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In this talk we develop a graph theoretical test on graphs corresponding to subgroups of

one-relator groups with small cancellation condition which, if successful, implies that the

subgroup under consideration has solvable membership problem with a simple solution.

The proof of the solvability of the membership problem relies on word combinatorics in

an essential way.

One way to describe a group G is by giving a set S of elements of G and a set of

defining relations among them such that S generates G, in the sense that every element

of G is the product of elements of S or their inverses and every relation among elements

of S is a consequence of the given relations. More formally, let X be a set in one to one

correspondence, say θ0, with S and let F = F (X) be the free group, freely generated by

X. Then θ0 extends uniquely to a homomorphism θ from F (X) onto G. Therefore, if

N = Ker θ, then G ∼= F
/

N .

θ : F (X) → G, F
/

Ker θ ∼= G (1)

Now, the relations which hold among the generators of G in S are precisely the images

of the elements of N by θ and if R is a subset of N which normally generates N , in the

sense that every element of N is a finite product of conjugates of elements of R and their

inverses, then the images of R form a set of defining relations for G. In this case N is

the normal closure of R, denoted by � R �F . Elements of N also called consequences

of R. The triple (X,R, θ) defines G completely. Such a description of G is a presentation

of G. (See [Jo].) Usually, θ is clear from the context and then we denote the presentation
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by P = 〈X|R〉. In these terms F (X) has presentation 〈X| −〉, where ” − ” denotes the

empty set.

Sometimes it is possible to deduce properties of groups from their presentations, if we

can solve the following fundamental decision problem, the Word Problem.

(WP): Given an element g in the group G. Decide whether g = 1 or g 6= 1 in G.

However, in general this problem is not solvable. (See [L-S].) Let us see what kind of

difficulties may occur: let g be an element of a group G which has a presentation 〈X|R〉,

with X and R finite and let W be a word in F with θ(W ) = g. We may assume that W

is reduced, in the sense that no xx−1 or x−1x occurs in W , for every x ∈ X. We would

like to check whether g = 1 or g 6= 1 in G. Assume g = 1. Then W ∈ N and following

the above notation and writing Rf in place of f−1Rf , we have

W = Rε1f1

1 · · ·Rεkfk

k , Ri ∈ R, εi ∈ {1,−1} and fi ∈ F, i = 1, . . . , k (2)

Now the left hand side of (2) is a reduced word while the right hand side in general is not.

(See Example 1.) Hence the reduced word W is obtained from the right hand side by free

cancellations which replace xx−1 and x−1x, x ∈ X by the empty word. If we could know

that after carrying out the cancellations at least one letter from each Rεifi

i survives, we

could know that W is the product of at most |W | conjugates of relations, where |W | is the

length of W , i.e. the number of letters in W with multiplicity, as usual. It is not difficult

to show that |fi| can be bounded from above by 2k|W ||R|+ |W |, where |R| is the length

of the longest relator in R. (See [L-S, p. 239].) Hence, we could produce all the possible

products of conjugates of Ri which may be candidates for the right hand side of (2) and

check if one of them coincides with W in the free group F (X), after cancellations. If the

answer is “NO” then g 6= 1 and if the answer is “YES” then we get a proof for g = 1.

But in general, it is not the case that a letter from each conjugate of R±1
i survives the

cancellations.

It turns out however, that we still can use the naive idea of requiring the survival of

one letter from each conjugate of Ri in (2), in a weaker form: instead, we require that

whenever a word is cancelled out in the right hand side of (2) it is short, relative to the
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length of the relators involved. Then it follows from theorems in Combinatorial Group

Theory that the number k of relators in the right hand side of (2) is bounded from above

by c|W |, where c is a known constant, depending on the presentation. This clearly solves

the word problem for G and definitely allows complete cancellation of relators in (2).

Example 1. ([De]) Let P = 〈a1, b1, a2, b2|R〉, R = a−1
1 b−1

1 a1b1a
−1
2 b−1

2 a2b2. In order to

check the amount of cancellation between two relators we have to consider all the config-

urations in which cancellation between letters of the relators can occur. For example, in

order to see how a−1
1 (which is the first letter of R) cancels with a1 (which is the third

letter of R) we have to consider a conjugate R′ of R which ends with a1 and then the last

letter (a1) of R′ cancels the first letter (a−1
1 ) of R:

R′ = b1a
−1
2 b−1

2 a2b2a
−1
1 b−1

1 a1 =
(
b−1
1 a−1

2 b−1
2 a2b2

)
R

(
b−1
1 a−1

2 b−1
2 a2b2

)−1
and

R′ ·R =
(
b1a

−1
2 b−1

2 a2b2a
−1
1 b−1

1

) (
a1a

−1
1

) (
b−1
1 a1b1a

−1
2 b−1

2 a2b2

)
Such conjugates (i.e. by initial or terminal subwords of R) are the cyclic conjugates

of R. The word R has |R| cyclic conjugates (|R| = 8), and similarly R−1 has eight cyclic

conjugates, which can be obtained from R±1 by writing R±1 on a circle, rather than on

a straight line, and start reading each time in a different place. The word R written on

a circle is called the cyclic word corresponding to R and we shall denote it by R̂. The

word R is cyclically reduced if |R| = |R̂|. It is easy to check that if R1 and R2 are two

cyclic conjugates of R±1 with R1 ·R2 6= 1 in F then in forming the product R1R2 at most

one letter may cancel out in R1 and one in R2. Therefore, the ratio of the length of the

cancelled word and |R| is
1

8
and this amounts as “small”. For this example the theory

shows that the number k of relators in (2) is bounded from above by
1

6
|W |. The theory

which deals with result of this type is Small Cancellation Theory.

There are three classical small cancellation conditions under which the theory works:

the metric condition C ′(λ), where 0 < λ < 1, and the combinatorial conditions C(p)

and T (q), where p, q ≥ 3 are natural numbers. The condition C ′(λ) requires that if R1

and R2 are two relators or their inverses and U is a word cancelled out in forming the

product R1 · R2, then
|U |
|R1|

< λ and
|U |
|R2|

< λ. For example, the group presentation in
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Example 1 satisfies this condition with λ =
1

7
, since

1

8
<

1

7
= λ. The condition C(p)

requires that if P = 〈X|R〉 is a presentation and R±1 ∈ R is any relator or one of its cyclic

conjugates and R can be decomposed to R = P1 · · ·Ps, reduced as written, such that each

Pi is a subword of a relator or a cyclic conjugate of a relator or its inverse which occurs

in a different relation or in R in a position different from that in R, then s ≥ p. The

subword Pi are called pieces. (See [L-S, p. 240-241].) Clearly, C ′(1/n) implies C(n + 1)

and if p1 > p2 then C(p2) implies C(p1). The condition T (q) requires the following. Let

3 ≤ h < q. Suppose R1, . . . , Rn are cyclic conjugates of relators in R or their inverses,

such that no successive elements Ri, Ri+1 form on inverse pair. Then at least one of the

two products R1 · · ·Rh−1Rh and RhR1 is reduced as written. A basic theorem of small

cancellation theory states that if P is a presentation which satisfies the condition C(p)

with p ≥ 6 or C(4)& T (4), then the word problem for P is solvable. In this work we shall

assume that both conditions C ′(1/5) and T (4) are satisfied by the relevant presentations.

A natural extension of the word problem is the Membership Problem:

(MP): Given a subgroup H of the group G (for example, by generators) and an

element g ∈ G. Decide whether g ∈ H.

The (WP) is a special case of the (MP), where H = {1}. The Membership Problem

is not solvable in general, even in small cancellation groups. The present work shows how

word combinatorics together with tools from small cancellation theory enables one to solve

the Membership Problem for certain kind of subgroup in the class of groups which can be

defined by a single relator (one-relator groups). This class of groups contains important

subclasses like surface groups, fundamental groups of three-manifolds. It was the first

class of groups in combinatorial group theory for which definitive positive results were

obtained, mostly due to the pioneering works of Max Dehn and Wilhelm Magnus. (See

[L-S].) Among many other things Magnus proved that if P = 〈x1, . . . , xn|R〉 presents the

one-relator group G and H ⊆ 〈xi1 , . . . , xik〉, k ≤ n− 1 then the membership problem for

H in G is solvable. In spite of the much research made on one-relator groups, essentially

for no other classes of subgroups of G is the membership problem known to be solvable.

The main result of the present work produces new infinite families of such subgroups.
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Before we formulate the Main Theorem, we recall the notion of Whitehead graphs

from [L-S]. Thus, the Whitehead graph of a word W in F (X) is, by definition, the graph

on 2|X| vertices which are labeled by elements of X ∪X−1 in which two vertices, say v1,

with label a1 and v2 with label a2 (a1, a2 ∈ X ∪X−1), are connected by an edge if a−1
1 a2

is a subword of W or of W−1. We shall denote by Wh(W ) the graph obtained from the

Whitehead graph by identifying edges with the same endpoints. If T is a set of words,

we denote by Wh(T ) the union of Wh(t), t ∈ T . Our Main Theorem loosely says that

if Wh(H̃) does not contain a large portion of Wh(R) then H has solvable membership

problem. Denote by E(W ) the set of edges of Wh(W ) and similarly let E(T ) the set of

edges of Wh(T ).

Main Theorem. Let P = 〈X|R〉 be a one-relator presentation of a one-relator group

G with |R| ≥ 5 which satisfies the small cancellation conditions C ′(1/5) and T (4). Let

F = F (X) and let θ : F → G be the canonical homomorphism introduced in (1). Let

Y ⊆ F be a finite subset of F , let H̃ be the subgroup of F generated by Y and let H = θ(H̃).

Let Z = E(R̂) and let K = E(H). If

|Z| − |Z ∩K| > 3 (∗∗)

then H has solvable Membership Problem in G.

Three remarks are in order here. First, observe that Magnus’ result mentioned above,

and this result are of similar type in that Magnus’ result is on subwords of length one,

namely the generators, and in our Main Theorem we consider subwords of length two,

instead. Next, with the cost of more work on the side of small cancellation theory, we can

replace the metric condition C ′(1/5) by the combinatorial condition C(6). Finally, when

checking condition (∗∗) we do not have to check each element of H when forming K,

because there is a standard way to construct a graph from which K can be easily read

off.

Example 2. Let F = 〈a, b, c, d| − 〉, R = P 2U1U2, where P = ab−2a2c3acd−1a, U1 =

da−3db and U2 = c−1dbc−1b. Let H = 〈U1, U2〉. Then θ(H) has solvable membership

problem, by the Main Theorem. To see this, consider first the Whitehead graph Wh(R)
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of the cyclic word R̂. It is depicted in Fig. 1, where ā denotes a−1 and similarly for b̄, c̄

and d̄.

Figure 1.

Thus, Wh(R) is a 4-regular graph with
8 · 4
2

= 16 edges. Next, we consider the

Whitehead graphs of the elements of H̃. Since U1 and U2 have length greater than two

and since the only cancellation in the products U εi
i U

εj

j , where εi, εj ∈ {1,−1}, i, j ∈ {1, 2}

and i = j ⇒ εi = εj are in U1U
−1
2 , in which case only one letter is cancelled out (b), hence

the Whitehead graph of every element in H is contained in the union of the Whitehead

graphs of Ui and U εi
i U

εj

j , εi, εj ∈ {1,−1}, i, j ∈ {1, 2}. These are marked in Fig. 1. by

a tilda. Thus, we see that |Wh(L)| ≤ 8 for every element L in H. But |Wh(R̂)| = 16

and 8 < 16 − 3 = 13. Therefore, we can not have Γ ⊆ Wh(L) for any subgraph Γ of

Wh(R) which misses three edges or less. Consequently, if R satisfies C(6)& T (4) then

θ(H) has solvable mempership problem in G, by the Main Theorem (see remark above).

But since Wh(R) contains no closed curves of length less than or equal three, it follows

that R satisfies T (4) and it is easy to check that it satisfies the condition C(6) as well.

Thus, θ(H) has solvable membership problem in G, by the Main Theorem and the second

remark following the Theorem.

Finally, a few remarks on the method of proof. We use small cancellation theory as

developed in [J1]. The main tool of the theory is van Kampen diagrams. These are
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planar cell complexes, labeled by elements of F , which describe precisely and efficiently

the cancellations that occur in the right hand side of equation (2), when forming W . For

every reduced word W in N there is such a diagram which has W as one of its boundary

labels. (See [L-S, Ch.V]). We apply this theory in order to show that if u ∈ G is an

element represented by a reduced word U in F and u ∈ H then there is a word V in H̃

such that |V | ≤ 9|U ||R| and v = u in G, where v is the image of V in G. Since G has

solvable word problem this solves the membership problem for H in G.

A central ingredient of the theory is Greendlinger’s Lemma, which guaranties the

existence of at least two Greendlinger regions (two-cells) in every van Kampen diagram

M which has at least two regions. These are regions with the property that their boundary

has a large common portion with the boundary of M . Since the label of the boundary

∂M of M is a consequence of R and for every consequence there is such a diagram, this

means in algebraic terms that every consequence of R contains a large portion of one

of the defing relations. (See [L-S, Ch. V].) If the small cancellation condition is strong

enough, this result alone is enough to solve the word problem.

However there are problems, the solution of which requires a more precise information

than just a large portion of the defining relator. Suppose for example that the set X of

generators is partitioned into subsets: X =
⋃
i∈I

Xi, I an index set, (this happens, for

example, when F1 is a free product) and we would like to show that every consequence

of R contains at least one letter from each Xi, i ∈ I. (This is what needed for the proof

of Magnus’ Freiheitssatz for one-relator products.) Clearly, Greendlinger’s lemma is not

helpful because even if the label Q of the common boundary of a Greendlinger region with

∂M is long, this does not guarantee that every Xi is represented in Q.

Recently we developed a method to resolve difficulties of this type in one-relator quo-

tients, where F1 is as above and R satisfies a certain small cancellation condition. Using

versions of it we proved several results of different nature: in [J2] Magnus’ Freiheitssatz for

one-relator free products with more than two components is proved, under a certain small

cancellation condition, without restriction on the components. (Notice that all the results

in the literature make assumption on the components.) In [J8] we solved the membership

problem for Magnus subgroups of one-relator free products with small cancellation. In [J9]
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we proved the appropriate version of Magnus’s Freiheitssatz for Magnus subsemigroups

of one-relator groups with small cancellation. In [J5] we completely classified all excep-

tional Magnus intersections (i.e. pairs of Magnus subgroups whose intersection is not a

Magnus subgroup) in one-relator free products with small cancellation. (This result has

consequences on solvability of equations (see [J10]).) In [J11] we classify non-malnormal

Magnus subgroups in one-relator groups and free products with small cancellation.

In the present work we extend the method in order to describe the relationship between

Whitehead graphs of defining relations and their consequences.

In all these results we rely heavily on the assumption that the given group is defined

by a single defining relator. No doubt, this is strong combinatorial assumption, but how

to connect it to small cancellation theory in a useful way? We resolved this problem

by massive application of word combinatorics. The appearance of word combinatorics in

the context of small cancellation theory is quite natural: for example, there are standard

results, like Lyndon-Schützenberger’s theorem for periodic words, which guaranteers that

long subwords which occur more than once in the word occur in a very special configura-

tions, which can be avoided by an appropriate small cancellation theory. (See also [C-J1]

and [C-J2] for other types of words.)

Yet, the application of word combinatorics in the present work and the previously

mentioned works is of different nature: we apply word combinatorics in order to improve

Greendlinger’s Lemma for the one-relator case in the following way: suppose for example,

we would like to prove Magnus’ Freiheitssatz for one-relator free products with several

components; G = 〈G1 ∗ · · · ∗Gm |R〉, m ≥ 3. (This problem is similar to ours, but

simpler.) We have to show that every consequence of R contains a letter from each Gi,

i = 1, . . . ,m. Let C be a consequence of R and let M be a van Kampen diagram with

C as a boundary label. It follows by standard small cancellation theory that under the

condition C ′(1/5)&T (4) a diagram M has a Greendlinger region D which either has only

one neighbouring region E in M or it has two neighbours Er and E` which have common

boundary paths with D, having labels P1 and P2, respectively. (See Fig. 2 and Fig. 3,

respectively.)

Suppose for simplicity the first and let P be the label of the common boundary path
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Figure 2.

Figure 3.

∂E ∩ ∂D of E and D and let Q be the label of the common boundary path of D and M .

Thus R1 := QP is a boundary label of D, hence a cyclic conjugate of Rε, ε ∈ {1,−1}.

We claim that every letter in P necessarily occurs in Q. Now P is a common label of ∂D

and ∂E. Therefore, P occurs as a subword of R1 and also as a subword of a boundary

label R2 of E. But since

R is the only defining relator of G, R1 and R2 are cyclic conjugates of R±1.

Therefore, in addition to the above mentioned occurrence of P in R1, P ε, ε ∈ {1,−1},

has another occurrence in R1, which we denote by P ′, which comes from the occurrence

of P as a subword of R2. (These occurrences are different because we assume that our
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diagrams are reduced.) Now, since R1 = QP and P ′ is a subword of the cyclic word R̂1,

either P ′
1 is a subword of Q in which case we are done, or else P ′ overlaps non-trivially with

P . In this case ε = 1 and we have the following word equations: P ′ = AB, Q = Q0A and

P = BC. In particular, AB = BC(= P ) hence by the well known (and easy) result from

word combinatorics we get that P = (KL)αK, α ≥ 1 and A = KL, for certain subwords

K and L of P . But then Q = Q0A = Q0KL and since all the different letters occurring in

P already occur in KL, we get that all the letters in P occur in Q, as required. Observe

that we used here word combinatorics in order to shift the letters of P into Q.

In the case when D has two neighbours Er and E` it is not always true that Q contains

all the letters of P1 and P2. In fact we prove that

QrQQ` contains every letter of R, where Qr and Q` are the labels
of ∂Er ∩ ∂M and ∂E` ∩ ∂M , respectively.

(∗)

This requires the development of a rather complicated combinatorial machinery on

words. We describe it very briefly. First, observe that in the above word equations

we were interested not so much in their solution but rather the values of the function

Supp : F1 → L, where L is the set of all the subsets of {1, . . . ,m} and for a word W

in F1, Supp(W ) is the set of the indices i for which Gi contributes a letter in W . We

rely very heavily on this observation when proving (∗). In the present work we deal with

Whitehead graphs hence we have to introduce a new function σ : F1 → K, where K is the

set of all the subsets of the set of words in F1 with length two. (This corresponds to the

edges of the corresponding Whitehead graph.)

Finally, we point out that the above mentioned improved version of Greendlinger’s

Lemma holds true under the small cancellation condition C(6), with a few known excep-

tions ([J6]), however the corresponding word combinatorics is incomparably much more

complicated. Also, we would like to point out that the method of the present work

is applicable to one-relator free products ([J2] and [J5]), one-relator amalgamated free

products ([J4]), and one-relator HNN-extensions ([J3]). In general, to deal with relative

presentations, like in one-relator free products, one has to deal with partial words rather

than ordinary words. For these even the Fine-Wilf theorem has no complete analogue (see

[B-H]). However, in [J3], [J4] and [J5] we are able to avoid using partial words, although
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in general this is not possible. In fact, in [J3], [J4] and [J5] we are interested primarily in

the combinatorics of certain set theoretical labels attached to the words, and we use words

as “carriers of the labels”, the combinatorics of which faithfully reflects the combinatorics

of the labels. The point is that these labels can be defined in the “holes” occuring in the

partial words, hence combinatorics of ordinary words suffices (see [J6]). Also, with some

care, the method works for certain subsemigroups of one-relator groups and one-relator

semigroups (see [J7]).
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