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Synchronizing words

A word x ∈ X ∗ is synchronizing for X ⊂ A+ if for all u, v ∈ A∗

uxv ∈ X ∗ =⇒ ux , xv ∈ X ∗

Examples: The word a is synchronizing for the Fibonacci code

X = {a, ba}.

The word x = abba is synchronizing for the Morse code

X = {ab, ba}

If x , y are synchronizing, then the pair (x , y) is synchronizing:

uxyv ∈ X ∗ =⇒ ux , yv ∈ X
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Verbal synchronization delay

A code X ⊂ A∗ has verbal synchronization delay s if any word in
X s is synchronizing (Golomb and Gordon, 1965).
Examples:

The Fibonacci code X = {a, ba} has synchronization delay 1.

The code X = {a, aba} has synchronization delay 2.

The Morse code X = {ab, ba} does not have finite
synchronization delay.

A comma free code is a set X ⊂ An which has syncronization delay
1 (a word of X cannot be a nontrivial factor of a word of X 2).
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Circular codes

A set X is a circular code if uv , vu ∈ X ∗ imply u, v ∈ X ∗.
Equivalently: any necklace has a unique decomposition in words of
X .
Examples:

The Fibonacci code X = {a, ba} is circular.

X = b + ab∗c is circular (but not with finite synchronization
delay).

a

b

a

b

a
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Factorizations

A family (Xi )i∈I of subsets of A∗ indexed by a totally ordered set I
is a factorization of A∗ if any word w ∈ A∗ can be written uniquely

w = x1x2 · · · xn

with xi ∈ Xji and j1 ≥ j2 ≥ . . . ≥ jn.
Example: the Lyndon factorization.

Theorem (Schützenberger, 1965)

If A∗ =
∏

i∈I X ∗
i is a factorization, then each Xi is a circular code

(and each conjugacy class meets exactly one X ∗
i ).
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Limited codes

Let p, q ≥ 0 be integers. A set X ⊂ A+ is (p, q)-limited if for all
u0, u1, . . . , up+q in A∗,

ui−1ui ∈ X ∗ (1 ≤ i ≤ p + q)

imply up ∈ X ∗.
Example: X is (1, 0)-limited if uv ∈ X ∗ implies v ∈ X ∗, i.e. X ∗ is
suffix-closed.
A limited code is circular.

Open question

Is every factor of a finite factorization A∗ = X ∗
1 X ∗

2 . . . X ∗
n limited?

yes for n ≤ 3.
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Local testability

A set L ⊂ A∗ is stricly locally testable (slt) if

L = T ∪ (UA∗ ∩ A∗V ) \ A∗WA∗

for finite sets T ,U,V ,W .

Theorem (Restivo, 1974)

For a finite code X the following conditions are equivalent.

(i) X is circular.

(ii) X has finite synchronization delay.

(iii) X ∗ is strictly locally testable.

In general (iii) =⇒ (ii) =⇒ (i).
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Star-free sets

The star-free operations are the boolean operations and the
product.

Theorem (Schützenberger, 1975)

If X is a code with finite synchronization delay, then X ∗ belongs to
the star-free closure of X .

Proof:

X ∗ = 1 ∪ X ∪ . . . ∪ X s−1 ∪ (X sA∗ ∩ A∗X s) \ W

where W = {w ∈ A∗ | A∗wA∗ ∩ X ∗ = ∅} has also the expression

W = (A∗ \ A∗X 2s+1A∗) ∩ (A∗ \ F (X 2s+2))
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Local automata

A finite automaton is local if there are integers s, t such that for
any paths p

u→ q
v→ r and p′ u→ q′ v→ r ′, with |u| = s, |v | = t, one

has q = q′.
Equivalent conditions for a strongly connected automaton A:

(i) distinct cycles have distinct labels.

(ii) A is unambiguous and for long enough w , the relation

ϕ(w) = {(p, q) | p
w→ q}

has rank ≤ 1.
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The Franaszek code

X = {aaca, aba, aca, , acba, ba, ca, cba} is a circular prefix code.

3

4

1 2 5
a a

c a

ba

b

c

c

Figure: The minimal automaton of the Franaszek code.

The automaton is local with s = 4 and t = 0.
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Literal synchronization delay

A word w is a constant for L ⊂ A∗ if the set of its contexts is a
direct product:

ℓwr , ℓ′wr ′ ∈ L =⇒ ℓ′wr , ℓwr ′ ∈ L.

If x ∈ X ∗ is a constant, then it is synchronizing. If (x , y) is a
synchronizing pair, then xy is a constant.
A code X ⊂ A∗ has literal synchronization delay s if any word of
As is a constant.
literal delay ≤ verbal delay ≤ 2Lmax (literal delay +1).

Theorem

The following conditions are equivalent for a code X .

(i) X has finite literal synchronization delay.

(ii) X ∗ is strictly locally testable.

(iii) X ∗ is the stabilizer of a state in a local automaton.
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Proof

(i)⇔ (ii) take U = X ∗A− ∩ As , V = A−X ∗ ∩ As and
W = As+1 \ F (X ∗).
(i)⇔ (iii) For =⇒ , consider the minimal deterministic automaton
A = (Q, i ,T ) of X . Then A∗ = (Q ∪ ω, ω, ω) is local.
⇐ is clear.
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Completion

Theorem (elaborated from Bruyère, 1998)

Any rational code with finite verbal (literal) deciphering delay is
contained in a maximal one with the same delay.

Solution: the basis Y of the submonoid

M = (X sA∗ ∩ A∗X s) ∪ X ∗

Example: X = {a, ab}, M = aA∗ ∩ A∗X , Y = (abb+)∗X .
For the literal delay:

M = (PsA
∗ ∩ A∗Ss) ∪ X ∗

Example: X = {a, ab}, M = aA∗, Y = ab∗.
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Proof

In both cases, one has to prove that:

1 M is stable: u,wv , uw , v ∈ M imply w ∈ M.

w

u

v

Figure: Proving that M is stable.

2 X ⊂ Y

3 Y is complete with synchronization delay s: any pair
x , y ∈ Y s (resp. in Ps × Ss) is absorbing, that is
A∗x ∩ yA∗ ⊂ M.
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Length distributions

Length distribution of X ⊂ A∗: un = Card(X ∩ An).

1

1 − u(z)
=

∏

n≥1

1

(1 − zn)ℓn(u)

Theorem (Schützenberger, 1965)

There exists a circular code on k symbols with length distribution
u = (un) if and only if for all n ≥ 1 ℓn(u) is at most equal to the
number of primitive necklaces of length n.

Proof: Lazard elimination.
Example: k = 2, u1 = 1, u2 = 0, u3 = 2

a,b

a,ba, bba, . . .

a, baa, bba, . . .
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The Franaszek code

X = {aaca, aba, aca, , acba, ba, ca, cba} can be obtained as follows
(the word to be eliminated is printed in boldface):

a, b, c

a, b, ca, cb

a,b, ca, cba

a, ba, ca, cba

aaca, aba, aca, acba, ba, ca, cba
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Symbolic dynamics

Shift of finite type (sft): set of labels of biinfinite paths in a local
automaton.
Fondamental example: edge shift of a graph G = set of biinfinite
paths in G .

1 2

a

b

a

1 2

a

a

b

1 2

Figure: The golden mean shift
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Entropy

For an sft S , denote by vn the number of distinct blocks of length
n of the elements of S .
The entropy of S is

h(S) = lim
1

n
log(vn).

The entropy of the golden mean shift is (1 +
√

5)/2, the dominant
eigenvalue of

M =

[

1 1
1 0

]
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Morphism of sft’s: map ϕ : S 7→ T defined by y = ϕ(x) if

yn = f (xn−m · · · xn · · · xn+a)

x
xn−m xn+a

y
yn

Figure: A sliding block map
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Krieger’s embedding theorem

Theorem (Krieger, 1982)

An sft S can be strictly embedded into an sft T if and only if

1 h(S) < h(T )

2 qn(S) ≤ qn(T ) for n ≥ 1, where qn(S) is the number of
points of minimal period n.

Link with circular codes: embedding of the edge shift of a bouquet
of circles into the full shift.

1

2

3

1 1

2

3

a

a

a

b
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State splitting

Lazard’s elimination can be viewed as a sequence of elementary
isomorphisms obtained by (input) state-splitting: a state is split
into two states with the same output.

1a b 1 2a b

b

a

1 2

3

a

b

b

a

ba

1 2

3

4a

b

b a

ba

b

a
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Elementary isomorphisms

An isomorphism of sft is a composition of elementary isomorphisms
obtained by state-splitting (or state-merging).

1 2 3

4

5

M = RS , R =

[

1 1 0
0 0 1

]

,S =





1 0
0 1
1 0



 , N = SR

13

4

2

5
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Franaszek code

1

a, b, c

1 2

a, b c
c

a, b

1 2

3

a, b

c

c

a, b c
a, b

1 2

3

4
a

b

c

c
a

b

ca, b
c

a, b

1 2

3

4

5

a

b

c

b a

c

c
a

b

c

a, b

c

a

b

1 2

3

4

5

6

a

b
c

a

b

c

b a
c

c
a

b

c

a, b

c

a
b
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Open question

Is there a proof of Krieger’s theorem using an appropriate sequence
of splits (elementary isomorphisms)?

The existing proof uses an intricate direct coding.
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The masking lemma

For a graph G , denote by XG the edge shift on G .

Theorem (Nasu, 1988)

Let G and H be graphs. Suppose that XG embeds into XH . Then
there is a graph K such that XK ≡ XH and G is a subgraph of K.

Proof: Let G ′,H ′ be the extension of G ,H to s-blocks, in such a
way that G ′ is a subgraph of H ′. There exists a sequence of graphs

G ′ = G0,G1, . . . ,Gn = G

with Gi ≈ Gi+1 and a corresponding sequence

H ′ = H0,H1, . . . ,Hn = K

such that Gi is a subgraph of Hi .
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Example

1

2

3

a

b

b

a

4

5

e 6 f

7

a

b b

a b

aa

b

M = RS , R =





a b 0 0
0 0 b 0
0 0 0 a



 ,S =









1 0 0
0 1 0
0 0 1
1 0 0









, N = SR

4 1

5 2

6 f

37

e

a

b b

b
a

a
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Theorem

Any local automaton is contained in a local complete automaton.

1

2

3

e

fa

b a b

b

a

b

b

b

Question: is the delay preserved?
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