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Recall Sturmian words . . .

Definition

An infinite word s over {a, b} is Sturmian if there exist real numbers α,
ρ ∈ [0, 1] such that s is equal to one of the following two infinite words:

sα,ρ, s′
α,ρ

: N → {a, b}

defined by

sα,ρ(n) =

{
a if ⌊(n + 1)α + ρ⌋ − ⌊nα+ ρ⌋ = 0,

b otherwise;

s′
α,ρ

(n) =

{
a if ⌈(n + 1)α + ρ⌉ − ⌈nα+ ρ⌉ = 0,

b otherwise.

(n ≥ 0)
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Sturmian words (cont.)

A Sturmian word is:

aperiodic if α is irrational;

periodic if α is rational;

standard (or characteristic) if ρ = α.

Nowadays: only the aperiodic ones are considered to be
‘Sturmian’.

Here: Sturmian refers to both aperiodic and periodic
Sturmian words.
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Balanced words

Definition (Balance)

A finite or infinite word w on {a, b} is balanced if:

u, v ∈ F (w), |u| = |v | ⇒ ||u|b − |v |b| ≤ 1.

Morse & Hedlund (1940)

All balanced infinite words over a 2-letter alphabet are called
Sturmian trajectories. They belong to three classes:

aperiodic Sturmian;

periodic Sturmian;

ultimately periodic non-recurrent infinite words, called
skew words: ϕ(x)pϕ(y)ϕ(x)ω , ϕ a pure standard (Sturmian)
morphism, x , y ∈ {a, b}, x 6= y .

Example: aaabaaaaaaaaa · · ·
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Extremal words

Let x = x0x1x2 · · · be a (right) infinite word.

Define min(x) to be the infinite word such that any prefix of
min(x) is the lexicographically smallest amongst the factors of x
of the same length.

Similarly define max(x).

Let min(x|k) denote the lexicographically smallest factor of
x of length k . Then:

min(x) = lim
k→∞

min(x|k).

Note: min(x) is an infinite Lyndon word.
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Proposition (Pirillo, 2005)

An infinite word s on {a, b} (a < b) is standard Sturmian (aperiodic or
periodic) ⇐⇒

as ≤ min(s) ≤ max(s) ≤ bs.

That is, standard Sturmian words s on {a, b} are characterized
by the inequality:

as ≤ T k(s) ≤ bs, for all k ≥ 0,

where T is the shift map.

In particular, an infinite word s on {a, b} (a < b) is an aperiodic
standard Sturmian word ⇐⇒

(min(s),max(s)) = (as, bs).

Amy Glen Skew and episkew words



Sturmian & skew words
Episturmian & episkew words

Characterizations via lexicographic orderings

Sturmian words & balance
Lexicographic order & extremal words
Extremal properties

Fine words

Question

What are the infinite words t on {a, b} satisfying

(min(t),max(t)) = (as, bs) for some infinite word s ?

Definition (Pirillo, 2005)

An infinite word t on {a, b} (a < b) is said to be fine if

(min(t),max(t)) = (as, bs) for some infinite word s.

Fine words on {a, b} are exactly the aperiodic Sturmian and
skew infinite words.

Recently generalized to an arbitrary finite alphabet . . .
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Generalized fine words

Definition

An acceptable pair is a pair (a, <) where a is a letter and < is a order
on A such that a = min(A).

Definition (Glen, 2006)

An infinite word t on A is said to be fine if there exists an infinite word
s such that min(t) = as for any acceptable pair (a, <).

Proposition (Glen, 2006)

An infinite word t is fine ⇐⇒ t is either a strict episturmian word, or a
“strict episkew word” (i.e., a certain kind of non-recurrent infinite word,
all of whose factors are finite episturmian).
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Episturmian words

Introduced by X. Droubay, J. Justin, and G. Pirillo (2001).

Interesting natural generalization Sturmian words.

Share many properties with Sturmian words.

Include the well-known Arnoux-Rauzy sequences.
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Episturmian words (cont.)

Definition

A (right-, left-, bi-) infinite word t on A is episturmian if:

F (t) (its set of factors) is closed under reversal, and

t has at most one right special factor of each length.

t is standard if all of its left special factors are prefixes of it.

Gives Sturmian words (both aperiodic and periodic) when
|A| = 2.

Episturmian words are uniformly recurrent.
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Episturmian morphisms

For each a ∈ A, define the morphisms ψa, ψa on A by

ψa :

{
a 7→ a
x 7→ ax

, ψa :

{
a 7→ a
x 7→ xa

for all x ∈ A \ {a}.

Monoid of episturmian morphisms: generated by all the ψa, ψa,
and permutations on A.

Monoid of epistandard morphisms: generated by all the ψa and
permutations on A.

Submonoids:

Pure episturmian morphisms: generated by the ψa, ψa;
Pure epistandard morphisms: generated by the ψa only.

Pure epistandard morphisms are precisely the pure standard
(Sturmian) morphisms when |A| = 2.
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Characterization by morphisms

Proposition (Justin & Pirillo, 2002)

An infinite word t on A is standard episturmian ⇐⇒ there exists
an infinite sequence (t(i))i≥0 of recurrent infinite words and a
directive word ∆ = x1x2x3 · · · (xi ∈ A) such that

t(0) = t and t(i−1) = ψxi (t
(i)) for all i > 0.

Moreover, each t(i) is standard episturmian with directive word
T i(∆) = xi+1xi+2xi+3 · · · .
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Example: Fibonacci word, ∆ = (ab)ω

f = abaababaabaaba · · ·

f = ϕω(a) where ϕ : a 7→ ab,b 7→ a. Note that

ϕ = ψaE = Eψb

where E is the exchange morphism: a ↔ b

For all n ≥ 0,

f = (ψaE)2n(f) = (ψaEψaE)n(f) = (ψaψb)n(f)

f = ψa(f(1)) where

f(1) = E(f), the Fibonacci word directed by T (∆) = (ba)ω

f(1) = ψb(f(2)) where f(2) = f, directed by T 2(∆) = (ab)ω,
etc. . . .

Amy Glen Skew and episkew words



Sturmian & skew words
Episturmian & episkew words

Characterizations via lexicographic orderings

Episturmian words
Standard episturmian words
Episkew words

Strictness

Definition

A standard episturmian word t, or any equivalent (episturmian) word,
is strict if

Ult(∆) = Alph(∆).

That is, every letter in Alph(t) appears infinitely often in ∆.

Examples

1 ∆ = c(ab)ω directs the non-strict standard episturmian word :

ψc(f) = cacbcacacbcacbcacacbcacacbca · · ·

2 ∆ = (abc)ω directs the Tribonacci word :

r = abacabaabacababacabaabacabacabaabaca · · ·

*Also known as the Rauzy word (1982).

Amy Glen Skew and episkew words



Sturmian & skew words
Episturmian & episkew words

Characterizations via lexicographic orderings

Episturmian words
Standard episturmian words
Episkew words

Arnoux-Rauzy sequences

The strict episturmian words are exactly the well-known
Arnoux-Rauzy sequences.

The family of episturmian words over {a,b, c} consists of:

Arnoux-Rauzy sequences over {a, b, c};

Sturmian words over {a, b}, {b, c}, {a, c} & certain morphic
images of them;

periodic infinite words of the form µ(x)ω where µ is an
episturmian morphism on {a, b, c} and x ∈ {a, b, c}.
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Recall: An infinite word t on A is fine if there exists an infinite word s
such that min(t) = as for any acceptable pair (a, <).

Notation

vp: prefix of length p of a given finite or infinite word v

Proposition (Glen, 2006)

An infinite word t with Alph(t) = A is fine ⇐⇒ one of the following
holds:

(i) t is a strict episturmian word;

(ii) there exists a letter x ∈ A and a strict standard episturmian word
s on A \ {x} such that t = vϕ(s), where ϕ is a pure epistandard
morphism on A and v is a non-empty suffix of ϕ(s̃px) for some
p ∈ N.

An infinite word t of the form (ii) is called a strict episkew word.

All factors of such infinite words are finite episturmian.
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Example

Suppose f is the Fibonacci word on {a,b}. Then, the following
infinite words are fine on {a,b, c}.

f = abaababaabaaba · · ·

cf = cabaababaabaaba · · ·

f̃4cf = aabacabaababaabaaba · · ·

ψa(f) = aabaaabaabaaabaaaba · · ·

ψc(cf) = ccacbcacacbcacbcacacbcacacbca · · ·

ψc(f̃4cf) = cacacbcaccacbcacacbcacbcacacbcaca · · ·

Note

ψc(f) is not fine since it is a non-strict standard episturmian
word with directive word ∆ = c(ab)ω.
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Equivalent definitions

Theorem

An infinite word t with Alph(t) = A is episkew if equivalently:

(i) t is non-recurrent and all of its factors are (finite) episturmian;

(ii) there exists an infinite sequence (t(i))i≥0 of non-recurrent infinite
words and a directive word x1x2x3 · · · (xi ∈ A) such that t(0) = t,
. . . , t′(i−1) = ψxi (t

(i)), where t′(i−1) = t(i−1) if t(i−1) begins with xi

and t′(i−1) = xi t(i−1) otherwise;

(iii) there exists a letter x ∈ A and a standard episturmian word s on
A \ {x} such that t = vϕ(s), where ϕ is a pure epistandard
morphism on A and v is a non-empty suffix of ϕ(s̃px) for some
p ∈ N.

Moreover, t is said to be strict episkew if s is strict on A \ {x}.
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Infinite words with episturmian factors

Recall: Balanced infinite words are precisely the infinite words
whose factors are finite Sturmian.

Fact 1

{Infinite words whose factors are Sturmian} =

{(recurrent) Sturmian} ∪ {(non-recurrent) skew}

Fact 2

{Infinite words whose factors are episturmian} =

{(recurrent) episturmian} ∪ {(non-recurrent) episkew}
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Terminology

Notation

Let w be a finite or infinite word on A.

min(w |k) denotes the lexicographically smallest factor of w
of length k for the given order (where |w | ≥ k for w finite).

Definition

For a finite word w ∈ A+ and a given order, min(w) will
denote min(w |k) where k is maximal such that all
min(w |j), j = 1,2, . . . , k , are prefixes of min(w |k).

In the case A = {a,b}, max(w) is defined similarly.
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Example

Suppose w = baabacababac.

For the orders b < a < c and b < c < a on {a,b, c}:

min(w |1) = b

min(w |2) = ba

min(w |3) = bab

min(w |4) = baba

min(w |5) = babac = min(w)

Note: min(w) is a suffix of w , which is true in general.
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Characterizations

Theorem

A finite word w on A is episturmian ⇐⇒ there exists a finite word u
such that, for any acceptable pair (a, <), we have

au|m|−1 ≤ m (1)

where m = min(w) for the considered order.

Recall w = baabacababac.

For the different orders on {a, b, c}:

a < b < c or a < c < b: min(w) = aabacababac;
b < a < c or b < c < a: min(w) = babac;
c < a < b or c < b < a: min(w) = cababac.

u = abacaaaaaa satisfies (1) ⇒ w is finite episturmian.
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Characterizations (cont.)

Corollary

A finite word w on {a, b}, a < b, is not Sturmian (i.e., not balanced)
⇐⇒ there exists a finite word u such that

aua is a prefix of min(w) & bub is a prefix of max(w).

Example (1)

For w = aabababaabaab:

min(w) = aabaab, max(w) = bababaabaab.

min(w) = auab and max(w) = bubaabaab where u = aba.

Thus w is not Sturmian.
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Characterizations (cont.)

Corollary

A finite word w on {a, b}, a < b, is not Sturmian (i.e., not balanced)
⇐⇒ there exists a finite word u such that

aua is a prefix of min(w) & bub is a prefix of max(w).

Example (2)

For w = ababaabaabab:

min(w) = aabaabab, max(w) = babaabaabab.

abaaba is the longest common prefix of a−1 min(w) and
b−1 max(w).

abaaba is followed by b in min(w) and a in max(w).

Thus w is Sturmian.
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Characterizations

Definition

An infinite word is said to be episturmian in the wide sense if all of its
factors are (finite) episturmian.

Corollary (1)

An infinite word t on A is episturmian in the wide sense (episturmian
or episkew) ⇐⇒ there exists an infinite word u such that

au ≤ min(t) for any acceptable pair (a, <).

Corollary (2)

An infinite word t on {a, b}, a < b, is balanced (Sturmian or skew)
⇐⇒ there exists an infinite word u such that

au ≤ min(t) ≤ max(t) ≤ bu.

Amy Glen Skew and episkew words


	Sturmian & skew words
	Sturmian words & balance
	Lexicographic order & extremal words
	Extremal properties

	Episturmian & episkew words
	Episturmian words
	Standard episturmian words
	Episkew words

	Characterizations via lexicographic orderings
	Finite case
	Infinite case


