Synchronization delay

Dominique Perrin

March 14, 2007

Dominique Perrin Synchronization delay

(人間) (人) (日)

- ∢ ≣ →

2

Material prepared for the new edition of *Theory of Codes* (*Theory of Codes and Automata*, Jean Berstel, DP, Christophe Reutenauer)

- Synchronizing words
- Synchronization delay
- Local automata
- Completion
- Star-free closure
- Krieger's embedding theorem
- Nasu's masking lemma

A word $x \in X^*$ is synchronizing for $X \subset A^+$ if for all $u, v \in A^*$

$$uxv \in X^* \implies ux, xv \in X^*$$

Examples: The word *a* is synchronizing for the Fibonacci code

$$X = \{a, ba\}.$$

The word x = abba is synchronizing for the Morse code

$$X = \{ab, ba\}$$

If x, y are synchronizing, then the pair (x, y) is synchronizing:

$$uxyv \in X^* \implies ux, yv \in X$$

回 と く ヨ と く ヨ と

A code $X \subset A^*$ has verbal synchronization delay *s* if any word in X^s is synchronizing (Golomb and Gordon, 1965). Examples:

- The Fibonacci code $X = \{a, ba\}$ has synchronization delay 1.
- The code $X = \{a, aba\}$ has synchronization delay 2.
- The Morse code *X* = {*ab*, *ba*} does not have finite synchronization delay.

A comma free code is a set $X \subset A^n$ which has syncronization delay 1 (a word of X cannot be a nontrivial factor of a word of X^2).

- 4 回 2 - 4 □ 2 - 4 □

Circular codes

A set X is a circular code if $uv, vu \in X^*$ imply $u, v \in X^*$. Equivalently: any necklace has a unique decomposition in words of X.

Examples:

- The Fibonacci code $X = \{a, ba\}$ is circular.
- $X = b + ab^*c$ is circular (but not with finite synchronization delay).

A family $(X_i)_{i \in I}$ of subsets of A^* indexed by a totally ordered set I is a factorization of A^* if any word $w \in A^*$ can be written uniquely

$$w = x_1 x_2 \cdots x_n$$

with $x_i \in X_{j_i}$ and $j_1 \ge j_2 \ge \ldots \ge j_n$. Example: the Lyndon factorization.

Theorem (Schützenberger, 1965)

If $A^* = \prod_{i \in I} X_i^*$ is a factorization, then each X_i is a circular code (and each conjugacy class meets exactly one X_i^*).

(4回) (モン・モン)

Let $p, q \ge 0$ be integers. A set $X \subset A^+$ is (p, q)-limited if for all $u_0, u_1, \ldots, u_{p+q}$ in A^* ,

$$u_{i-1}u_i \in X^*$$
 $(1 \le i \le p+q)$

imply $u_p \in X^*$. Example: X is (1,0)-limited if $uv \in X^*$ implies $v \in X^*$, i.e. X^* is suffix-closed.

A limited code is circular.

Open question

Is every factor of a finite factorization $A^* = X_1^* X_2^* \dots X_n^*$ limited?

yes for $n \leq 3$.

イロト イポト イヨト イヨト

A set $L \subset A^*$ is stricly locally testable (slt) if

```
L = T \cup (UA^* \cap A^*V) \setminus A^*WA^*
```

for finite sets T, U, V, W.

Theorem (Restivo, 1974)

For a finite code X the following conditions are equivalent.

```
(i) X is circular.
```

```
(ii) X has finite synchronization delay.
```

(iii) X^* is strictly locally testable.

In general (iii) \Longrightarrow (ii) \Longrightarrow (i).

御 と く ヨ と く ヨ と …

The star-free operations are the boolean operations and the product.

Theorem (Schützenberger, 1975)

If X is a code with finite synchronization delay, then X^* belongs to the star-free closure of X.

Proof:

$$X^* = 1 \cup X \cup \ldots \cup X^{s-1} \cup (X^s A^* \cap A^* X^s) \setminus W$$

where $W = \{ w \in A^* \mid A^* w A^* \cap X^* = \emptyset \}$ has also the expression

$$W = (A^* \setminus A^* X^{2s+1} A^*) \cap (A^* \setminus F(X^{2s+2}))$$

A finite automaton is local if there are integers s, t such that for any paths $p \xrightarrow{u} q \xrightarrow{v} r$ and $p' \xrightarrow{u} q' \xrightarrow{v} r'$, with |u| = s, |v| = t, one has q = q'.

Equivalent conditions for a strongly connected automaton \mathcal{A} :

(i) distinct cycles have distinct labels.

(ii) \mathcal{A} is unambiguous and for long enough w, the relation

$$\varphi(w) = \{(p,q) \mid p \xrightarrow{w} q\}$$

has rank ≤ 1 .

回 と く ヨ と く ヨ と

The Franaszek code

 $X = \{aaca, aba, aca, , acba, ba, ca, cba\}$ is a circular prefix code.

The automaton is local with s = 4 and t = 0.

Literal synchronization delay

A word w is a constant for $L \subset A^*$ if the set of its contexts is a direct product:

$$\ell wr, \ell' wr' \in L \implies \ell' wr, \ell wr' \in L.$$

If $x \in X^*$ is a constant, then it is synchronizing. If (x, y) is a synchronizing pair, then xy is a constant. A code $X \subset A^*$ has literal synchronization delay s if any word of A^s is a constant.

literal delay \leq verbal delay $\leq 2Lmax$ (literal delay +1).

Theorem

The following conditions are equivalent for a code X.

- (i) X has finite literal synchronization delay.
- (ii) X^* is strictly locally testable.
- (iii) X^{*} is the stabilizer of a state in a local automaton.

・ 回 と く ヨ と く ヨ と

(i)
$$\Leftrightarrow$$
 (ii) take $U = X^*A^- \cap A^s$, $V = A^-X^* \cap A^s$ and
 $W = A^{s+1} \setminus F(X^*)$.
(i) \Leftrightarrow (iii) For \implies , consider the minimal deterministic automaton
 $\mathcal{A} = (Q, i, T)$ of X. Then $\mathcal{A}^* = (Q \cup \omega, \omega, \omega)$ is local.
 \Leftarrow is clear.

< ロ > < 回 > < 注 > < 注 > -

= 90C

Theorem (elaborated from Bruyère, 1998)

Any rational code with finite verbal (literal) deciphering delay is contained in a maximal one with the same delay.

Solution: the basis Y of the submonoid

$$M = (X^{s}A^{*} \cap A^{*}X^{s}) \cup X^{*}$$

Example: $X = \{a, ab\}$, $M = aA^* \cap A^*X$, $Y = (abb^+)^*X$. For the literal delay:

$$M = (P_s A^* \cap A^* S_s) \cup X^*$$

Example: $X = \{a, ab\}$, $M = aA^*$, $Y = ab^*$.

In both cases, one has to prove that:

• *M* is stable: $u, wv, uw, v \in M$ imply $w \in M$.

Figure: Proving that M is stable.

- $\bigcirc X \subset Y$
- Y is complete with synchronization delay s: any pair $x, y \in Y^s$ (resp. in $P_s \times S_s$) is absorbing, that is $A^*x \cap yA^* \subset M$.

Length distributions

Length distribution of $X \subset A^*$: $u_n = \text{Card}(X \cap A^n)$.

$$\frac{1}{1-u(z)} = \prod_{n\geq 1} \frac{1}{(1-z^n)^{\ell_n(u)}}$$

Theorem (Schützenberger, 1965)

There exists a circular code on k symbols with length distribution $u = (u_n)$ if and only if for all $n \ge 1 \ell_n(u)$ is at most equal to the number of primitive necklaces of length n.

Proof: Lazard elimination. Example: k = 2, $u_1 = 1$, $u_2 = 0$, $u_3 = 2$ a, \mathbf{b} $a, \mathbf{ba}, bba, \dots$ a, baa, bba, \dots

・ロト ・回ト ・ヨト

 $X = \{aaca, aba, aca, , acba, ba, ca, cba\}$ can be obtained as follows (the word to be eliminated is printed in boldface):

a, b, c a, b, ca, cb a, b, ca, cba a, ba, ca, cba aaca, aba, aca, acba, ba, ca, cba Shift of finite type (sft): set of labels of biinfinite paths in a local automaton.

Fondamental example: edge shift of a graph G = set of biinfinite paths in G.

For an sft S, denote by v_n the number of distinct blocks of length n of the elements of S. The entropy of S is

$$h(S) = \lim \frac{1}{n} \log(v_n).$$

The entropy of the golden mean shift is $(1 + \sqrt{5})/2$, the dominant eigenvalue of

$$M = \left[egin{array}{cc} 1 & 1 \ 1 & 0 \end{array}
ight]$$

個 と く ヨ と く ヨ と

Morphism of sft's: map $\varphi : S \mapsto T$ defined by $y = \varphi(x)$ if

$$y_n = f(x_{n-m} \cdots x_n \cdots x_{n+a})$$

Figure: A sliding block map

||◆ □ ▶ || ◆ 三 ▶ || ◆ 三 ▶

Theorem (Krieger, 1982)

An sft S can be strictly embedded into an sft T if and only if

1
$$h(S) < h(T)$$

② $q_n(S) ≤ q_n(T)$ for n ≥ 1, where $q_n(S)$ is the number of points of minimal period n.

Link with circular codes: embedding of the edge shift of a bouquet of circles into the full shift.

Lazard's elimination can be viewed as a sequence of elementary isomorphisms obtained by (input) state-splitting: a state is split into two states with the same output.

Elementary isomorphisms

An isomorphism of sft is a composition of elementary isomorphisms obtained by state-splitting (or state-merging).

Franaszek code

▲御▶ ▲注▶ ▲注▶

4

Open question

Is there a proof of Krieger's theorem using an appropriate sequence of splits (elementary isomorphisms)?

The existing proof uses an intricate direct coding.

For a graph G, denote by X_G the edge shift on G.

Theorem (Nasu, 1988)

Let G and H be graphs. Suppose that X_G embeds into X_H . Then there is a graph K such that $X_K \equiv X_H$ and G is a subgraph of K.

Proof: Let G', H' be the extension of G, H to *s*-blocks, in such a way that G' is a subgraph of H'. There exists a sequence of graphs

$$G'=G_0,G_1,\ldots,G_n=G$$

with $G_i \approx G_{i+1}$ and a corresponding sequence

$$H' = H_0, H_1, \ldots, H_n = K$$

such that G_i is a subgraph of H_i .

・ 回 ト ・ ヨ ト ・ ヨ ト

Example

ā

b

2

∢ ≣⇒

а

Theorem

Any local automaton is contained in a local complete automaton.

Question: is the delay preserved?

≣ >

A (1) > (1)