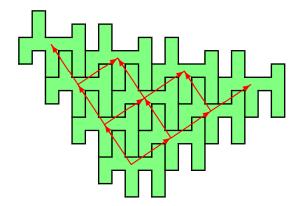


<ロ> <同> <同> < 同> < 同>

Beauquier-Nivat characterization A fast algorithm to detect exact polyominoes

Example

Definitions General statement Finite case Infinite case



Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Outline

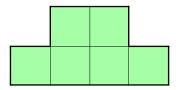
2 Beauquier-Nivat characterization

3 A fast algorithm to detect exact polyominoes

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Coding the boundary of a polyomino

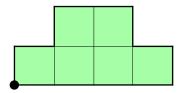
$$\Sigma = \left\{a, \overline{a}, b, \overline{b}\right\}$$



Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Coding the boundary of a polyomino

$$\Sigma = \left\{a, \overline{a}, b, \overline{b}
ight\}$$

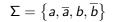


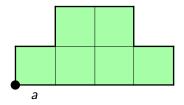
w =

イロト イポト イヨト イヨト

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Coding the boundary of a polyomino



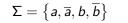


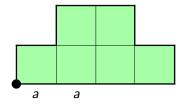
w = a

(日) (同) (三) (三)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Coding the boundary of a polyomino



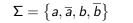


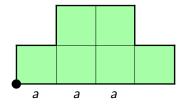
w = a a

(日) (同) (三) (三)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Coding the boundary of a polyomino

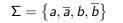


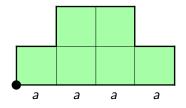


w = a a a

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Coding the boundary of a polyomino

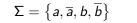


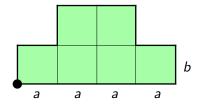


w = a a a a

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Coding the boundary of a polyomino

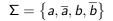


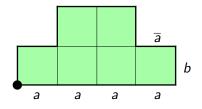


w = a a a a b

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Coding the boundary of a polyomino





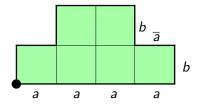
 $w = a a a a b \overline{a}$

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Coding the boundary of a polyomino

$$\Sigma = \left\{a, \overline{a}, b, \overline{b}\right\}$$

$$egin{array}{ccc} a
ightarrow & b \uparrow \ \overline{a} \leftarrow & \overline{b} \downarrow \end{array}$$

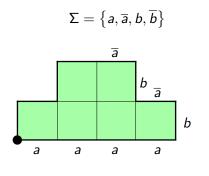


 $w = a a a a b \overline{a} b$

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

 $\overline{a} \leftarrow$

Coding the boundary of a polyomino



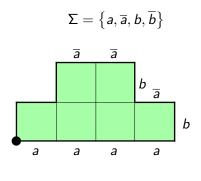
 $w = a a a a b \overline{a} b \overline{a}$

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

 $\overline{a} \leftarrow$

 $b\uparrow$ $\overline{b}\downarrow$

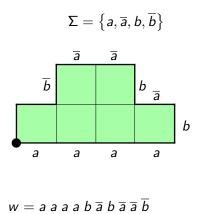
Coding the boundary of a polyomino



 $w = a a a a b \overline{a} b \overline{a} \overline{a}$

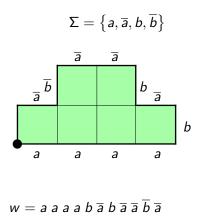
Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Coding the boundary of a polyomino



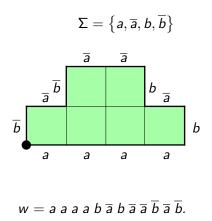
Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Coding the boundary of a polyomino



Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

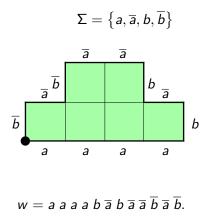
Coding the boundary of a polyomino



- 4 同 🕨 - 4 目 🕨 - 4 目

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Coding the boundary of a polyomino



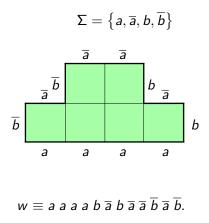
$$\begin{bmatrix} a \to & b \uparrow \\ \overline{a} \leftarrow & \overline{b} \downarrow \end{bmatrix}$$

Notation : $w \equiv w'$ notes that w and w' are conjugate.

There exist $u, v \in \Sigma^*$ such that : w = uv and w' = vu.

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Coding the boundary of a polyomino



$$\begin{bmatrix} a \to & b \uparrow \\ \overline{a} \leftarrow & \overline{b} \downarrow \end{bmatrix}$$

Notation : $w \equiv w'$ notes that w and w' are conjugate.

There exist $u, v \in \Sigma^*$ such that : w = uv and w' = vu.

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

(a)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\widehat{}$ be the involutive antimorphism defined as $\widehat{} = -\circ \widetilde{}$.

Let
$$u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$$
 be such that $w = uv$,
 $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

(a)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let
$$u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$$
 be such that $w = uv$,
 $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

(a)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\widehat{}$ be the involutive antimorphism defined as $\widehat{} = -\circ \widetilde{}$.

Let
$$u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$$
 be such that $w = uv$,
 $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

$$u = a a b a \overline{b} a b$$

(a)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let
$$u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$$
 be such that $w = uv$,
 $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

$$u = a a b a \overline{b} a b \qquad lacksquare$$

(a)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let
$$u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$$
 be such that $w = uv$,
 $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

$$u = a a b a \overline{b} a b \qquad \bullet$$

(a)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let
$$u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$$
 be such that $w = uv$,
 $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

$$u = a a b a \overline{b} a b$$

(a)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let
$$u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$$
 be such that $w = uv$,
 $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

(a)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let
$$u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$$
 be such that $w = uv$,
 $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

イロト イポト イヨト イヨト

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let
$$u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$$
 be such that $w = uv$,
 $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

$$u = a a b a \overline{b} a b$$

(a)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let
$$u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$$
 be such that $w = uv$,
 $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

$$u = a a b a \overline{b} a b$$

イロン 不同 とくほう イロン

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let $u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$ be such that w = uv, $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

$$\widehat{u} = \overline{b} \,\overline{a} \, b \,\overline{a} \,\overline{b} \,\overline{a} \,\overline{a}$$

< 日 > < 同 > < 三 > < 三 >

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let $u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$ be such that w = uv, $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

$$u = a a b a \overline{b} a b$$
$$\bullet \square \square \bullet$$
$$\hat{u} = \overline{b} \overline{a} b \overline{a} \overline{b} \overline{a} \overline{a}$$

(日)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let $u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$ be such that w = uv, $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

$$u = a a b a \overline{b} a b$$
$$\bullet \square \square \square$$
$$\hat{u} = \overline{b} \overline{a} b \overline{a} \overline{b} \overline{a} \overline{a}$$

< 日 > < 同 > < 三 > < 三 >

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let $u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$ be such that w = uv, $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let $u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$ be such that w = uv, $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let $u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$ be such that w = uv, $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

$$u = a a b a \overline{b} a b$$
$$\bullet \square \square \square \square$$
$$\widehat{u} = \overline{b} \overline{a} b \overline{a} \overline{b} \overline{a} \overline{a}$$

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let $u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$ be such that w = uv, $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let $u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$ be such that w = uv, $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

$$u = a a b a \overline{b} a b$$
$$\bullet \square \square \bullet$$
$$\widehat{u} = \overline{b} \overline{a} b \overline{a} \overline{b} \overline{a} \overline{a} \overline{a}$$
$$\square \square \bullet$$

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let $u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$ be such that w = uv, $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{\widehat{w}}$.

$$u = a a b a \overline{b} a b$$
$$u = \overline{b} \overline{a} b \overline{a} \overline{b} \overline{a} \overline{a} \overline{a}$$

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Characterization

Definition

Let $\hat{}$ be the involutive antimorphism defined as $\hat{} = -\circ \tilde{}$.

Let
$$u, v, w \in \Sigma^* = \{a, \overline{a}, b, \overline{b}\}^*$$
 be such that $w = uv$,
 $\widehat{w} = \widehat{uv} = \widehat{vu}$ and $w = \widehat{w}$.

$$u = a a b a \overline{b} a b$$
$$u = \overline{b} \overline{a} b \overline{a} \overline{b} \overline{a} \overline{a}$$

Theorem (Beauquier and Nivat, 1991)

A polyomino p is exact if and only its boundary word $w \equiv XYZ\hat{X}\hat{Y}\hat{Z}$ for some $X, Y, Z \in \Sigma^*$.

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Neighbouring

Definition

Two polyominoes p and q are simply neighbouring if

- They are adjacent.
- They don't overlap.
- They don't form a hole.

< 日 > < 同 > < 三 > < 三 >

Neighbouring

Definition

Two polyominoes p and q are simply neighbouring if

Definitions

- They are adjacent.
- They don't overlap.
- They don't form a hole.

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Triad

Definition

Three polyominoes p, q and r form a triad if

- They are two by two simply neighbouring.
- They don't form a hole.

< 日 > < 同 > < 三 > < 三 >

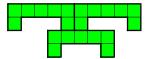
Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Triad

Definition

Three polyominoes p, q and r form a triad if

- They are two by two simply neighbouring.
- They don't form a hole.



< 日 > < 同 > < 三 > < 三 >

Surrounding

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $(p_0, p_1, \ldots, p_{k-1})$ such that for every i from 0 to k - 1, the polyominoes p, p_i and p_{i+1} form a triad.

< 日 > < 同 > < 三 > < 三 >

Surrounding

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $(p_0, p_1, \ldots, p_{k-1})$ such that for every i from 0 to k - 1, the polyominoes p, p_i and p_{i+1} form a triad.

< 日 > < 同 > < 三 > < 三 >

Surrounding

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $(p_0, p_1, \ldots, p_{k-1})$ such that for every i from 0 to k - 1, the polyominoes p, p_i and p_{i+1} form a triad.

< 日 > < 同 > < 三 > < 三 >

Surrounding

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $(p_0, p_1, \ldots, p_{k-1})$ such that for every i from 0 to k - 1, the polyominoes p, p_i and p_{i+1} form a triad.

< 日 > < 同 > < 三 > < 三 >

Surrounding

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $(p_0, p_1, \ldots, p_{k-1})$ such that for every i from 0 to k - 1, the polyominoes p, p_i and p_{i+1} form a triad.

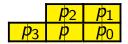
< 日 > < 同 > < 三 > < 三 >

Surrounding

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $(p_0, p_1, \ldots, p_{k-1})$ such that for every i from 0 to k - 1, the polyominoes p, p_i and p_{i+1} form a triad.



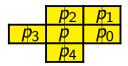
< 日 > < 同 > < 三 > < 三 >

Surrounding

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Definition

A surrounding of the polyomino p is an ordered sequence of translated copies $(p_0, p_1, \ldots, p_{k-1})$ such that for every i from 0 to k - 1, the polyominoes p, p_i and p_{i+1} form a triad.



(日) (同) (三) (三)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and tilings

Proposition

A polyomino p is exact if and only if it admits a surrounding.

(日) (同) (三) (三)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and tilings

Proposition

A polyomino p is exact if and only if it admits a surrounding.

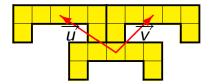
(日) (同) (三) (三)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and tilings

Proposition

A polyomino p is exact if and only if it admits a surrounding.



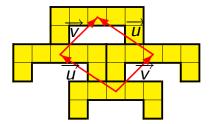
(日) (同) (三) (三)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and tilings

Proposition

A polyomino p is exact if and only if it admits a surrounding.



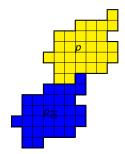
(日) (同) (三) (三)

Example

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Example

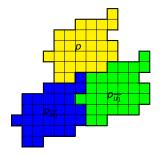
Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization



< ロ > < 同 > < 回 > < 回 >

Example

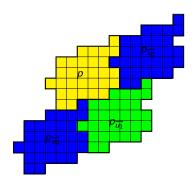
Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization



< ロ > < 同 > < 回 > < 回 >

Example

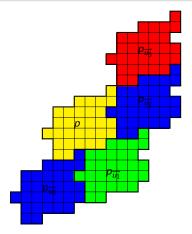
Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization



Xavier Provençal On the problem of tiling the plane with a polyomino

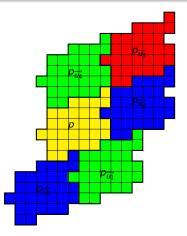
Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Example



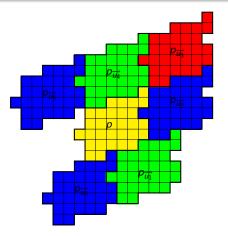
Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Example



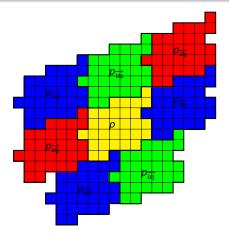
Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Example



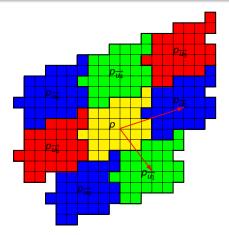
Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Example



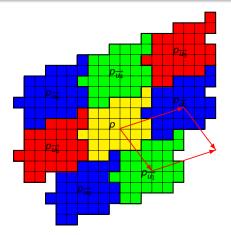
Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Example



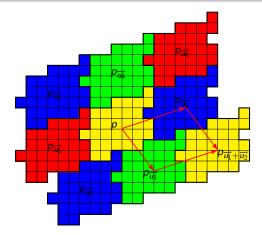
Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Example



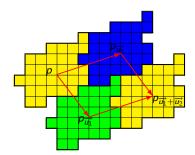
Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Example



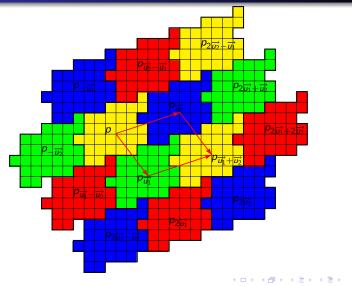
Example

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization



Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Example



Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

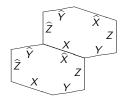
A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.



(日)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.

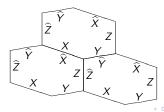


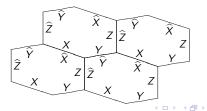
Image: A image: A

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.



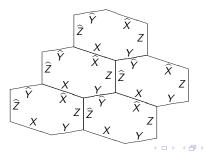
- ∢ ≣ ▶

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.



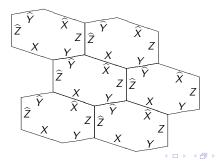
.⊒ . ►

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.



- ₹ 🖬 🕨

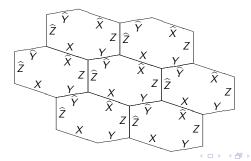
-

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.



< ∃ >

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.

Let $\overrightarrow{u}, \overrightarrow{v} \in \mathbb{Z}^2$ be such that $\mathcal{T} = \{(p, i \overrightarrow{u} + j \overrightarrow{v}) | i, j \in \mathbb{Z}^2\}$ forms a regular tiling and that $p, p_{\overrightarrow{u}}, p_{\overrightarrow{v}}$ form a triad, then $(p_{\overrightarrow{u}}, p_{\overrightarrow{v}}, p_{\overrightarrow{v}-\overrightarrow{u}}, p_{-\overrightarrow{u}}, p_{-\overrightarrow{v}}, p_{\overrightarrow{u}-\overrightarrow{v}})$ form a surrounding of p.

(日) (同) (三) (三)

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

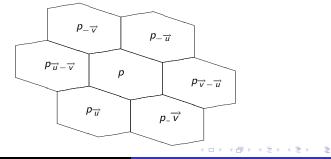
A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.



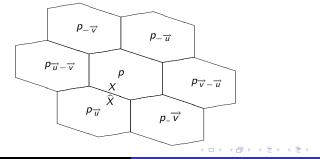
Xavier Provençal On the problem of tiling the plane with a polyomino

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.



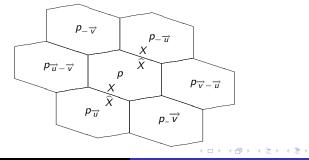
Xavier Provençal On the problem of tiling the plane with a polyomino

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.

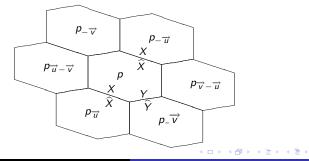


Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.



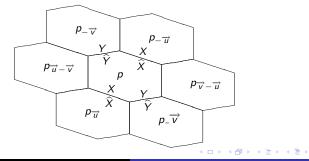
Xavier Provençal On the problem of tiling the plane with a polyomino

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.

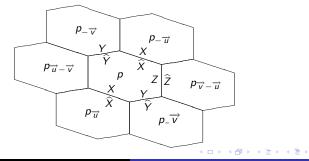


Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.

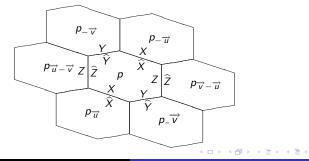


Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Surroundings and the factorization

Proposition

A polyomino p admits a surrounding if and only if its boundary word $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$ for some $X, Y, Z \in \Sigma^*$.



Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Pseudo-square and pseudo-hexagons

Definition

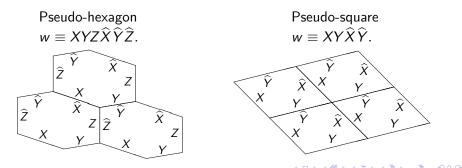
An exact polyomino p with Beauquier-Nivat factorization $XYZ\widehat{X}\widehat{Y}\widehat{Z}$ is called a pseudo-square if one of the factors X, Y, Z is the empty word. It is called a pseudo-hexagon otherwise.

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Pseudo-square and pseudo-hexagons

Definition

An exact polyomino p with Beauquier-Nivat factorization $XYZ\hat{X}\hat{Y}\hat{Z}$ is called a pseudo-square if one of the factors X, Y, Z is the empty word. It is called a pseudo-hexagon otherwise.



Complexity

Let n be the length of the word coding the boundary of a polyomino p.

Remark

The Beauquier-Nivat characterization provides a naive algorithm to determine if p is exact in $\mathcal{O}(n^4)$.

Polyominoes and words Definitions Surroundings and tilings Surroundings and the factorization

Complexity

Let n be the length of the word coding the boundary of a polyomino p.

Remark

The Beauquier-Nivat characterization provides a naive algorithm to determine if p is exact in $\mathcal{O}(n^4)$.

Remark

This problem admits $\Omega(n)$ as a lower bound.

Complexity

Let n be the length of the word coding the boundary of a polyomino p.

Remark

The Beauquier-Nivat characterization provides a naive algorithm to determine if p is exact in $\mathcal{O}(n^4)$.

Remark

This problem admits $\Omega(n)$ as a lower bound.

Theorem (Gambini and Vuillon, 2003)

There is an algorithm to test if a polyomino satisfies the Beauquier-Nivat characterization in $\mathcal{O}(n^2)$.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Outline

2 Beauquier-Nivat characterization

3 A fast algorithm to detect exact polyominoes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Definition

Let A be a factor of the word w coding a polyomino p. A is admissible if

- $w \equiv Ax\widehat{A}y$, for x, y such that |x| = |y|.
- A is maximal, that is, $first(x) \neq \overline{last(x)}$ and $first(y) \neq \overline{last(y)}$.

(日) (同) (三) (三)

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Proposition

Let \mathcal{A} be the set of all admissible factors overlapping a position α in w and $\widehat{\mathcal{A}}$ be the set of their respective homologous factors. Then, there is at least one position in w that is not covered by any element of $\mathcal{A} \cup \widehat{\mathcal{A}}$.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Proposition

Let \mathcal{A} be the set of all admissible factors overlapping a position α in w and $\widehat{\mathcal{A}}$ be the set of their respective homologous factors. Then, there is at least one position in w that is not covered by any element of $\mathcal{A} \cup \widehat{\mathcal{A}}$.

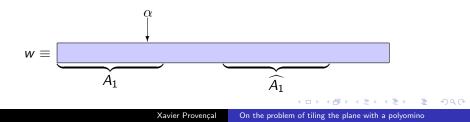
< ロ > < 同 > < 回 > < 回 >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Proposition

Let \mathcal{A} be the set of all admissible factors overlapping a position α in w and $\widehat{\mathcal{A}}$ be the set of their respective homologous factors. Then, there is at least one position in w that is not covered by any element of $\mathcal{A} \cup \widehat{\mathcal{A}}$.

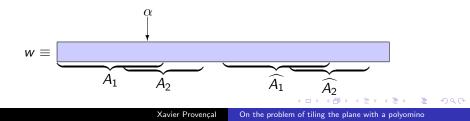


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Proposition

Let \mathcal{A} be the set of all admissible factors overlapping a position α in w and $\widehat{\mathcal{A}}$ be the set of their respective homologous factors. Then, there is at least one position in w that is not covered by any element of $\mathcal{A} \cup \widehat{\mathcal{A}}$.

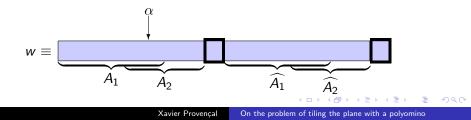


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

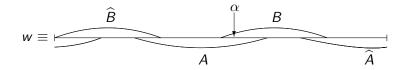
Proposition

Let \mathcal{A} be the set of all admissible factors overlapping a position α in w and $\widehat{\mathcal{A}}$ be the set of their respective homologous factors. Then, there is at least one position in w that is not covered by any element of $\mathcal{A} \cup \widehat{\mathcal{A}}$.



Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

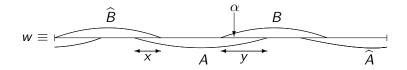
Admissible factors



イロト イポト イヨト イヨト

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

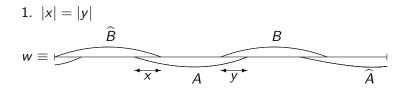
Admissible factors



イロト イポト イヨト イヨト

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

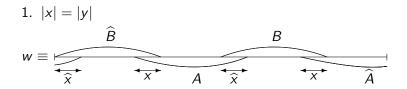
Admissible factors



イロト イポト イヨト イヨト

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

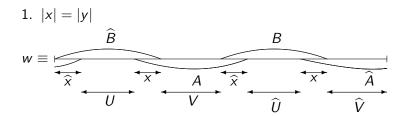
Admissible factors



イロト イポト イヨト イヨト

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

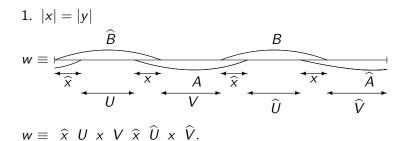
Admissible factors



イロト イポト イヨト イヨト

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

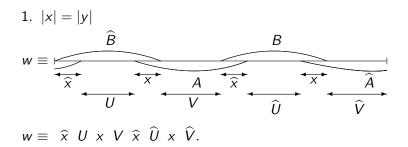
Admissible factors



(日) (同) (三) (三)

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



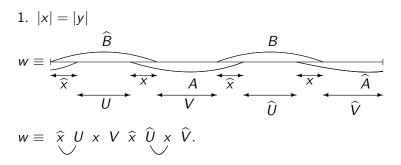
Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005) In a non-intersecting closed path on a square lattice,

#(left turns) - #(right turns) = 4.

イロン イボン イヨン イヨン

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

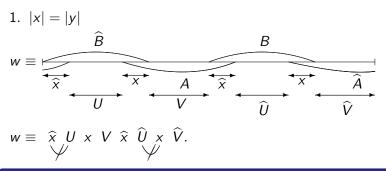


Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005) In a non-intersecting closed path on a square lattice,

#(left turns) - #(right turns) = 4.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

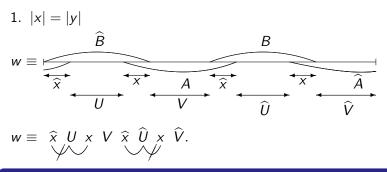


Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005) In a non-intersecting closed path on a square lattice,

#(left turns) - #(right turns) = 4.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

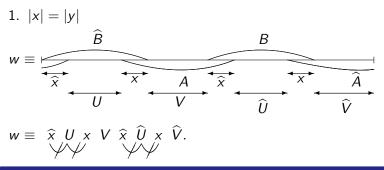


Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005) In a non-intersecting closed path on a square lattice,

#(left turns) - #(right turns) = 4.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

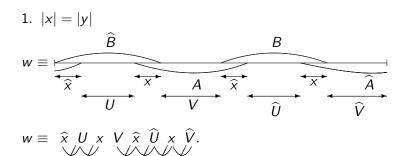


Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005) In a non-intersecting closed path on a square lattice,

#(left turns) - #(right turns) = 4.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

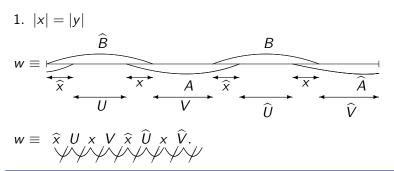


Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005) In a non-intersecting closed path on a square lattice,

#(left turns) - #(right turns) = 4.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

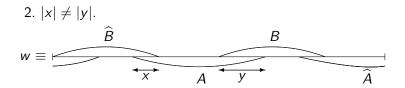


Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005) In a non-intersecting closed path on a square lattice,

#(left turns) - #(right turns) = 4.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

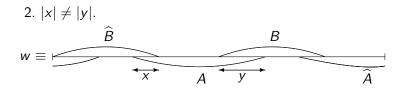
Admissible factors



イロト イポト イヨト イヨト

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

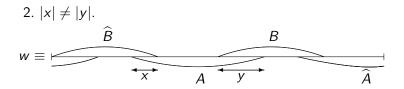


$$w \equiv \alpha \ \beta \ \gamma$$
, where $\overrightarrow{\beta} = \overrightarrow{0}$.

イロト イポト イヨト イヨト

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

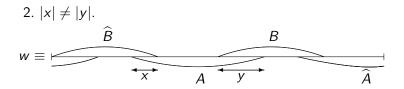


$$w \equiv \alpha \ \beta \ \gamma$$
, where $\overrightarrow{\beta} = \overrightarrow{0}$.

イロト イポト イヨト イヨト

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

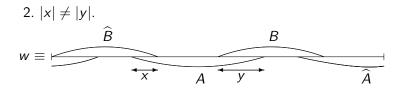


$$w \equiv \alpha \beta \gamma$$
, where $\overrightarrow{\beta} = \overrightarrow{0}$.

イロト イポト イヨト イヨト

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

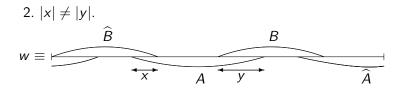


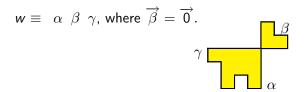
$$w \equiv \alpha \ \beta \ \gamma, \text{ where } \overrightarrow{\beta} = \overrightarrow{0}.$$

イロト イポト イヨト イヨト

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

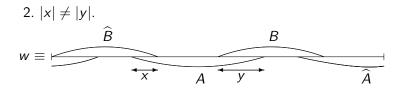
Admissible factors





Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

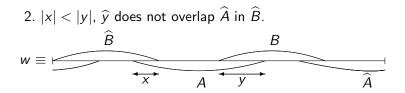


$$w \equiv \alpha \beta \gamma$$
, where $\vec{\beta} = \vec{0}$.

(日) (同) (三) (三)

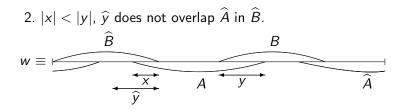
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



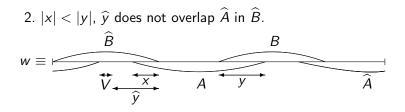
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



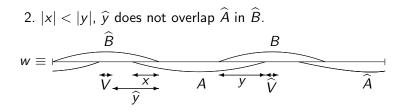
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



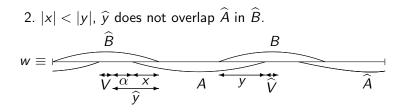
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



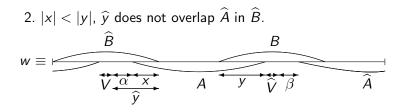
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



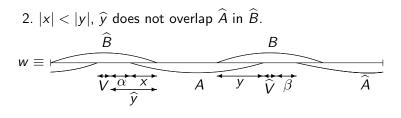
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

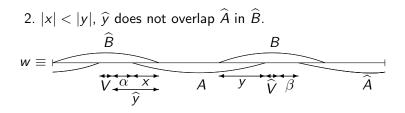
Admissible factors

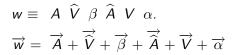


 $w \equiv A \hat{V} \beta \hat{A} V \alpha.$

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

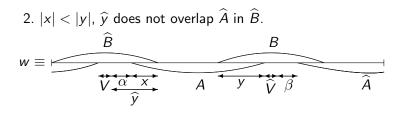


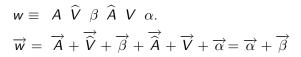


< 🗇 > < 🖃 >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

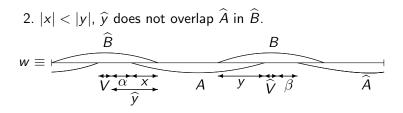


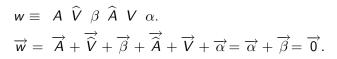


- 4 同 ト 4 ヨ ト 4 ヨ

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

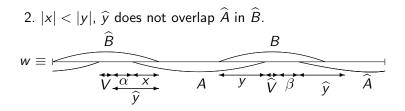


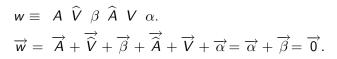


- 4 同 🕨 - 4 目 🕨 - 4 目

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

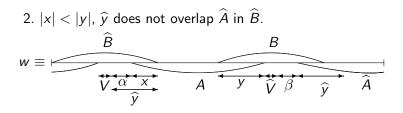


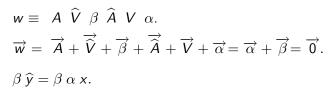


- 4 同 🕨 - 4 目 🕨 - 4 目

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

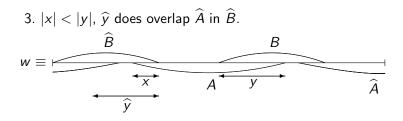




- 4 同 1 4 日 1 4 日

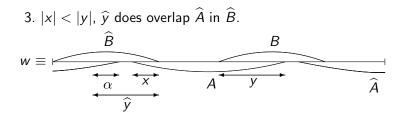
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



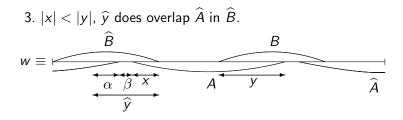
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



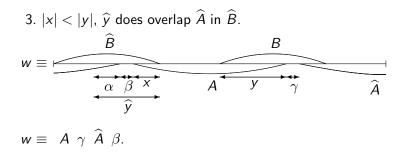
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

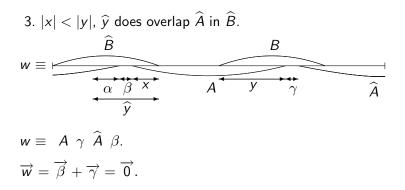
Admissible factors



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

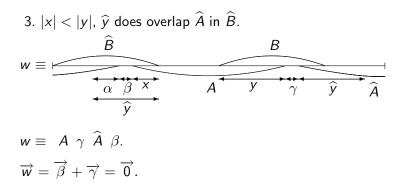
Admissible factors



▲ 同 ▶ → 三 ▶

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

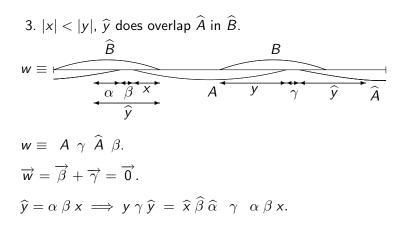


▲ 同 ▶ → 三 ▶

-

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

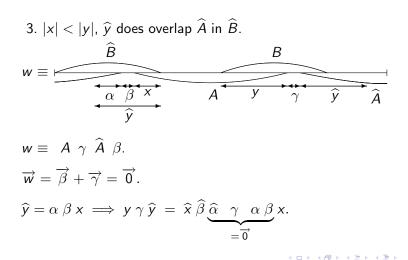
Admissible factors



- 4 同 🕨 - 4 目 🕨 - 4 目

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Corollary

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$. Then, X, Y and Z are admissible.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Corollary

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$. Then, X, Y and Z are admissible.

•
$$w \equiv Ax\widehat{A}y$$
, for x, y such that $|x| = |y|$.

• A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Corollary

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv Ax\widehat{A}y$, for x, y such that |x| = |y|. Direct consequence of the fact that $|u| = |\widehat{u}|$ for all $u \in \Sigma^*$.
- A is maximal, that is, $first(x) \neq \overline{last(x)}$ and $first(y) \neq \overline{last(y)}$.

< ロ > < 同 > < 回 > < 回 >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Corollary

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv Ax\widehat{A}y$, for x, y such that |x| = |y|. Direct consequence of the fact that $|u| = |\widehat{u}|$ for all $u \in \Sigma^*$.
- A is maximal, that is, $first(x) \neq \overline{last(x)}$ and $first(y) \neq \overline{last(y)}$.

By contradiction, assume that X is not maximal, then $first(YZ) = \overline{last(YZ)}$.

(日) (同) (三) (三)

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Corollary

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv Ax\widehat{A}y$, for x, y such that |x| = |y|. Direct consequence of the fact that $|u| = |\widehat{u}|$ for all $u \in \Sigma^*$.
- A is maximal, that is, $first(x) \neq \overline{last(x)}$ and $first(y) \neq \overline{last(y)}$.

By contradiction, assume that X is not maximal, then $first(YZ) = \overline{last(YZ)}$.

 $YZ = \alpha Y'Z'\overline{\alpha}$

イロト イポト イヨト イヨト

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Corollary

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv Ax\widehat{A}y$, for x, y such that |x| = |y|. Direct consequence of the fact that $|u| = |\widehat{u}|$ for all $u \in \Sigma^*$.
- A is maximal, that is, $first(x) \neq \overline{last(x)}$ and $first(y) \neq \overline{last(y)}$.

By contradiction, assume that X is not maximal, then $first(YZ) = \overline{last(YZ)}$.

$$YZ = \alpha Y'Z'\overline{\alpha} \implies \widehat{Y}\widehat{Z} = \widehat{\alpha Y'}\overline{Z'\overline{\alpha}} = \widehat{Y'}\overline{\alpha}\alpha\widehat{Z'}.$$

(日) (同) (三) (三)

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Corollary

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$. Then, X, Y and Z are admissible.

- $w \equiv Ax\widehat{A}y$, for x, y such that |x| = |y|. Direct consequence of the fact that $|u| = |\widehat{u}|$ for all $u \in \Sigma^*$.
- A is maximal, that is, first(x) ≠ last(x) and first(y) ≠ last(y).
 w ≡ XYX Ŷ with Y = αY'α.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

Corollary

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$. Then, X, Y and Z are admissible.

• $w \equiv Ax\widehat{A}y$, for x, y such that |x| = |y|. Direct consequence of the fact that $|u| = |\widehat{u}|$ for all $u \in \Sigma^*$.

• A is maximal, that is, $\operatorname{first}(x) \neq \operatorname{last}(x)$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$. $w \equiv XY\widehat{X}\widehat{Y}$ with $Y = \alpha Y'\overline{\alpha}$. X Y \widehat{X} \widehat{Y} $w \equiv$

< ロ > < 同 > < 回 > < 回 >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

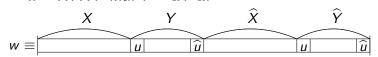
Admissible factors

Corollary

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$. Then, X, Y and Z are admissible.

• $w \equiv Ax\widehat{A}y$, for x, y such that |x| = |y|. Direct consequence of the fact that $|u| = |\widehat{u}|$ for all $u \in \Sigma^*$.

• A is maximal, that is, $\operatorname{first}(x) \neq \overline{\operatorname{last}(x)}$ and $\operatorname{first}(y) \neq \overline{\operatorname{last}(y)}$. $w = XY\widehat{X}\widehat{Y}$ with $Y = \alpha Y'\overline{\alpha}$



< ロ > < 同 > < 回 > < 回 >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

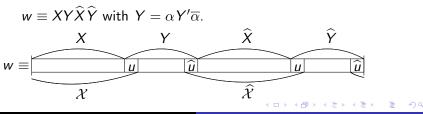
Admissible factors

Corollary

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$. Then, X, Y and Z are admissible.

• $w \equiv Ax\widehat{A}y$, for x, y such that |x| = |y|. Direct consequence of the fact that $|u| = |\widehat{u}|$ for all $u \in \Sigma^*$.

• A is maximal, that is, $first(x) \neq \overline{last(x)}$ and $first(y) \neq \overline{last(y)}$.



Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

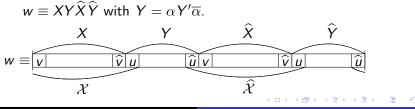
Admissible factors

Corollary

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$. Then, X, Y and Z are admissible.

• $w \equiv Ax\widehat{A}y$, for x, y such that |x| = |y|. Direct consequence of the fact that $|u| = |\widehat{u}|$ for all $u \in \Sigma^*$.

• A is maximal, that is, $first(x) \neq \overline{last(x)}$ and $first(y) \neq \overline{last(y)}$.



Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

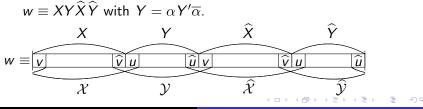
Admissible factors

Corollary

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$. Then, X, Y and Z are admissible.

• $w \equiv Ax\widehat{A}y$, for x, y such that |x| = |y|. Direct consequence of the fact that $|u| = |\widehat{u}|$ for all $u \in \Sigma^*$.

• A is maximal, that is, $first(x) \neq \overline{last(x)}$ and $first(y) \neq \overline{last(y)}$.



Xavier Provençal On the problem of tiling the plane with a polyomino

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

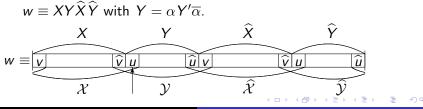
Admissible factors

Corollary

Let w a word coding a polyomino p with Beauquier-Nivat's factorization $w \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}$. Then, X, Y and Z are admissible.

• $w \equiv Ax\widehat{A}y$, for x, y such that |x| = |y|. Direct consequence of the fact that $|u| = |\widehat{u}|$ for all $u \in \Sigma^*$.

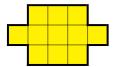
• A is maximal, that is, $first(x) \neq \overline{last(x)}$ and $first(y) \neq \overline{last(y)}$.



Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

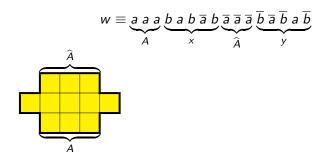
Admissible factors

$w \equiv a \, a \, a \, b \, a \, b \, \overline{a} \, \overline{b} \, \overline{a} \, \overline{b} \, \overline{a} \, \overline{b}$



Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

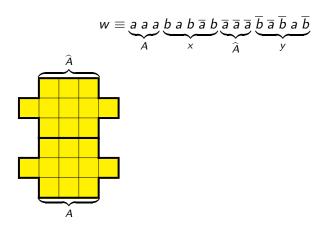
Admissible factors



(日) (同) (三) (三)

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



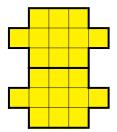
Xavier Provençal On the problem of tiling the plane with a polyomino

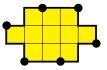
(日) (同) (三) (三)

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors

$$w \equiv \underbrace{a}_{X} \underbrace{a}_{Y} \underbrace{b}_{Z} \underbrace{b}_{\overline{a}} \underbrace{b}_{\overline{a}} \overline{a}_{\overline{a}} \overline{b}_{\overline{a}} \overline{b}_{\overline{a$$

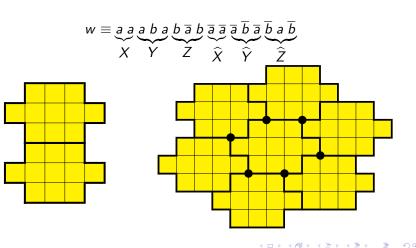




< ロ > < 同 > < 回 > < 回 >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Admissible factors



Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

Given a position α in the word w coding a polyomino, all the admissible factors overlapping α can be listed in linear time.

(日) (同) (三) (三)

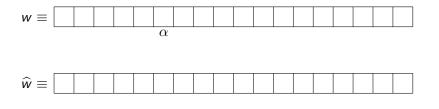
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

Given a position α in the word w coding a polyomino, all the admissible factors overlapping α can be listed in linear time.

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

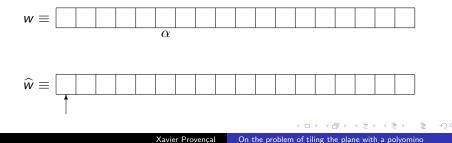


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

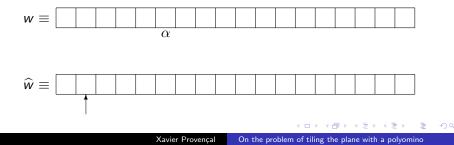


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

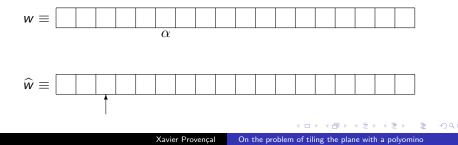


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

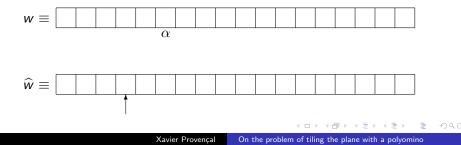


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

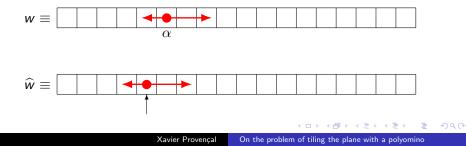


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

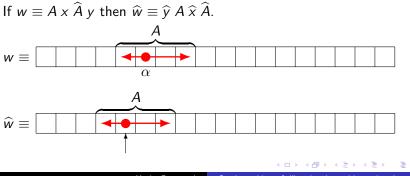


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

Given a position α in the word w coding a polyomino, all the admissible factors overlapping α can be listed in linear time.

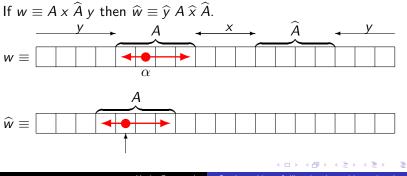


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

Given a position α in the word w coding a polyomino, all the admissible factors overlapping α can be listed in linear time.

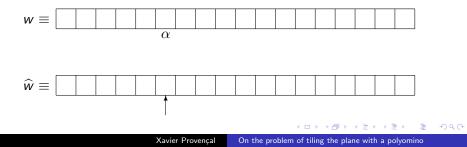


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

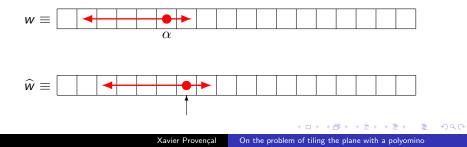


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

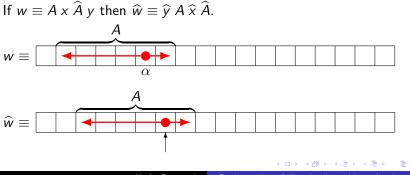


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

Given a position α in the word w coding a polyomino, all the admissible factors overlapping α can be listed in linear time.

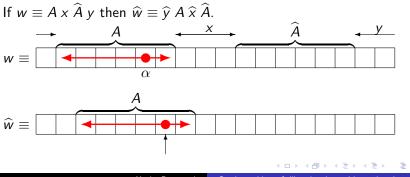


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

Given a position α in the word w coding a polyomino, all the admissible factors overlapping α can be listed in linear time.

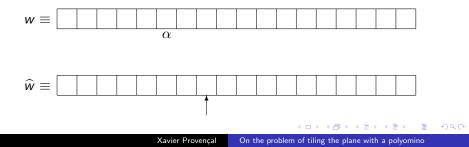


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

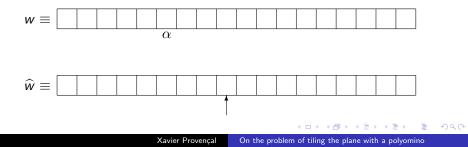


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

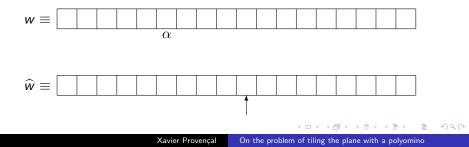


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

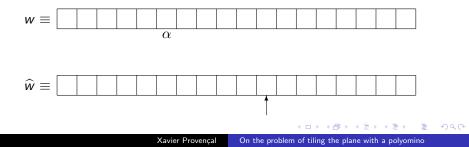


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

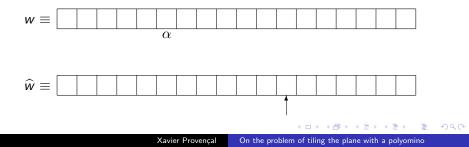


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

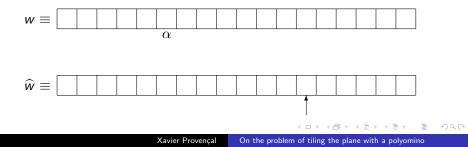


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.

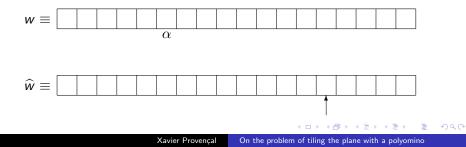


Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.



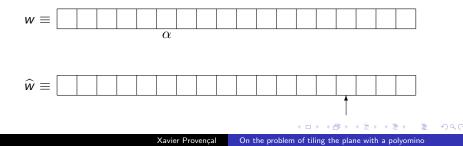
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

Given a position α in the word w coding a polyomino, all the admissible factors overlapping α can be listed in linear time.

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.



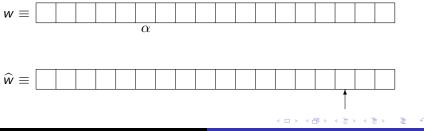
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

Given a position α in the word w coding a polyomino, all the admissible factors overlapping α can be listed in linear time.

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.



Xavier Provençal On the problem of tiling the plane with a polyomino

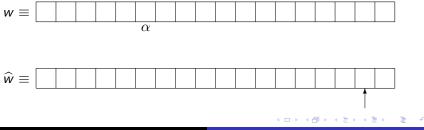
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

Given a position α in the word w coding a polyomino, all the admissible factors overlapping α can be listed in linear time.

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.



Xavier Provençal On the problem of tiling the plane with a polyomino

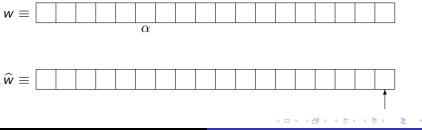
Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Listing admissible factors

Lemma

Given a position α in the word w coding a polyomino, all the admissible factors overlapping α can be listed in linear time.

If
$$w \equiv A \times \widehat{A} y$$
 then $\widehat{w} \equiv \widehat{y} A \widehat{x} \widehat{A}$.



Xavier Provençal On the problem of tiling the plane with a polyomino

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-squares

Theorem

Let w be the boundary of p. Determining if w codes a pseudo-square is decidable in linear time.

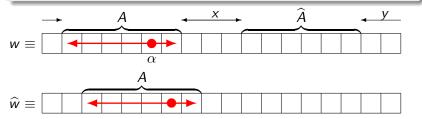
э

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-squares

Theorem

Let w be the boundary of p. Determining if w codes a pseudo-square is decidable in linear time.



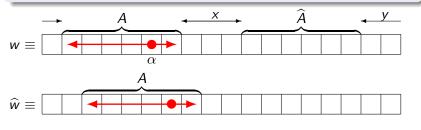
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-squares

Theorem

Let w be the boundary of p. Determining if w codes a pseudo-square is decidable in linear time.



If $x = \hat{y}$ then $w \equiv XY\hat{X}\hat{Y}$.

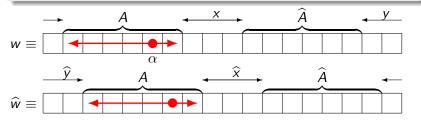
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-squares

Theorem

Let w be the boundary of p. Determining if w codes a pseudo-square is decidable in linear time.



If
$$x = \hat{y}$$
 then $w \equiv XY\hat{X}\hat{Y}$.
Since $w \equiv A \times \hat{A} y$ then $\hat{w} \equiv \hat{y} A \hat{x} \hat{A}$.

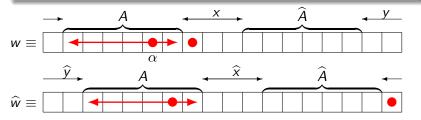
< ロ > < 同 > < 回 > < 回 >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-squares

Theorem

Let w be the boundary of p. Determining if w codes a pseudo-square is decidable in linear time.



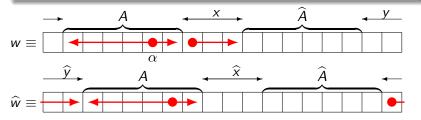
If
$$x = \hat{y}$$
 then $w \equiv XY\hat{X}\hat{Y}$.
Since $w \equiv A \times \hat{A} y$ then $\hat{w} \equiv \hat{y} A \hat{x} \hat{A}$.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-squares

Theorem

Let w be the boundary of p. Determining if w codes a pseudo-square is decidable in linear time.



If
$$x = \hat{y}$$
 then $w \equiv XY\hat{X}\hat{Y}$.
Since $w \equiv A \times \hat{A} y$ then $\hat{w} \equiv \hat{y} A \hat{x} \hat{A}$.

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

k-square-free words

Definition

A word w is k-square-free if

 $\max\{|f|: f \in Squares(w)\} < k.$

(日) (同) (三) (三)

э

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

k-square-free words

Definition

A word w is k-square-free if

 $\max\{|f|: f \in Squares(w)\} < k.$

Exemple : $w = a \underbrace{a \ b \ a \ b}_{a \ b} b \ a$ is k-square-free for $k \ge 5$.

(日) (同) (三) (三)

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

k-square-free words

Definition

A word w is k-square-free if

 $\max\{|f|: f \in Squares(w)\} < k.$

Exemple : $w = a \underline{a} \underline{b} \underline{a} \underline{b}$ b a is k-square-free for $k \ge 5$.

Lemma

Let w be a k-square-free word coding a polyomino, and let α be a position in w. The number of admissible factors overlapping α in w is bounded by $4k + 2\log(n)$.

(日) (同) (三) (三)

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-hexagons

Theorem

Let w be a k-square-free word coding a polyomino, with $k \in \mathcal{O}(\sqrt{n})$. Determining if w codes a pseudo-hexagon is decidable in linear time.

(日) (同) (三) (三)

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-hexagons

```
Input : w \in \Sigma^* coding a polyomino p.
 Build L_1 the list of all admissible factors that overlap the position \alpha.
 \beta := (the position of the rightmost letter of w include in a factor of L_1) + 1.
 Build L_2 the list of all admissible factors that overlap the position \beta.
 For all X \in L_1 do
  For all Y \in L_2 do
    If w \equiv XY_X \hat{X} \hat{Y}_Y then
     Compute i : the position of x in w.
     Compute j : the position of \hat{y} in \hat{w}.
     If longest common extention (w, \hat{w}, i, j) = |x| then
        p is a speudo-hexagon.
     Fnd if
    End if
   End for
 End for
```

・ロト ・同ト ・ヨト ・ヨト

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-hexagons

```
Input : w \in \Sigma^* coding a polyomino p.
 Build L_1 the list of all admissible factors that overlap the position \alpha.
 \beta := (the position of the rightmost letter of w include in a factor of L_1) + 1.
 Build L_2 the list of all admissible factors that overlap the position \beta.
 For all X \in L_1 do
  For all Y \in L_2 do
    If w \equiv XY_X \hat{X} \hat{Y}_Y then
      Compute i : the position of x in w.
      Compute j : the position of \hat{y} in \hat{w}.
      If longest common extention (w, \hat{w}, i, j) = |x| then
        p is a speudo-hexagon.
                                            \alpha
      Fnd if
    End if
                         W \equiv
   End for
```

End for

< ロ > < 同 > < 回 > < 回 >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-hexagons

Input : $w \in \Sigma^*$ coding a polyomino p. **Build** L_1 the list of all admissible factors that overlap the position α . $\beta :=$ (the position of the rightmost letter of w include in a factor of L_1) + 1. **Build** L_2 the list of all admissible factors that overlap the position β . For all $X \in L_1$ do For all $Y \in L_2$ do If $w \equiv XY_X \hat{X} \hat{Y}_Y$ then **Compute** *i* : the position of *x* in *w*. **Compute** *j* : the position of \hat{y} in \hat{w} . If longest common extention $(w, \hat{w}, i, j) = |x|$ then p is a speudo-hexagon. α Fnd if End if \widehat{X} $W \equiv$ Х End for End for

< ロ > < 同 > < 回 > < 回 >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-hexagons

Input : $w \in \Sigma^*$ coding a polyomino p. **Build** L_1 the list of all admissible factors that overlap the position α . $\beta :=$ (the position of the rightmost letter of w include in a factor of L_1) + 1. **Build** L_2 the list of all admissible factors that overlap the position β . For all $X \in L_1$ do For all $Y \in L_2$ do If $w \equiv XY_X \hat{X} \hat{Y}_Y$ then **Compute** *i* : the position of *x* in *w*. **Compute** *j* : the position of \hat{y} in \hat{w} . If longest common extention(w, \hat{w}, i, j) = |x| then p is a speudo-hexagon. α Fnd if End if $W \equiv$ Х X End for End for

- 4 同 2 4 日 2 4 日 2

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-hexagons

Input : $w \in \Sigma^*$ coding a polyomino p. **Build** L_1 the list of all admissible factors that overlap the position α . $\beta :=$ (the position of the rightmost letter of w include in a factor of L_1) + 1. **Build** L_2 the list of all admissible factors that overlap the position β . For all $X \in L_1$ do For all $Y \in L_2$ do If $w \equiv XY_X \hat{X} \hat{Y}_Y$ then **Compute** *i* : the position of *x* in *w*. **Compute** *j* : the position of \hat{y} in \hat{w} . **If** longest common extention(w, \hat{w}, i, j) = |x| **then** p is a speudo-hexagon. α Fnd if End if $W \equiv$ Х \mathbf{v} Ŷ End for End for

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-hexagons

Input : $w \in \Sigma^*$ coding a polyomino p. **Build** L_1 the list of all admissible factors that overlap the position α . $\beta :=$ (the position of the rightmost letter of w include in a factor of L_1) + 1. **Build** L_2 the list of all admissible factors that overlap the position β . For all $X \in L_1$ do For all $Y \in L_2$ do If $w \equiv XY_X \hat{X} \hat{Y}_Y$ then **Compute** *i* : the position of *x* in *w*. **Compute** *j* : the position of \hat{y} in \hat{w} . **If** longest common extention(w, \hat{w}, i, j) = |x| **then** p is a speudo-hexagon. α Fnd if End if $W \equiv$ X Ŷ х End for End for

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-hexagons

Input : $w \in \Sigma^*$ coding a polyomino p. **Build** L_1 the list of all admissible factors that overlap the position α . $\beta :=$ (the position of the rightmost letter of w include in a factor of L_1) + 1. **Build** L_2 the list of all admissible factors that overlap the position β . For all $X \in L_1$ do For all $Y \in L_2$ do If $w \equiv XY_X \hat{X} \hat{Y}_Y$ then **Compute** *i* : the position of *x* in *w*. **Compute** *j* : the position of \hat{y} in \hat{w} . **If** longest common extention(w, \hat{w}, i, j) = |x| **then** p is a speudo-hexagon. α Fnd if End if $W \equiv$ X Ŷ х End for $\widehat{w} \equiv$ \widehat{x} End for

< ロ > < 同 > < 回 > < 回 >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

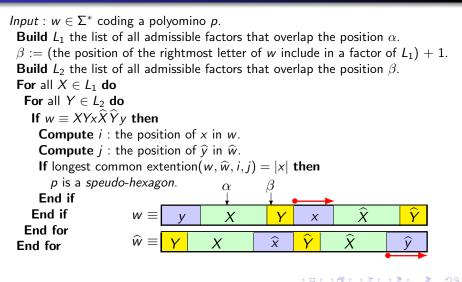
Detecting pseudo-hexagons

Input : $w \in \Sigma^*$ coding a polyomino p. **Build** L_1 the list of all admissible factors that overlap the position α . $\beta :=$ (the position of the rightmost letter of w include in a factor of L_1) + 1. **Build** L_2 the list of all admissible factors that overlap the position β . For all $X \in L_1$ do For all $Y \in L_2$ do If $w \equiv XY_X \hat{X} \hat{Y}_Y$ then **Compute** *i* : the position of *x* in *w*. **Compute** *j* : the position of \hat{y} in \hat{w} . **If** longest common extention(w, \hat{w}, i, j) = |x| **then** p is a speudo-hexagon. α Fnd if End if $W \equiv$ X Ŷ х End for $\widehat{w} \equiv$ \hat{x} End for

< ロ > < 同 > < 三 > < 三 >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-hexagons



Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-hexagons

Input : $w \in \Sigma^*$ coding a polyomino p. **Build** L_1 the list of all admissible factors that overlap the position α . $\beta :=$ (the position of the rightmost letter of w include in a factor of L_1) + 1. **Build** L_2 the list of all admissible factors that overlap the position β . For all $X \in L_1$ do For all $Y \in L_2$ do If $w \equiv XY_X \hat{X} \hat{Y}_Y$ then **Compute** *i* : the position of *x* in *w*. **Compute** *j* : the position of \hat{y} in \hat{w} . **If** longest common extention(w, \hat{w}, i, j) = |x| **then** p is a speudo-hexagon. α Fnd if End if $\widehat{\mathbf{x}}$ X End for $\widehat{w} \equiv$ \hat{x} End for

< 口 > < 同 > < 三 > < 三

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

Detecting pseudo-hexagons

Input : $w \in \Sigma^*$ coding a polyomino p. **Build** L_1 the list of all admissible factors that overlap the position α . $\beta :=$ (the position of the rightmost letter of w include in a factor of L_1) + 1. **Build** L_2 the list of all admissible factors that overlap the position β . For all $X \in L_1$ do For all $Y \in L_2$ do $\mathcal{O}\left(n+(k+\log n)^2\right)=\mathcal{O}(n)$ If $w \equiv XYx\widehat{X}\widehat{Y}y$ then **Compute** *i* : the position of *x* in *w*. **Compute** *j* : the position of \hat{y} in \hat{w} . **If** longest common extention(w, \hat{w}, i, j) = |x| **then** p is a speudo-hexagon. α Fnd if End if \widehat{X} X 7 End for $\widehat{w} \equiv$ \hat{x} Y End for

< ロ > < 同 > < 回 > < 回 >

Admissible factors, detection and properties Detecting pseudo-squares Detection pseudo-hexagons

THANK YOU!

Xavier Provençal On the problem of tiling the plane with a polyomino

イロト イポト イヨト イヨト