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General statement of the tiling problem

Definition (Tiling)

A tiling 7 of a subset D C Z? by a set of polyominoes P is a set
of couples (p, U) € P x Z? such that :

@ D is the union of the polyominoes p .

o For any distinct pair (p, 0), (p', V') € T, py and pL are
non-overlapping.

Definition (The Tiling Problem)

Given a set of polyominoes P and a subset D C 7.
Does D admits a tiling by P ?
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Finite case

The tiling problem with D finite is in NP.

The tiling problem with D finite and P = {E , |:|:|} is in P.

Theorem (Garey, Johnson and Papadimitriou)

The tiling problem with D finite and P = {}], e } is
NP-Complete.
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Infinite case

We concider the case where D = Z2 and P is finite.

Definition (Periodic Tiling)

A tiling T is periodic if there exist two linearly independant
vectors U and V' such that T is not changed by the corresponding
translations.

Definition (Half-Periodic Tiling)

A tiling T is half-periodic if there exists a vectors U such that T
is not changed by the corresponding translation.
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Nonperiodic tilings

Theorem (Berger, 1966)
The tiling problem with P finite and D = 7?2 is undecidable.

There are some finite sets P such that tilings of the plane by P do
exist and are all nonperiodic.
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The tiling problem

Tilings with one polyomino

Definition
A polyomino p is exact if the set P = {p} tiles the plane.

Definition
A tiling of the plane T by an exact polyomino p is regular if there
exist two vectors U and V such that

T ={(p,i T +jV)li,j € 2%}
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Tilings with one polyomino

Theorem (Wijshoff and Van Leeuven, 1984)

If a polyomino p is exact, then there exists a regular tiling of the
plane by p.

The tiling problem with |P| = 1 and D = Z? is decidable in
polynomial time.
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Polyommoes and words

Definition
Let

be the involutive antimorphism defined as

= O

, b, b} be such that w = uv,

Theorem (Beauquier and Nivat, 1991)

A polyomino p is exact if and only its boundary word
w = XYZXYZ for some X,Y,Z € ¥*

9 Y :
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Definition

Two polyominoes p and q are simply neighbouring if
o They are adjacent.
@ They don't overlap.
@ They don't form a hole.
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@ They are two by two simply neighbouring.
@ They don't form a hole.
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Definition

A surrounding of the polyomino p is an ordered sequence of
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Proposition
A polyomino p admits a surrounding if and only if its boundary
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Surroundings and the factorization

Proposition
A polyomino p admits a surrounding if and only if its boundary
word w = XYZXY Z for some X,Y,Z € L*.

Let o',V € Z? be such that T = {(p,iw +jV)|i,j € Z?}
forms a regular tiling and that p, p, p form a triad, then
(PwsPvsPv—5>P—5>P—v,Py—v) form a surrounding of p.
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Definition

An exact polyomino p with Beauquier-Nivat factorization
XYZXYZ is called a pseudo-square if one of the factors X, Y, Z
is the empty word. It is called a pseudo-hexagon otherwise.
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Pseudo-square and pseudo-hexagons

Definition

An exact polyomino p with Beauquier-Nivat factorization
XYZXYZ is called a pseudo-square if one of the factors X, Y, Z
is the empty word. It is called a pseudo-hexagon otherwise.

Pseudo-hexagon Pseudo-square
w=XYZXYZ. w = XYXY.
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Complexity

Let n be the length of the word coding the boundary of a
polyomino p.

The Beauquier-Nivat characterization provides a naive algorithm to
determine if p is exact in O(n%).
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Polyominoes and words

Beauquier-Nivat characterization

Surroundings and tilings
Surroundings and the factorization

Complexity

Let n be the length of the word coding the boundary of a
polyomino p.

The Beauquier-Nivat characterization provides a naive algorithm to
determine if p is exact in O(n%).

This problem admits Q(n) as a lower bound.

Theorem (Gambini and Vuillon, 2003)

There is an algorithm to test if a polyomino satisfies the
Beauquier-Nivat characterization in O(n?).
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© A fast algorithm to detect exact polyominoes
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Admissible factors, detection and properties
Detecting pseudo-squares
A fast algorithm to detect exact polyominoes Detection pseudo-hexagons

Admissible factors

Let A be a factor of the word w coding a polyomino p. A is
admissible if

o w = AxAy, for x,y such that |x| = |y|.

e A is maximal, that is, first(x) # last(x) and

first(y) # last(y).
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Admissible factors

Proposition

Let A be the set of all admissible factors overlapping a position o
in w and A be the set of their respective homologous factors.
Then, there is at least one position in w that is not covered by any
element of AU A.
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Lemma (Dorat and Nivat, 2003) (Brlek, Labelle and Lacasse, 2005)

In a non-intersecting closed path on a square lattice,

#(left turns) — #(right turns) = 4.
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3. |x| < |y|, ¥ does overlap A in B.
B

B
w=—— |
a X A Yy A
y
w = A'y//z\ﬁ.
W=3+7=0.
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Admissible factors

Let w a word coding a polyomino p with Beauquier-Nivat's
factorization w = XYZXY Z. Then, X, Y and Z are admissible.
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Admissible factors

Let w a word coding a polyomino p with Beauquier-Nivat's
factorization w = XYZXY Z. Then, X, Y and Z are admissible.

o w = AxAy, for x, y such that x| = |yl

e Ais maximal, that is, first(x) # last(x) and
first(y) # last(y).
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Admissible factors

Let w a word coding a polyomino p with Beauquier-Nivat's
factorization w = XYZXY Z. Then, X, Y and Z are admissible.

o w = AxAy, for x, y such that |x| = |y|.
Direct consequence of the fact that |u| = |u| for all u € *.

e Ais maximal, that is, first(x) # last(x) and
first(y) # last(y).
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factorization w = XYZXY Z. Then, X, Y and Z are admissible.

o w = AxAy, for x, y such that |x| = |y|.
Direct consequence of the fact that |u| = |u| for all u € *.

e Ais maximal, that is, first(x) # last(x) and
first(y) # last(y).

By contradiction, assume that X is not maximal, then
first(YZ) = last(YZ).
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o w = AxAy, for x, y such that |x| = |y|.
Direct consequence of the fact that |u| = |u| for all u € *.
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Let w a word coding a polyomino p with Beauquier-Nivat's
factorization w = XYZXY Z. Then, X, Y and Z are admissible.

o w = AxAy, for x, y such that |x| = |y|.
Direct consequence of the fact that |u| = |u| for all u € *.

e Ais maximal, that is, first(x) # last(x) and

first(y) # last(y).
By contradiction, assume that X is not maximal, then

first(YZ) = last(YZ).
YZ=aY'Za — YZ =aY'Z'a=YaaZ.

Xavier Provencal On the problem of tiling the plane with a polyomino



Admissible factors, detectlon and properties
Detecting pseudo-

A fast algorithm to detect exact polyominoes Detection pseudo-he>

Admissible factors

Let w a word coding a polyomino p with Beauquier-Nivat's
factorization w = XYZXY Z. Then, X, Y and Z are admissible.

o w = AxAy, for x, y such that |x| = |y|.
Direct consequence of the fact that |u| = |u| for all u € *.

e Ais maximal, that is, first(x) # last(x) and
first(y) # last(y).

w=XYXY with Y =aY'a
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factorization w = XYZXY Z. Then, X, Y and Z are admissible.

o w = AxAy, for x, y such that x| = |yl

Direct consequence of the fact that |u| = |u| for all u € *.

e Ais maximal, that is, first(x) # last(x) and
first(y) # last(y).
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Admissible factors

Let w a word coding a polyomino p with Beauquier-Nivat's
factorization w = XYZXY Z. Then, X, Y and Z are admissible.

o w = AxAy, for x, y such that |x| = |y|.
Direct consequence of the fact that |u| = |u| for all u € *.

e Ais maximal, that is, first(x) # last(x) and

first(y) # last(y).
w = XYXY with Y = aY'a.
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Admissible factors

Let w a word coding a polyomino p with Beauquier-Nivat's
factorization w = XYZXY Z. Then, X, Y and Z are admissible.

o w = AxAy, for x, y such that |x| = |y|.
Direct consequence of the fact that |u| = |u| for all u € *.

e Ais maximal, that is, first(x) # last(x) and

first(y) # last(y).
w=XYXY with Y = aY'a.
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Let w a word coding a polyomino p with Beauquier-Nivat's
factorization w = XYZXY Z. Then, X, Y and Z are admissible.

o w = AxAy, for x, y such that |x| = |y|.
Direct consequence of the fact that |u| = |u| for all u € *.

e Ais maximal, that is, first(x) # last(x) and

first(y) # last(y).
w=XYXY with Y = aY'a.
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Let w a word coding a polyomino p with Beauquier-Nivat's
factorization w = XYZXY Z. Then, X, Y and Z are admissible.

o w = AxAy, for x, y such that |x| = |y|.
Direct consequence of the fact that |u| = |u| for all u € *.

e Ais maximal, that is, first(x) # last(x) and
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factorization w = XYZXY Z. Then, X, Y and Z are admissible.
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Direct consequence of the fact that |u| = |u| for all u € *.
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Listing admissible factors

Given a position « in the word w coding a polyomino, all the
admissible factors overlapping o can be listed in linear time.
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Given a position « in the word w coding a polyomino, all the
admissible factors overlapping o can be listed in linear time.

fw=AxAythen w=y AX A.
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Given a position « in the word w coding a polyomino, all the
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fw=AxAythen w=y AX A.
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Admissible factors, detection and properties
Detecting pseudo-squares
A fast algorithm to detect exact polyominoes Detection pseudo-hexagons

Detecting pseudo-squares

Let w be the boundary of p. Determining if w codes a
pseudo-square is decidable in linear time.
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Detecting pseudo-squares

Let w be the boundary of p. Determining if w codes a
pseudo-square is decidable in linear time.
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A fast algorithm to detect exact polyominoes

Detecting pseudo-squares

Let w be the boundary of p. Determining if w codes a
pseudo-square is decidable in linear time.

— A
we[lsFF—Ao [T [ [T [ TT]

w=| | s Ter| [ [ [ [ [[[[]]

If x =7 then w = XYXY.
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If x =y then w=XYXY.
Since W—AxAythe w=yAXA.
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Admissible factors, detection and properties
Detecting pseudo-squares
A fast algorithm to detect exact polyominoes Detection pseudo-hexagons

k-square-free words

Definition

A word w is k-square-free if

max {|f| : f € Squares(w)} < k.
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k-square-free words

Definition
A word w is k-square-free if

max {|f| : f € Squares(w)} < k.

Exemple : w =a abab b ais k-square-free for k > 5.
——
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k-square-free words

Definition
A word w is k-square-free if

max {|f| : f € Squares(w)} < k.

Exemple : w =a abab b ais k-square-free for k > 5.
——

Let w be a k-square-free word coding a polyomino, and let o be a
position in w. The number of admissible factors overlapping « in
w is bounded by 4k + 2log(n).
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Admissible factors, detection and properties
Detecting pseudo-squares
A fast algorithm to detect exact polyominoes Detection pseudo-hexagons

Detecting pseudo-hexagons

Let w be a k-square-free word coding a polyomino, with
k € O(\/n). Determining if w codes a pseudo-hexagon is decidable
in linear time.
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Admissible factors, detection and properties
Detecting pseudo-squares
A fast algorithm to detect exact polyominoes Detection pseudo-hexagons

Detecting pseudo-hexagons

Input : w € * coding a polyomino p.
Build L; the list of all admissible factors that overlap the position «.
B := (the position of the rightmost letter of w include in a factor of L;) + 1.
Build L; the list of all admissible factors that overlap the position 3.
For all X € L; do
For all Y € [, do
If w = XYxXYy then
Compute i : the position of x in w.
Compute j : the position of y in w.
If longest common extention(w, w, i, j) = |x| then
p is a speudo-hexagon.
End if
End if
End for
End for
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Detecting pseudo-hexagons

Input : w € * coding a polyomino p.
Build L; the list of all admissible factors that overlap the position «.
B := (the position of the rightmost letter of w include in a factor of L;) + 1.
Build L; the list of all admissible factors that overlap the position 3.
For all X € L; do
For all Y € [, do
If w = XYxXYy then
Compute i : the position of x in w.
Compute j : the position of y in w.
If longest common extention(w, w, i, j) = |x| then
p is a speudo-hexagon. a
End if | |

End if w
End for
End for
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Detecting pseudo-hexagons

Input : w € * coding a polyomino p.
Build L; the list of all admissible factors that overlap the position «.
B := (the position of the rightmost letter of w include in a factor of L;) + 1.

Build L; the list of all admissible factors that overlap the position 3.
For all X € L; do

For all Y € [, do
If w = XYxXYy then
Compute i : the position of x in w.
Compute j : the position of y in w.

If longest common extention(w, w, i, j) = |x| then
p is a speudo-hexagon. a
End if |
End if w=| x| x| ]
End for
End for
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Detecting pseudo-hexagons

Input : w € * coding a polyomino p.
Build L; the list of all admissible factors that overlap the position «.
B := (the position of the rightmost letter of w include in a factor of L;) + 1.

Build L; the list of all admissible factors that overlap the position 3.
For all X € L; do

For all Y € [, do
If w = XYxXYy then
Compute i : the position of x in w.
Compute j : the position of y in w.

If longest common extention(w, w, i, j) = |x| then
p is a speudo-hexagon. a Jé;
End if i 1
End if w=| x| x| ]
End for
End for
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Detecting pseudo-hexagons

Input : w € * coding a polyomino p.
Build L; the list of all admissible factors that overlap the position «.
B := (the position of the rightmost letter of w include in a factor of L;) + 1.

Build L; the list of all admissible factors that overlap the position 3.
For all X € L; do

For all Y € [, do
If w = XYxXYy then
Compute i : the position of x in w.
Compute j : the position of y in w.

If longest common extention(w, w, i, j) = |x| then
p is a speudo-hexagon. a Jé;
End if i i
End if w= | x Jy[ | x [v]
End for
End for
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Detecting pseudo-hexagons

Input : w € * coding a polyomino p.
Build L; the list of all admissible factors that overlap the position «.
B := (the position of the rightmost letter of w include in a factor of L;) + 1.

Build L; the list of all admissible factors that overlap the position 3.
For all X € L; do

For all Y € [, do
If w = XYxXYy then
Compute i : the position of x in w.
Compute j : the position of y in w.

If longest common extention(w, w, i, j) = |x| then
p is a speudo-hexagon. a Jé;
End if i i
End if w=l y [ x v x| x V]
End for
End for
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Detecting pseudo-hexagons

Input : w € * coding a polyomino p.
Build L; the list of all admissible factors that overlap the position «.
B := (the position of the rightmost letter of w include in a factor of L;) + 1.
Build L; the list of all admissible factors that overlap the position 3.
For all X € L; do
For all Y € [, do
If w = XYxXYy then
Compute i : the position of x in w.
Compute j : the position of y in w.

If longest common extention(w, w, i, j) = |x| then
p is a speudo-hexagon. a Jé;
End if i 1
End if w=l y | x [yl x| x [v]
End for . ——— — —
End for WEly‘ X ‘ X ‘Y‘ X ‘ Y |
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Detecting pseudo-hexagons

Input : w € * coding a polyomino p.
Build L; the list of all admissible factors that overlap the position «.
B := (the position of the rightmost letter of w include in a factor of L;) + 1.
Build L; the list of all admissible factors that overlap the position 3.
For all X € L; do
For all Y € [, do
If w = XYxXYy then
Compute i : the position of x in w.
Compute j : the position of y in w.

If longest common extention(w, w, i, j) = |x| then
p is a speudo-hexagon. a Jé;
End if | | o
End if w=l vy | x |yl x| x |vy]|
End for ——— — —
End for El ‘ X ‘ X ‘ Y ‘ X L |
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Detecting pseudo-hexagons

Input : w € * coding a polyomino p.
Build L; the list of all admissible factors that overlap the position «.
B := (the position of the rightmost letter of w include in a factor of L;) + 1.
Build L; the list of all admissible factors that overlap the position 3.
For all X € L; do
For all Y € [, do
If w = XYxXYy then
Compute i : the position of x in w.
Compute j : the position of y in w.

If longest common extention(w, w, i, j) = |x| then
p is a speudo-hexagon. a Jé;
End if | | o—p
End if w=l vy | x |yl x| x |vy]
End for ——— — —
End for El ‘ X ‘ X ‘ Y ‘ X Y |
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Detecting pseudo-hexagons

Input : w € * coding a polyomino p.
Build L; the list of all admissible factors that overlap the position «.
B := (the position of the rightmost letter of w include in a factor of L;) + 1.
Build L; the list of all admissible factors that overlap the position 3.
For all X € L; do
For all Y € [, do
If w = XYxXYy then
Compute i : the position of x in w.
Compute j : the position of y in w.

If longest common extention(w, w, i, j) = |x| then
p is a speudo-hexagon. a Jé;
End if i I e—»
End if w=l Zz| x |yl z| x |v|
End for . ——— — —
End for WEly‘ X ‘ X ‘Y‘ X |
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Detecting pseudo-hexagons

Input : w € * coding a polyomino p.
Build L; the list of all admissible factors that overlap the position «.
B := (the position of the rightmost letter of w include in a factor of L;) + 1.
Build L; the list of all admissible factors that overlap the position 3.
For all X € L; do
For all Y € L, do 2\
If w = XYxXYy then O (n+ (k + log n) ) = O(n)
Compute i : the position of x in w.
Compute j : the position of y in w.

If longest common extention(w, w, i, j) = |x| then
p is a speudo-hexagon. a Jé;
End if | | o—p
End if w=| Zz| x |yl z] x [v]
End for — = = =~
End for El ‘ X ‘ X ‘ Y ‘ X y |
—
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